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Wind Turbine Power Curve Modeling Using
Advanced Parametric and Nonparametric Methods

Shahab Shokrzadeh, Student Member, IEEE, Mohammad Jafari Jozani, and Eric Bibeau

Abstract—Wind turbine power curve modeling is an important
tool in turbine performance monitoring and power forecasting.
There are several statistical techniques to fit the empirical power
curve of a wind turbine, which can be classified into parametric
and nonparametric methods. In this paper, we study four of these
methods to estimate the wind turbine power curve. Polynomial
regression is studied as the benchmark parametric model, and
issues associated with this technique are discussed. We then
introduce the locally weighted polynomial regression method, and
show its advantages over the polynomial regression. Also, the
spline regression method is examined to achieve more flexibility
for fitting the power curve. Finally, we develop a penalized spline
regression model to address the issues of choosing the number
and location of knots in the spline regression. The performance
of the presented methods is evaluated using two simulated data
sets as well as an actual operational power data of a wind farm
in North America.

Index Terms—Nonparametric regression, penalized spline re-
gression, polynomial regression, wind energy, wind turbine power
curve.

I. INTRODUCTION

R ENEWABLE energy plays an important role in ad-
dressing global energy and environmental challenges.

To improve energy sustainability and to mitigate risks from
a business-as-usual approach, large-scale deployment of re-
newable sources has significantly increased over the last
decade [1]. Among renewable energy technologies, wind
energy has been the fastest growing source in electricity
generation [2]. Higher share of wind produced electricity in
the energy sector motivates the analysis of the performance
of wind power generators. Uncertainties and deviations in the
generated output power can cause serious challenges in the
energy management systems (EMS) and impact the reliability
of the power grid [3]. Therefore, effective integration of wind
power into the power systems requires accurate estimation of
the turbine power curve for operational management of wind
energy as well as performance monitoring of turbines [4]–[6].
Moreover, accurate estimation of wind turbine power curve
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is required to more realistically size the storage capacity for
wind energy integration [7].

The power curve of a wind turbine presents the electri-
cal power output ratings of the machine for different wind
speeds [8]. A typical wind turbine power curve has three
main characteristic speeds: 1) cut-in (Vc); 2) rated (Vr); and
3) cut-out (Vs) speeds. The turbine starts generating power
when the wind speed reaches the cut-in value. The rated
speed is the wind speed at which the generator is producing
the machine’s rated power. When the wind speed reaches
the cut-out speed, the power generation is shut down to
prevent defects and damages [9]. Theoretical power curves are
supplied by manufacturers assuming ideal meteorological and
topographical conditions. In practice, however, wind turbines
are never used under ideal conditions, and the empirical power
curves could be substantially different from the theoretical
ones due to the location of the turbine, air density, wind
velocity distribution, wind direction, mechanical and control
issues, as well as uncertainties in measurements.

There are several statistical methods to fit the empiri-
cal power curve of a wind turbine [10]. These methods
can be classified into parametric and nonparametric tech-
niques [11], [12]. Parametric techniques are based on math-
ematical models that are often built by a family of functions
with a number of parameters to describe the turbine power
curve [13]. Examples of these models include segmented linear
models [14], polynomial regression [15], [16], and models
based on probabilistic distributions such as four- or five-
parameter logistic distributions [12], [17]. Parametric methods
are usually restricted by their nature. Unlike parametric tech-
niques, nonparametric methods do not impose any prespecified
model and attempt to produce an estimate of the power curve
that is as close as possible to the observed data subject to the
smoothness of the fit. Such methods have major advantages
over parametric methods as they can accurately model a
wide range of possible shapes of power curves. Examples
of nonparametric techniques include neural networks (e.g.,
generalized mapping regressor and feed–forward multi layer
perceptron [18]), fuzzy logic methods (e.g., fuzzy cluster
centre models [19]), and data mining methods (e.g., the
multilayer perception, the random forest, and the k-nearest
neighbor [20]).

No one model fitting approach dominates all others over all
possible observations obtained from different wind turbines.
On a particular data set, a specific method might work best, but
on other data sets, other methods might be more applicable.
Therefore, it is important to investigate the performance of
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different statistical procedures for power curve fitting and
decide which method produces better results for a given data
set. In this paper, we focus on wind turbine power curve
modeling based on available operational output power data
using four parametric and nonparametric methods. We present
polynomial regression as a benchmark parametric method
for power curve fitting. This method used extensively in
the literature, however, suffers from its global nature and
sensitivity to anomalies within observations. In this method,
one usually needs a high-degree polynomial regression model
to provide a good fit to the observed data set. Fitting a high-
degree polynomial regression model results in a good fit to
the observed data set but may overfit the data points [21],
and the fitted power curve will closely follow the noise of
the power generating system. To avoid such problems, we
propose using the locally weighted polynomial regression as
a nonparametric method and study some of its properties on
simulated as well as real data sets. Cubic spline regression
is another nonparametric method that has been introduced for
wind turbine power curve fitting [22], [23]. However, there are
a number of practical issues with this method such as choosing
the number and the location of knots to fit the cubic spline
model. In addition, while these models perform well for wind
turbines with smooth power curves, their performance outside
the boundary knots could be undesirable. Natural cubic spline
regression is proposed to improve the performance of the cubic
spline regression models outside the boundary knots. Finally,
we develop a penalized spline regression model that provides
an enhanced performance compared with the spline regression
by addressing the challenge of choosing the number and the lo-
cation of knots. We note that the nonparametric methods devel-
oped in this paper are more flexible, less sensitive to anomalies
within observations, easier to implement, and computationally
more feasible compared with other methods in the literature.
While our proposed methods show promising results for mod-
eling the wind power generation, one might also be able to use
our results to obtain efficient and easy-to-implement methods
for characterizing wind turbine power curves, which can be
used in other applications such as wind power forecasting and
on-line monitoring of power curves for detecting anomalies in
a wind turbine power generation process.

The outline of this paper is as follows. In Section II, we first
discuss different parametric and nonparametric power curve
estimation methods by introducing two typical power curves
and simulating two random data sets with normal errors. We
then present the theoretical foundation of each method and
apply them on the simulated data sets. In Section III, we
present actual operational data sets of a wind farm in North
America and investigate the performance of each method. The
results of the proposed techniques and the evaluation metrics
are also presented. Section IV provides concluding remarks
and future works.

II. POWER CURVE ESTIMATION

The theoretical wind power available from the mass flow
rate of air through the turbine blades swept area is obtained by

Pw =
1

2
ρAv3 (1)

where Pw is the wind power in W , ρ is the air density in
kg/m3, A is the turbine rotor area in m2, and v is the wind
speed in m/s [9]. The electrical power extracted by wind
generators is

Pe = η Cp Pw (2)

where Cp is the dimensionless power coefficient representing
the theoretical amount of mechanical power that can be
extracted by the turbine rotor, and η is the machine’s overall
efficiency [24], [25]. The power coefficient is a function of
turbine blade tip speed ratio λ and the blade pitch angle θ
[26]. The maximum theoretical mechanical power that can be
extracted by wind turbines is 0.5926 and is known as the Betz
limit [27].

In this section, we characterize the machine’s power curve
based on actual generated power data using four parametric
and nonparametric methods. Wind speed and power data sets
(vi, pi) are simulated from the additive model pi = f(vi) + εi
with contaminated noise, where f(·) represents the man-
ufacturer power curve. We consider two wind turbines to
represent two different typical shapes of the power curve:
wind turbine model V82 and model FL-255 with the rated
capacity of 1650 kW and 250 kW, respectively, manufactured
by Vestas Wind Systems A/S and Furlander AG. Fig. 1 shows
theoretical power curves for these turbines with the scatter
plots of simulated observations from each power curve. For
each case, the observed wind power at a given wind speed
is generated from a normal distribution with the mean equal
to the manufacturer power curve and a constant standard
deviation σε, where σε = 100 for turbine model V82 and
σε = 20 for turbine model FL-255. Each data set consists of a
total number of 720 pairs of observations, denoted by (vi, pi),
i = 1, . . . , n = 720. The wind speed data are generated from a
Weibull distribution representing the hourly wind distribution
of the wind farm studied in Section III.

A. Polynomial Regression

Polynomial regression has been extensively used in the
literature to estimate the power curve of wind turbines. This
model can be considered as a standard extension of the linear
regression pi = β0 + β1vi + εi, with a polynomial function

pi = β0 + β1vi + β2v
2
i + · · ·+ βkv

k
i + εi. (3)

Model (3) can be written as

P = Vβ + ε (4)

where P = (p1, p2, . . . , pn)
�, β = (β0, β1, . . . , βk)

�, ε =
(ε1, ε2, . . . , εn)

�, and V is a matrix with its ith row being
defined as Vi = (1, vi, v

2
i , . . . , v

k
i ). We use the least squares

method to estimate β by minimizing the residual sum of
squares (RSS)

RSS(β) = (P− Vβ)�(P− Vβ). (5)

Differentiating (5) with respect to β, we solve

∂RSS(β)
∂β

= −2V�(P− Vβ) = 0 (6)
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Fig. 1. The manufacturer wind turbine power curves for (a) turbine model V82
and (b) turbine model FL-255 with the scatter plots of 720 generated wind
speed and hourly produced power for 1 month, assuming normally distributed
noises about the manufacturer power curves with standard deviations σε =
100 and σε = 20, respectively.

where V� stands for the transpose of V and obtain

β̂ = (V�V)−1V�P. (7)

The fitted power curve at a specific wind speed value vi
is f̂(vi) = Viβ̂. To obtain the degree of the polynomial
regression, we use a 10-fold cross-validation by randomly
dividing the observations into ten-folds of approximately equal
sizes. Each time, a group of observation is considered as
a validation set, and the remaining groups are used for the
purpose of training a polynomial model of a specific degree
for estimating the power curve. The tenfold cross-validation
is then computed by

CV(10) =
1

10

10∑
i=1

MSPEi (8)

where MSPEi is the mean-squared prediction error rate associ-
ated with the ith test group. Fig. 2 shows the fitted polynomial
regression models for turbine model V82 with degrees 4 and 5,
and turbine FL-255 with degrees 6 and 7. We use one standard
error rule in conjunctions with cross-validation and choose a
model with an error no more than one standard error above
the error of the best model [21]. Here, to prevent overfitting
the scatter plots, polynomial regression models with k = 5 and
k = 6 are used for modeling the power curves of turbines V82
and FL-255, respectively.

Fig. 2. Fitted polynomial regression models for (a) turbine model V82 with
degrees 4 and 5 and (b) turbine model FL-255 with degrees 6 and 7. The
black-dashed curves are theoretical power curves from the manufacturers.

B. Locally Weighted Polynomial Regression

Polynomial regression is limited by its global nature, where
the fitted value of power at a given speed v0 depends strongly
on all data values even those vis that are far from v0. Also, it is
not easy to achieve a functional form in a specific wind speed
region without sacrificing the goodness of the fitted curve in
other regions. In addition, polynomials are more sensitive to
anomalies within the data. One way to avoid such problems is
to fit a local regression model at a target point v0. Locally
weighted kth order polynomial regression model solves a
separate weighted least squares problem at each target wind
v0 by finding β̂(v0) as follows:

β̂(v0) = argmin
β

(P− Vβ)�Ws(v0)(P− Vβ) (9)

where Ws(v0) = diag(Ks(v0, v1), . . . ,Ks(v0, vn)) is a diag-
onal matrix, and Ks(v0, vi) is the smoothing kernel function.
Using Ks(v0, vi), data points nearest to v0 are given the
highest weight and those farther away are given lower weights.
This method is resistant against outliers by assigning low
weights to observations, which generate large residuals [28].
For this analysis, we use the tri-cube kernel function

Ks(v0, vi) =

{(
1− ∣∣ vi−v0

s

∣∣3)3

, if |vi − v0| ≤ s

0, otherwise.
(10)

However, one can also use other kernel functions such as the
Gaussian kernel function. We can compute β̂(v0) for each v0
as follows:

β̂(v0) = (V�Ws(v0)V)−1V�Ws(v0)P. (11)
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Fig. 3. Locally weighted linear and quadratic regression models for the power
data sets generated from the theoretical power curves of turbines V82 (a) and
FL-255 (b). The black-dashed curves are theoretical power curves from the
manufacturers.

Also, the corresponding estimated power at wind speed v0 is

f̂(v0) = V0(V�Ws(v0)V)−1V�Ws(v0)P

=
n∑

i=1

li(v0; s) pi (12)

where V0 = (1, v0, v
2
0 , . . . , v

k
0 ) and the term li(v0; s) com-

bines the local smoothing kernel Ks(v0, ·) and the least squares
operation for fitting the polynomial regression.

One can interpret s as the fraction of observations used
in constructing the local fit at any point v0. Small values of
s will produce more local fits, while large values result in
more global fits using all the observations and the resulting
model will be similar to the polynomial regression. Fig. 3
shows the locally weighted linear and quadratic regression
models of power on wind speed for observations generated
by turbines V82 and FL-255. The cross-validation technique
is used to obtain the optimum value of s for each data set. By
comparing Fig. 2 with Fig. 3, we observe that locally weighted
polynomial regression models reduce the bias of polynomial
regression models, especially at the boundaries.

However, the bias reduction is obtained at a cost of vari-
ance increase. Therefore, for choosing k, one needs to pay
careful attention to the bias–variance tradeoff of the fitted
models [28], [29].

C. Spline Regression

Although locally weighted polynomial regression method
could result in an appropriate approximation to the manufac-
turer power curve, in practice, one might not have enough

control on the curvature of the fitted power curve to pro-
vide a desirable approximation to the nonlinear nature of
the relationship between the generated power and the wind
speed. One way to achieve more flexibility and provide more
control on the curvature of the fitted power curve is to use
piecewise polynomials. A piecewise polynomial regression
involves fitting separate low-degree polynomials over different
regions of the wind speeds. To this end, one needs to specify
K different breakpoints, known as knots, throughout the range
of the wind speeds and then fit K + 1 different polynomial
regression models. To fit a smooth and continuous piecewise
degree-k polynomial regression, we need to put the constraints
that the first k − 1 derivatives of the fitted power curve to be
continuous. This can be achieved by using the polynomial
spline regression function which is defined as

pi = β0 +

k∑
r=1

βrv
r
i +

K∑
j=1

βk+j(vi − ζj)
k
+ + εi (13)

where k ≥ 1 is the order of spline, ζ1, . . . , ζK are a set of
prespecified knots, and the function (·)k+ denotes a truncated
power function as follows:

(vi − ζj)
k
+ =

{
(vi − ζj)

k, vi > ζj ,
0, otherwise.

(14)

The most popular spline regression is the cubic spline cor-
responding to the choice of k = 3 in (13). Cubic spline
regression models have been used for power curve modeling
by [30] and are reliable to predict wind turbine power with
smooth power curves. Note that for a sample of size n, the
general spline regression model in (13) can be written as

P = Zβ + ε (15)

with Zn×(K+k+1) = (Vn×(k+1),Un×K), where Un×K is
a matrix with elements (vi − ζj)

k
+, i = 1, . . . , n and j =

1, . . . ,K. Hence, the model parameters can be estimated by
the least squares method to obtain

β̂ = (Z�Z)−1Z�P (16)

and the fitted power curve at speed vi is f̂(vi) = Ziβ̂,
where Zi = (1, vi, . . . , v

k
i , (vi − ζ1)

k
+, . . . , (vi − ζK)k+) is the

ith row of the matrix Z.
The normal equations associated with the truncated power

basis are highly ill-conditioned resulting in inaccuracies in
the calculation of β̂. For computational purposes, we use the
B-spline basis and reformulate (13) as P = Bβ + ε, where B

is a matrix with its (i, j)th element being Bk
j (vi), where

Bk
j (vi) =

(vi − ζj)

(ζj+k − ζj)
Bk−1

j (vi) +
(ζj+k+1 − vi)

(ζj+k+1 − ζj+1)
Bk−1

j+1 (vi)

for j = −k,−k + 1, . . . ,K, ζ0 = ζ−1 = · · · = ζ−k = min
{vi, i = 1, . . . , n}, and ζK + 1 = max{vi, i = 1, . . . , n}.
Also, B0

j (vi) are the natural basis for piecewise constant
functions. The least squares estimates of β is then given by

β̂ = (B�
B)−1

B
�P (17)

which is more feasible for computational purposes. For other
formulations of the spline regression, refer [31]. As depicted
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Fig. 4. Natural cubic spline power curve fitting with 3, 10, and 20 knots for
the power data generated from turbines V82 (a) and FL-255 (b). The black-
dashed curves are theoretical power curves from the manufacturers.

in Fig. 4, spline regression often leads to superior results over
polynomial regression. This is because spline regression intro-
duces flexibility by increasing the number of knots but keeping
the degree of polynomial fixed. If the function f(·) changes
rapidly in a region of v, one can add more knots to capture the
change. However, spline regression tends to behave erratically
beyond the boundary knots compared with the corresponding
global polynomial regression in those regions [32]. Natural
spline regressions, which are constrained to be linear beyond
the boundary knots, provide a useful tool to overcome this
problem. Fig. 4 shows the natural cubic spline power curve
models fitted to the power data for turbines V82 and FL-255
when using 3, 10, and 20 equally spaced knots. We observe
that, if the number and location of knots are chosen badly,
spline regression will result in a poor fit. Several methods are
proposed in the literature to obtain algorithms for optimizing
over the number and location of knots, as shown by [33].

D. Penalized Spline Regression

To address the challenge of choosing the number and the
location of knots in spline regression, we propose to use
a penalized spline regression model for fitting wind turbine
power curves. The idea is to use spline regression with a fixed
basis dimension at a size slightly larger than it is necessary
(e.g., fixed quantiles of wind variable), but to control the power
curve smoothness by adding a penalty to the least squares
fitting objective. In other words, we fit a power curve to the
data points by minimizing

1

n

n∑
i=1

(pi − f(vi))
2 + λ

∫
{f ′′

(t)}2 dt (18)

Fig. 5. Fitted power curves (solid red curve) for (a) turbine V82 and
(b) turbine FL-255 using penalized smoothing spline with the theoretical
power curves (back-dashed curve).

where λ is a fixed smoothing parameter and f
′′
(·) is the

second derivative of f(·). The first term in (18) measures the
goodness of fit of the curve, while the second term measures
the roughness of f(·). The smoothing parameter λ balances the
tradeoff between goodness of fit and roughness of the curve.
If the penalty is zero, we obtain a curve that interpolates the
data points. If the penalty is infinite, we obtain an ordinary
least squares fit to the data. The common way of choosing
λ is by cross-validation. In many cases, the penalty term can
be written as a quadratic form β�Dβ, where D is a matrix
of known coefficients. The estimated model parameters under
penalized spline regression are given by

β̂(λ) = (Z�Z+ λD)−1Z�P (19)

and the fitted power curve is

P̂(λ) = Zβ̂(λ) = Z(Z�Z+ λD)−1Z�P = H(λ)P (20)

where H(λ) is the hat matrix. In this paper, we choose the
penalty function to be

∑K
j=1 β

2
p+j , which results in D =

diag(0p+1,1K) [34]. To obtain a suitable value of λ, we use
the generalized cross-validation statistic

GCV(λ) =

∑n
i=1(pi − p̂i(λ))

2

n [1− λn−1trace{H(λ)}]2 (21)

where p̂i(λ) is the ith element of P̂(λ) in (20). Here,
trace{H(λ)} is called the effective degrees of freedom of the
fit. We choose a suitable value of λ by computing GCV(λ) for a
grid of λ values and choosing the minimizer over the grid. Fig. 5
depicts the power curves fitted to the simulated observations
from turbines V82 and FL-255 using penalized smoothing spline
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Fig. 6. Turbine T1 10-min measured power data versus measured wind speed.
The manufacturer power curve is shown in dashed line with characteristic
speeds: cut-in (Vc = 3.5), rated (Vr = 13), and cut-out (Vs = 20).

when the smoothing parameter is obtained using generalized
cross-validation technique. As shown in this figure, penalized
smoothing spline provides the best fit, and the obtained power
curves are similar to the manufacturers. In the proposed method,
the difficulty of choosing the number and the location of knots
in cubic spline regression is reduced to a simple problem and
can be solved by cross-validation technique.

III. REAL DATA APPLICATION

In this section, we apply the methods in Section II on
proprietary wind power data of a wind farm in North America.
The wind power plant (WPP) includes over five dozen identical
wind turbines with the rated capacity of 1.7 MW and the hub
height of 80 m spread over an area of over 90 km2. The cut-in
speed, rated speed, and cut-out speed of the turbines are 3.5,
13, and 20 m/s, respectively. There are three meteorological
(MET) towers located in the WPP collecting wind speeds,
wind directions, air density, and humidity at 10-min average.
We have selected four wind turbines (T1, . . . , T4) of the WPP
to analyze the performance of the presented methods. To more
accurately represent the wind data, turbines T1, T2, and T3

are chosen near the MET towers, while the turbine T4 is
away from the towers. We use two raw data sets of 4320
pairs representing 1 month 10-min averaged data in June–
July 2006, and 1 month in December–January 2007. This
offers a more realistic representation of the performance of the
turbines.

Fig. 6 shows that the measured data of wind power versus
wind speed do not exactly match the power generation curve
provided by the manufacturer. This can be explained by
the difference between the standard test conditions and the
conditions of the actual site. Wind direction, vertical wind
speed profile, horizontal uniformity of the wind speed across
the face of the turbine, as well as the distance between the
MET tower and the wind turbine, maintenance operations,
and aging components are among other influencing factors
[35]. Similar to [36], we observe different types of data points
in our raw data set that can be classified as per Table I.
Data processing is required to filter the invalid data points.
According to Table I, data type 1 is the desired data point.
Types 4 and 5 of the data, where negative values for wind and
power are observed, are filtered. To filter out the data types 2

TABLE I
WIND POWER AND SPEED RAW DATA CLASSIFICATION

Fig. 7. The scatter plot of the wind speed and the generated power with the
marginal histograms associated with each variable by turbine T1 for 1 month
in winter.

Fig. 8. The scatter plot of the wind speed and the generated power by turbine
T1 for 1 month in winter with the fitted power curves using proposed methods.

and 3, for each wind speed datapoint, only the power values
that lie within three standard deviations of the average power
value at that speed are included.

Fig. 7 shows the obtained scatter plot of 3663 data points
from turbine T1 for the month in winter after performing
the filtering procedure. This figure also depicts the marginal
histograms associated with the wind speed distribution on the
horizontal axis and the generated power distribution on the
vertical axis. Fig. 8 shows the four models proposed in this
paper applied on the filtered wind speed and the generated
wind power data.

There are several statistical metrics that can be used as
appropriate measures of performance for the fitted power
curves such as the root-mean-squared error (RMSE), normal-
ized mean absolute percentage error (NMAPE), symmetric
mean absolute percentage error (sMAPE), the mean absolute
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TABLE II
RESULTS FOR SUMMER AND WINTER 10-MIN AND HOURLY AVERAGED DATA FOR TURBINES T1 , T2 , T3 , AND T4 FOR THE METHODS POLYNOMIAL

REGRESSION (PR), LOCALLY WEIGHTED REGRESSION (LR), CUBIC SPLINE (CS), AND PENALIZED SPLINE (PS)

error (MAE), and the coefficient of determination (R2) [18],
[37]. In this paper, we use RMSE and NMAPE given by

RMSE =

√√√√ 1

n

n∑
i=1

(pi − p̂i)2 (22)

and

NMAPE =
1

n

n∑
i=1

|pi − p̂i|
maxnj=1{p̂j}

× 100 (23)

where pi is the observed wind power and p̂i is the estimated
value of the power using the underlying method. By perform-
ing the error analysis, the values of RMSE and NMAPE for
the polynomial regression (PR), locally weighted regression
(LR), cubic spline (CS), and penalized spline (PS) methods
are presented here. In Table II, we show the results of the
analysis for two data sets representing 10-min and hourly
averaged data in June–July 2006 as well as December–January
2007. For the hourly data, the same data sets are used and are
averaged hourly to investigate the influence of data resolutions
on the error measures. Table II also ranks the performance of
all four methods based on the calculated measures, where the
smaller values are desirable. The ranking numbers are shown
in the parenthesis next to RMSE and NMAPE values. We also
provide the overall performance ranking of each method. As
shown in the table, penalized spline regression outperforms all
other methods addressed in this study. Table II also suggests
that locally weighed polynomial regression is dominating
polynomial regression and the cubic spline. Comparing the
values of RMSE and NMAPE for summer and winter shows
the error measures are greater in the winter data for the same
generator. This can be explained by the impact of weather
condition and cold temperature on the atmospheric parameters
and on the mechanical efficiency of the machine.

The overall performance of the error metrics for turbine T4,
which is the one located away from the MET towers, is simi-
larly following the performance ranking in Table II. However,
in the winter data set, the RMSE and NMAPE values in hourly
data are noticeably higher than those of 10-min data. By re-
peating the analysis with other statistical metrics such as MAE,

sMAPE, and R2 (results are not presented here), we obtained
similar patterns in the rankings of the presented methods.

IV. CONCLUSION

Accurate modeling of the wind turbine power curves is an
important tool in the wind energy industry that can be used
for assessment and monitoring of the turbine’s performance,
power forecasting, as well as sizing the storage capacity for
wind power integration. We have presented parametric and
nonparametric regression models for estimating wind turbine
power curves. Polynomial regression is used as the benchmark
parametric method for power curve fitting. We have shown
that polynomial regression models are limited by their global
nature and are very sensitive to outliers. Also, finding a good
fit to the empirical data requires a high-degree polynomial re-
gression model which can cause an overfitting to the observed
data. Locally weighted polynomial regression is introduced to
address the issues of the global nature in polynomial regression
and its sensitivity to outliers within the observations. Spline
regression method, which is based on piecewise polynomial
regression models, is then examined to achieve more flexibility
for fitting the power curve. In this method, an important issue
is finding the number and the location of knots to provide
a good fit to the empirical power curve. To this end, we
propose a penalized spline regression model that reduces these
problems to a simple problem of choosing a single parameter
that can be determined using a cross-validation technique.
The performance of the proposed methods is evaluated based
on two simulated random data sets with normal errors as
well as an operational wind power data for a wind farm in
North America. Four wind turbines are selected to analyze
the performance of the presented methods, of which, three
turbines are chosen near the MET towers, while the last one
is located away from the towers. The accuracy of each method
is evaluated using the RMSE and NMAPE metrics. The results
of this study suggest that penalized spline regression presents
a better performance over the other analyzed methods. The
outcome of this study can be used in various applications
such as turbine performance monitoring, power forecasting,
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and sizing the storage capacity for wind power integration.
Currently, this method is being applied to the battery sizing
model in our research group at the University of Manitoba,
Winnipeg, MB, Canada [7].
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