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A Bayesian hierarchical model to understand the
effect of terrain on wind turbine power curves

Abhinav Prakash, Se Yoon Lee, Xin Liu, Lei Liu, Bani Mallick, and Yu Ding

Abstract—This paper is concerned with explicitly modeling the
effect of terrain on wind power curves. Terrain characteristics are
spatially-varying but temporally constant, whereas other power
curve-affiliating variables such wind speed, temperature, and
wind power vary both spatially and temporally. In order to
effectively model such two modes of variation in the data, we
employ a Bayesian hierarchical model (BHM) that connects the
terrain characteristics with the parameters in a power curve.
BHM jointly models the data from all turbines on a wind farm
for attaining the turbine-specific, terrain-incorporating power
curves. Our analysis shows that, out of the three terrain variables
available in our data, ruggedness has the strongest effect on
the power curve. We also evaluate the applicability of using
the resulting power curve model for turbines on a different
terrain and find that incorporating terrain information explicitly
is beneficial. The specific BHM mechanism of using terrain
information leads to over 7–10% improvement over the group
averaging approach.

Index Terms—Logistic curve, Multidimensional power curve,
Power curve transferability, Spatio-temporal dataset, Wind farm.

I. INTRODUCTION

W IND energy is one of the fastest-growing clean energy
sources and a key to achieving carbon net zero for

the global community. By the end of 2022, wind energy
contributed to 10.2% of the total electricity production in the
US [1]. Playing a critical role in wind energy operations and
planning is the wind turbine power curve, which maps the
relationship of wind speed and other environmental variables
to wind power production [2], [3]. The physical law for wind
power generation is given as follows:

y =
1

2
CpρAV 3, (1)

where, y is the wind power, Cp is called the power coefficient,
ρ is the air density, A is the area swept by the turbine blades,
and V is the wind speed. The physics-based model has its
limitation mainly because the power coefficient Cp is not a
fixed constant but depends on factors such as tip speed ratio,
wind attack angles, as well as inflow conditions (which in
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turn depends on terrain). An analytical expression for Cp is
not available for direct use, which means that Cp will have to
be estimated through a data-driven approach anyway.

Because of such complexities and also to account for actual
turbine operation in which active pitch control used in wind
turbines alters the wind-power relationship, International Elec-
trotechnical Commission (IEC), the international governing
body, recommended a data-driven method to estimate the wind
power curve from the turbine’s operational data [4], nicknamed
the binning method [2]. The binning method uses primarily
the wind speed to estimate the power curve. Over the last
decade, there have been many new developments in data-
driven wind power modeling to include other environmental
variables such as air density, turbulence intensity, and humidity
in the power curve model (for example, [5]–[7]) and made
significant improvements. However, there are other intrinsic
(turbine-related) and extrinsic (environment-related) factors
that affect the power production, but has not been studied
in the data science literature, mainly due to the lack of data
availability. One such extrinsic factor is the terrain complexity
at a wind turbine’s location.

It is understood that the underlying local terrain for a wind
turbine affects its power output; see [8]–[11] for details. The
main reason for terrain entangling with power production is
its effect on environmental variables, such as wind speed,
wind shear, and turbulence intensity. Although the wind speed
measurement is used in power curve estimation, it is only
a point measurement. It does not capture fully the wind
profile and inflow condition faced by the turbine blades. The
terrain acts as an intermediate between wind and turbines—
different terrains cause wind profiles and inflow conditions
to be different. Thus, terrain modeling can provide valuable
insight on wind power production.

The literature on understanding the effect of terrain pre-
dominantly focuses on physics-based computational models,
which attempt to provide the understanding through model-
ing the atmospheric boundary layer under different terrains.
Sempreviva et al. [8] study the effect of surface roughness
on wind speed and wind shear using atmospheric internal
boundary layer (IBL). Fragoulis and Fragoulis [9] study
fatigue loading of wind turbines under different terrains.
Tian et al. [11] conducted an experiment in a large-scale
aerodynamic/atmospheric boundary layer (AABL) wind tunnel
for understanding the effect of hilly terrain on wind flow
characteristics. Tian et al. [11] concludes that on a high slope
hilly terrain, the mean wind velocity dramatically decreases,
whereas for a low slope hill, the change in mean wind
velocities is small. Han et al. [10] combine both wake model
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and terrain model to evaluate adequacy of a wind farm and
reliability of its wind turbines. Although the aforementioned
papers study the effect of terrain, they do so at a small scale or
in an experimental set up. Thus, the literature lacks large-scale
studies on the effects of terrain on operational wind farms,
outside of experimental set up. Such large-scale studies, if
available, would further expand the boundary of knowledge
in terms of our understanding of terrain effects on power
curve at a wind farm level. To the best of our knowledge,
there is no data-driven/machine learning power curve model
that explicitly incorporates terrain characteristics. By “data-
driven/machine learning power curve,” we refer to the type
of studies that use site-specific operational data for modeling,
such as [5], [6] or generally as those in Chapter 5 of [2], which
are also coded in both R and Python packages [12], [13].

The use case for modeling terrain goes beyond just under-
standing its effect on power curve. Terrain modeling would
also prove beneficial in transferring power curve to a new wind
farm site for which one does not yet have wind and power data,
but already have terrain measurements. Regressing on terrain
measurements helps re-calibrate wind power production using
power curves estimated from other sites and thus optimize
turbine placement and operation for the new site. Hammer and
Barber [14] recently attempted to understand how the power
curve can be reused (or transferred) from one site to another.
They did not model the terrain explicitly but used an ad hoc
approach, which is to take the average power curve of a few
nearby turbines and transfer it to a new location. Hammer
and Barber [14] tested their hypothesis that the accuracy of
power prediction decreases when the distance between the
training and test turbines increases, but did not find anything
conclusive.

The recent interest in reusing power curves on different
wind farms (with various terrain characteristics) and the lack
of a consistent mechanism to improve reusability of power
curves further increases the importance of terrain modeling.
When we contemplate why terrain-incorporating power curve
models are rare, despite the strong interest, a reason coming
immediately to mind is the absence of open source terrain data
of wind farms in the existing Open Data Resources [15]. We
are lucky to have a dataset embodying terrain measurements
in addition to wind and power.

Of course, having terrain data is only a necessary condition.
To incorporate the terrain characteristics in a power curve
model needs data science innovation. Unlike wind and power
data used in power curve modeling, which vary both in
time and with turbine sites, terrain measurements do not
change in time but only with sites. For a specific turbine, its
surrounding terrain remains a constant, so that the machine
learning routines used to learn the wind-to-power relationship
cannot be used to learn the terrain-to-power relationship.

To solve this type of problem, two sets of statistical
learning methodologies are useful: the Bayesian hierarchical
models [16] and the mixed effect models [17]. Between them,
Bayesian hierarchical model provides uncertainty quantifica-
tion and has been found to provide a more tractable inference
in many problem settings [16], [18], [19]. For this reason, we
devise a Bayesian hierarchical model, consisting of a logistic

curve, which has wind and other environmental variables as
inputs, for modeling individual power curves, and then let
the terrain variable influence the parameters of the logistic
power curve, so that the terrain effect is also incorporated.
We use an onshore wind farm dataset of 66 turbines with
terrain measurements to estimate the turbine-specific, terrain-
incorporating power curve model. We further study the usabil-
ity of the resulting power curve model on a different terrain as
well as the impact of the terrain characteristics on a turbine’s
wind power production.

The main innovation in this work is to jointly model wind
power curves and their terrain information using a Bayesian
hierarchical model (BHM). To our best knowledge, our BHM-
based power curve model is the first turbine-specific and
terrain-incorporating power curve model. This model allows
us to understand quantitatively the effect of terrain on power
curves. Compared with conventional farm-based averaging
approaches, we found that including the terrain information
in the power curve model can improve the accuracy of wind
power estimation, by as much as 10%, when the power curve
is used on a set of hold-out turbines that are on different
terrains. Our analysis results also indicate that the ruggedness
index (RIX) near a turbine is the most influential terrain
factor affecting the wind power curve, out of the three terrain
variables measured in this study. The RIX effect is negative,
which is to say, as the terrain becomes more rugged, the power
productivity of a turbine decreases.

The rest of the paper is organized as follows. Section II
describes the dataset in detail. Section III introduces the model
and the inference technique. Section IV contains the results of
our study. Section V concludes the paper.

II. DATA DESCRIPTION AND PREPROCESSING

The data comprises of 66 turbines from an onshore wind
farm. Each turbine consists of high-frequency observations
(6 to 8 observations per minute) of wind speed (V ), wind
direction (D), and ambient temperature (T ). Using the industry
practice, we convert the high-frequency data to 10-minute
averages. We also compute the turbulence intensity (I) of the
wind speed and standard deviation of wind direction (sdD)
using the high-frequency data. In this study, we use one year
worth of data for each turbine, which is sufficient to learn
a good representation of the power curve. After converting
one year data to 10-minute averages, we have about 35,000
to 45,000 data points for each turbine. The number of data
points are fewer than the total number of 10-minute intervals
in a year (which is 52,560), as there are many time points (10-
min intervals) where the turbine was not operating (no power
production).

A. Terrain data

The terrain characterization was conducted by the wind
farm’s owner/operator, following the international standards
in IEC 61400-12-2 [20], and then the data was given to
our team for the modeling use. To explain the data briefly,
the terrain is characterized by three variables: slope of the
terrain (in degrees), ruggedness index or RIX (dimensionless),
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Fig. 1. A bird’s eye view on how the terrain is characterized at a single
turbine. The three terrain variables—slope, RIX, and ridge—are characterized
for each ten-degree sector.

and maximum height of the ridge (in meters). The slope of
the terrain measures the inclination of the terrain in degrees.
The ruggedness index of the terrain is the fraction of the
surrounding terrain that is steeper than a given critical slope;
please see Mortensen et al. [21] for a detailed description
of RIX measurement. Maximum ridge height, as the name
suggests, is the height (in meters) of the highest ridge on the
terrain.

The terrain variables are mapped for each turbine and
expressed at different levels of details. At the most detailed
level, the surrounding at a given turbine is divided into 36
sectors of ten degrees angle each and the three terrain variables
are measured in every sector. Fig. 1 shows the top-view of
a single turbine with its terrain-measurement sectors. For a
turbine having altogether 36 such sectors, its terrain is fully
characterized by a 36 × 3 matrix.

At the next level of details, for each of the terrain variables,
the corresponding values in the 36 sectors is averaged to get an
overall score for that terrain variable. After such aggregation,
the terrain is characterized by a 3 × 1 vector which has
the average values of slope, RIX, and ridge. At the coarsest
level of representation, the terrain variable average scores
are further aggregated to place the corresponding terrain into
a category represented by an integer; the larger, the more
complex the terrain is. The specific rules for aggregation and
terrain classification can be found in Section 6.3.4 of IEC
61400-12-2 [20]. The 66 turbines on the specific wind farm
we studied are associated with three of the categories, taking
the values of 3, 4 and 5, respectively. In summary, we have
the terrain data at three different granularities—the sector-
wise terrain characteristics, variable-wise terrain scores, and
the overall terrain category. The layout of the wind farm with
each turbine’s overall terrain category is shown in Fig. 2.

We admit that we did not quite figure out how to use the
finest terrain information, i.e., the sector-wise measurements
expressed in the 36 × 3 matrix, in a power curve model.
Instead, we use the sector-wise measurements to compute a
weighted average measurement for each terrain variable and
use the resulting 3 × 1 vector (the second level of details)

Fig. 2. Layout of the wind turbines with their respective categorical terrain
level. The numbers in the parenthesis in the legend denote the number of
turbines in a given terrain category.

Turbine 1

Wind direction

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

0 50 100 150 200 250 300 350

0.
00

0
0.

00
4

0.
00

8

Fig. 3. The frequency of wind direction data for Turbine 1.

in our model. The weights are based on the frequency of
wind direction data for each sector. The intuition behind this
weighting is that the proportion of time for which the wind
is blowing over a certain sector is different. Thus, in order
to give a proper representation to the terrain characteristics of
every sector, we weight the terrain measurements based on the
frequency of data flowing through that sector. Let B be the
set of all the direction sectors, i.e., B has 36 elements, one
corresponding to a sector as shown in Fig. 1. Let fb,i be the
normalized frequency of wind direction when the direction is
in sector b ∈ B and for Turbine i, such that

∑
b∈B fb,i = 1.

The wind direction data for each turbine is used to calculate
fb,i for that turbine. The normalized frequency fb,i for one of
the turbines (Turbine 1) is shown in Fig. 3.

Let rb,i be the 3 × 1 vector of terrain measurement for
direction sector b for Turbine i. Then, the weighted terrain
measurement is given by:

ri =
∑
b∈B

fb,i × rb,i, (2)

where ri is the weighted terrain vector with three components
for Turbine i.

We also experimented by taking a simple average (un-
weighted) of the terrain variables and found an insignificant
reduction in prediction accuracy when predicting at a test site
using leave-one-out cross-validation (LOO-CV); this is to be
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TABLE I
THE FIVE-FOLD CROSS-VALIDATION RMSE USING DIFFERENT

COMBINATION OF INPUTS FOR TURBINE 1. THE NUMBERS IN THE
PARENTHESIS INDICATE THE STANDARD ERROR FOR RMSE COMPUTED
OVER FIVE FOLDS. THE INPUT PAIR (V, T ) IS THE MOST PARSIMONIOUS

MODEL THAT IS WITHIN ONE STANDARD ERROR FROM THE LOWEST
RMSE MODEL (V, T,D).

Inputs RMSE (Standard Error)

V 0.0467 (±0.0010)
V,T 0.0344 (±0.0018)
V, T,D 0.0334 (±0.0017)
V, T,D, sdD 0.0345 (±0.0013)
V, T,D, sdD, I 0.0377 (±0.0014)

explained in detail in a later section. Therefore, we use the
weighted terrain averages as the default terrain representation
for the rest of the analysis. The weighted measurement reflects
the effective terrain measurement at a turbine.

B. Important input variables

We conduct a variable selection to find the important subset
of inputs among the five inputs described earlier. To this end,
we use a forward-stepwise subset selection using the kNN
power curve function in the DSWE R package [12]. The choice
of kNN is unimportant. Had we used other power curve models
in the DSWE package, the important inputs selected remain the
same.

The model is evaluated based on root mean square error
(RMSE) criterion. Hastie et al. [22, Chapter 3] recommend
using the least complex model that is within one standard
error of the best model as per the cross-validation RMSE,
where the standard error is the standard deviation of the RMSE
based on different folds for a particular model (combination of
inputs). Table I shows the five-fold cross-validation error for
different subset of inputs for Turbine 1; other turbines also
show a similar pattern. The values next to the RMSE in the
parenthesis are the standard error for that particular subset of
inputs. We find that the wind speed and ambient temperature
are two most important variables for power curve modeling.
Adding a third variable sometimes helps but generally does
not result in significant reduction in RMSE. Hence, for our
modeling purpose, we choose the wind speed and ambient
temperature as the input variables.

C. Autocorrelation

A common assumption underlying most statistical learning
models is that the data is independent and identically dis-
tributed (i.i.d.) [22]. In the case of wind power curve data,
we observe that the data is serially correlated in time, which
invalidates the i.i.d. assumption.

Prakash et al. [7] used a Bayesian sub-sampling scheme
known as thinning to reduce the autocorrelation in the data
and found improvement in accuracy of their model. The
thinning approach removes data points from the dataset
such that the remaining data can be treated as indepen-
dent. The time lag between the indices of two data points
in the thinned dataset is referred to as the thinning num-
ber. For example, if the original dataset is indexed as
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Fig. 4. Autocorrelation function (ACF) plot of wind speed for Turbine 1
before and after thinning.

{(x1, y1), (x2, y2), (x3, y3), . . . }, using a thinning number of
T would result in a thinned dataset with the following
data points: {(x1, y1), (xT+1, yT+1), (x2T+1, y2T+1), . . . }.
Prakash et al. [7] propose a rule to compute the thinning
number for a given dataset based on the strength of the
autocorrelation in the data. Using their proposed approach,
we compute the thinning number for each of the turbine in
the wind farm, and then use the final thinning number as the
average of the individual thinning numbers rounded up to the
next integer. The average thinning number turns out to be 15.
This resulting thinned dataset for each of the turbines is then
used for subsequent modeling. Fig. 4 shows the autocorrelation
function (ACF) plot for wind speed before and after thinning
for Turbine 1 of our dataset. The figure clearly shows that wind
speed is autocorrelated but the strength of autocorrelation is
significantly reduced after thinning the dataset. Other turbines
in our dataset show a similar pattern.

III. BAYESIAN HIERARCHICAL MODEL

We need to model all the wind turbines jointly in order to
estimate the effect of terrain on the power curves. Bayesian
hierarchical models (BHM) [16] provides a natural way to
model group data, where by “group”, we refer to the grouping
of power curves in accordance to the turbines associated with
their respective terrain.

A. Model

We start off by defining the notations for the data. Let
xi,j = (vi,j , ti,j)

⊤ be the jth input point (a vector with two
components—wind speed and temperature, respectively) for
Turbine i. Let N denote the total number of turbines (66),
that is, i = 1, . . . , N . Let M be the total number of data
points for a turbine after thinning, that is, j = 1, . . . ,M .
Therefore, the total number of data points considering all the
turbines is M×N . Let yi,j be the normalized power response
corresponding to xi,j . The normalization is done by dividing
the power by the rated power of the turbines. Let ri be the
vector of weighted terrain measurements for Turbine i; see
Section II-A for details.

The Bayesian hierarchical model is given as follows:

yi,j = p(xi,j ;θi) + ϵi,j , (3)
θi = q(ri) + ϵθ,i , i = 1, · · · , N, j = 1, · · · ,M. (4)
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Fig. 5. A logistic power curve and the effect of increasing: a) θ1 (slope of the
inflection point); and b) θ2 (location of the inflection point). The blue solid
line represents the power curve before the change, whereas the red dashed
line represents the power curve after the change.

where p(·) is the multi-dimensional power curve characterized
by a vector of turbine-specific parameters θi for Turbine
i, q(·) is a vector-valued function of the terrain variables
ri, mapping the terrain characteristics to the power curve
parameters θi, and ϵθ is a random vector of the same size
as θi, representing the variance in θi’s that is not explained
by the terrain variables. The size of θi, and thus that of q(·)
and ϵθ, depends on the choice of the function, p(·).

We model the power curve function, p(·), as a two-
parameter logistic curve defined as follows:

p(v; θ1, θ2) =
L

1 + exp(−θ1(v − θ2))
, (5)

where L is the upper asymptote of the logistic curve, θ1 and θ2
are the parameters of the logistic curve representing the slope
and location of the inflection point of the curve, respectively,
and v is the wind speed. We would fix the upper asymptote to
L = 1, as our dataset contains normalized power that remains
in [0, 1]. The logistic model is a widely used parametric
function to model power curves [23]–[27]. The advantage of
using the logistic curve is two-fold: 1) It mimics the S-shape
of a power curve while keeping the number of parameters
low; 2) The parameters θ1 and θ2 also have physical meaning
in a power curve. The effect of changing the parameters on
the curve is shown in Fig. 5. Increasing θ1, which denotes
the slope of the inflection point of the logistic curve, would
result in an increased power productivity. On the other hand,
increasing θ2 would shift the power curve towards the right,
decreasing the power productivity.

Most of the current power curve models are nonparametric
in nature, including the binning method (the industry standard)
[4], the tempGP model that was recently proposed [7], and
many others described in Chapter 5 of [2]. For this study,
however, we chose a parametric power curve model—the
logistic curve. The reason of our choice lies in the fundamental
difficulty in modeling a group of nonparametric power curves
as a function of the terrain variables. For a parametric function,
the parameters of that function are explicitly given. As such,
one can regress the parameters further over the terrain charac-
teristics. A nonparametric function, on the other hand, does not
have the type of model parameters as in parametric functions.
In fact, the degrees of freedom of a nonparametric function

increases with data, meaning that the model’s effective number
of parameters is changing and thus making it nontrivial to
model the dependency of nonparametric power curves on
terrain characteristics.

Given the underlying difficulty in employing a nonparamet-
ric model, the logistic curve makes a reasonable candidate for
modeling the individual power curves in a BHM. The low
number of parameters in individual power curves keeps the
computation tractable even when we are jointly modeling all
the turbines. The physical significance of the parameters helps
us understand the effect of terrain on the power curves, as the
parameters are modeled as a function of the terrain.

We model the dependence of the power curve parameters
on the terrain variables as a linear function in terrain, given
as follows:

θ1 = α1 + β⊤
1 r + ϵθ1 ; θ2 = α2 + β⊤

2 r + ϵθ2 , (6)

where α’s denote the mean-level, β’s are the coefficients of the
linear model, and ϵθ’s represent the variance in the parameters
not explained by the terrain. Combining the linear model for
the terrain with the logistic model for power curve also assigns
the physical meaning to the coefficients, β’s.

One of the drawbacks of the logistic curve when used
as-is for modeling power curves is that it only models one
input variable of wind speed. Wind power, however, is known
to also depend on other input variables, in particular on
ambient temperature, as established in Section II-B. Thus, it is
desirable to have a multi-dimensional power curve model. We
modify the one-dimensional logistic curve to include ambient
temperature in the following way:

p(v, t;θ,η) =
1

1 + exp(−(θ1 + η1t)(v − (θ2 + η2t)))
, (7)

where η’s are the coefficients for ambient temperature, t. The
advantage of Equation (7) is that it still maintains the S-shaped
curve in wind speed, and changing the temperature only shifts
the location and slope of the inflection point of the S-shaped
curve. As such, the power curve now varies with temperature
as well. Fig. 6 shows the power curve with two inputs—wind
speed and ambient temperature.

Taken together, the final model is given as follows:

yi,j =
1

1 + exp(−(θ1,i + η1,iti,j)(vi,j − (θ2,i + η2,iti,j)))
+ ϵi,j

θ1,i = α1 + β⊤
1 ri + ϵθ1,i,

θ2,i = α2 + β⊤
2 ri + ϵθ2,i,

ϵi,j ∼ N (0, σ2
ϵ ), ϵθk,i ∼ N (0, σ2

θk
) | k = 1, 2.

(8)

Equation (8) highlights the uniqueness of this model in terms
of wind power curve modeling. In the literature, power curves
are modeled for individual turbines, and hence, the inputs and
the outputs, that is, v, t, and y vary only with time. In the
proposed model, the inputs and the output of the power curve,
v, t, and y, vary with both space and time—the index j is the
time index and indicates the time varying variable, whereas the
parameters of the model, θ1,i and θ2,i, are spatially varying
but temporally constant due to their dependence on the terrain.
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Fig. 6. A two-dimensional logistic power curve with wind speed and ambient
temperature as the inputs.

This combination of spatiotemporal characteristics makes the
proposed model novel as compared to the conventional power
curve models.

B. Prior specification

We need to specify the prior distribution for each of the
following parameters: (σ2

ϵ , η1, η2, α1, α2, β1, β2, σ2
θ1

, σ2
θ2

).
We do not need priors for θ’s , as given the distributions for
α’s, β’s and σ2

θ ’s, the distribution for θ’s are fully specified.
Table II provides the specification for the priors for each

of the parameters. For most of the parameters, we choose an
uninformative prior. For β’s, we choose a ridge prior, which
is also commonly used in Bayesian linear models [28] and
works well in practice. The prior for β’s introduces a new
parameter τ , which itself is assumed to follow a Half-Cauchy
distribution. The prior for η’s are assumed to be Gaussian with
mean γ and variance σ2

η . The parameters γ and σ2
η are modeled

using uninformative priors.

Parameter Prior
σ2
ϵ π(σ2

ϵ ) ∝ 1/σ2
ϵ

α1, α2 π(α) ∝ 1
σ2
θ1

, σ2
θ2

π(σ2
θ) ∝ 1/σ2

θ

η1, η2 π(η) = N (γ, σ2
η)

γ1, γ2 π(γ) ∝ 1
σ2
η1

, σ2
η2

π(σ2
η) ∝ 1/σ2

η

βk |σ2
θk

, τ2k N (0, σ2
θk

τ2k I), k = 1, 2

τ2k C+(0, 1), k = 1, 2

TABLE II
PRIOR FOR THE PARAMETERS

With the prior specified, we express the posterior distribu-
tions of all the parameters per Bayes’ rule as follows, where

L denotes the likelihood function:

π(σ2
ϵ , α1, α2, σ

2
θ1 , σ

2
θ2 , η1, η2,β1,β2|yi,j ,xi,j , ri)

= L(σ2
ϵ , α1, α2, σ

2
θ1 , σ

2
θ2 , η1, η2,β1,β2|yi,j ,xi,j , ri)

× π(σ2
ϵ )π(α1)π(α2)π(σ

2
θ1)π(σ

2
θ2)π(η1)π(η2)π(β1)π(β2)

(9)

We can further factorize the terms in Equation (9). However,
we postpone that when we talk about the sampling scheme.
Please note that once the priors and the model for the data have
been defined, the posterior is fully specified. Next we explain
the numerical procedure to sample from these posteriors.

C. Sampling scheme

We employ a Gibbs sampler [28], a type of Markov chain
Monte Carlo (MCMC) method, to sample from the posterior
distribution of each of the parameter. The Gibbs sampler is
used to sample the parameters sequentially from the full-
conditional distribution of the parameters, which is to sample
one parameter conditioned on all other parameters and the
data. We factorize the terms in Equation (9) and collect the
appropriate terms to define the sampling steps as follows:

• Sample from π(σ2
ϵ |yi,j , p(xi,j ;θi,ηi)) ∝∏N

i=1

∏M
j=1 N (yi,j |p(xi,j ;θi,ηi), σ

2
ϵ )× 1

σ2
ϵ

• Sample from π(θ|yi,j , p(xi,j ;θi,ηi), σ
2
ϵ , α,β, r, σ

2
θ) ∝∏N

i=1

∏M
j=1 N (yi,j |p(xi,j ;θi,ηi), σ

2
ϵ )

×N (θ|α+ β⊤r, σ2
θ)

• Sample from π(α|θ,β, r, σ2
θ) ∝ N (θ|α+ β⊤r, σ2

θ)× 1
• Sample from π(β|θ, α, r, σ2

θ , τ
2) ∝ N (θ|α+β⊤r, σ2

θ)×
N (β|0, τ2σ2

θI)
• Sample from π(σ2

θ |θ, α,β, r) ∝ N (θ|α+β⊤r, σ2
θ)× 1

σ2
θ

• Sample from π(η|yi,j , p(xi,j ;θi,ηi), σ
2
ϵ , γ, σ

2
η) ∝∏N

i=1

∏M
j=1 N (yi,j |p(xi,j ;θi,ηi), σ

2
ϵ )

×N (η|γ, σ2
η)

• Sample from π(γ|η, σ2
η) ∝ N (η|γ, σ2

η)× 1
• Sample from π(σ2

η|η, γ) ∝ N (η|γ, σ2
η)× 1

σ2
η

• Sample from π(τ |β, σ2
θ) ∝ N (β|0, τ2σ2

θI)× C+(τ ; 0, 1)

Except for the full conditional distributions of θ, η, and
τ—denoted by π(θ|−), π(η|−), and π(τ |−), respectively,
for simplicity—all other posteriors have closed form, as they
have conjugate priors. We do not have conjugate priors for
π(θ|−) and π(η|−) because of the use of the logistic model.
For such cases, we can employ the elliptical slice sampler
[29] to sample from the posterior distribution. The elliptical
slice sampler works when the prior of a parameter, say a, is
Gaussian and the likelihood has any general form L(a). This
is exactly the case for θ’s and η’s. Thus, the elliptical slice
sampler is well suited for the task.

For sampling from π(τ |−), we could use the Metropolis
Hastings (MH) algorithm [28]; however, doing so would
require us to come up with and tune a proposal distribution.
In order to avoid that, we employ another sampling algorithm
called slice sampling [30], which does not require a proposal
distribution. Slice sampling can sample any random variable
for which we know either its probability density function
(PDF) or a function that is proportional to its PDF. For τ ,
we can evaluate the value of N (β|0, τ2σ2

θI) × C+(τ ; 0, 1),
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which is proportional to its posterior PDF. Next, we apply our
model and sampling scheme to the wind farm dataset.

IV. CASE STUDY

In this case study, the first goal is to understand how
terrain variables affect the power curve and the second goal is
to evaluate the transferability of the power curve to a new
location. For the first goal, we train the BHM on all the
turbines. Because the first goal focuses on inference instead
of on prediction, we do not need any hold-out turbine. For
the second goal, it requires that we hold out a few turbines
during training and use the learned BHM to predict the power
curve of the hold-out turbines using their terrain information.
We perform a leave-one-out cross-validation (LOO-CV), that
is, we hold-out one turbine for testing and train the model on
the rest of the turbines. We compute the RMSE for the test
turbine using the BHM predictions and the actual power data
recorded for the respective test turbine. We repeat this process
for all the turbines on the wind farm. We compare the BHM
with a few alternative methods (described later).

For all analyses, we fix the following specification of the
BHM. We collect 15,000 MCMC samples for each of the
parameters. The first 5,000 samples are removed as burn-in
samples. We further thin the remaining 10,000 samples to
reduce autocorrelation in the posterior samples.

A. Effect of terrain variables

The importance of individual terrain variables can be as-
sessed by the value of their coefficients, β. A fair comparison
is only possible when the scales of the variables are the same.
For this reason we first standardize all the terrain variables
by subtracting their respective mean and dividing by their
standard deviation.

Next, we train the BHM and collect MCMC samples. Before
we delve into the inference, it is important to ensure that
MCMC sampling has converged to a stationary distribution.
One common approach to assess the convergence is to plot
the scans for the parameters, which are the MCMC samples
plotted against the sample index (up to 15,000). We did
conduct this diagnostics check for all parameters and found (1)
all MCMC samples did converge to a stationary distribution
and (2) the burn-in samples of 5,000 seems to be sufficient to
ensure stationarity of the distribution. Because such diagnos-
tics check is rather standard in Bayesian sampling, we omitted
the plots to save space.

After completing the MCMC diagnostics, we remove the
burn-in samples and thin the remaining MCMC samples. Fig. 7
presents the boxplots of the three terrain variables in β for both
the inflection slope (θ1) and inflection location (θ2), and Table
III presents the mean posterior values for the same coefficients.
We note the following from the figure and the table. RIX is
the most influential terrain variable impacting the power curve
because it has the largest coefficients. Furthermore, an increase
in ruggedness of the terrain negatively impacts the power
curve, that is, decreasing the productivity of the associated
wind turbine. This is so because an increase in ruggedness
decreases the coefficient for inflection slope and increases the

Fig. 7. Box plots for the coefficients of the terrain variables for BHM.

TABLE III
THE MEAN VALUES OF TERRAIN COEFFICIENT VECTORS β1 AND β2 .

Coefficient Slope RIX Ridge
β1 0.00063 -0.00273 -0.00065
β2 0.02674 0.06884 0.02432

coefficient for inflection location—both decrease the power
productivity. This outcome makes intuitive sense.

We also notice that the variance of the terrain coefficients
for RIX and ridge are larger than terrain slope’s coefficient;
see Figure 7. We found that the variables RIX and ridge are
highly correlated (with a correlation of 0.94). Thus, the model
could suffer from variance inflation [22], which often happens
when highly correlated inputs are included. Such increase
in the variance of estimates does not affect the prediction
performance, as an increase in the value of the coefficient
for one variable (RIX or ridge) will be compensated by a
decrease in the value of the second one. But, using the two
highly correlated variables together may result in an inaccurate
inference on the importance of individual variables.

In order to better understand the terrain importance, we did
further experiments. We trained multiple models with different
subsets of the terrain variables and compare the mean and
variance of the terrain coefficients. Specifically, we train BHM
using one terrain variable at a time and a pair of variables
at a time. As such, we have a total of seven models—three
one-variable models, three two-variable models and one three-
variable model (i.e., the original BHM). For each of the terrain
variables—slope, RIX, ridge—we plot the boxplots of their
coefficients in Figure 8. All the subplots on the left hand side
(LHS) of Figure 8 are for θ1, whereas the subplots on the
right hand side (RHS) are for θ2. The individual boxplots
denote the mean and variance of the terrain coefficient for
one terrain variable. For example, the bottom RHS subplot
shows the coefficient of terrain ridge under different models
with separate subset of terrain variables. Analyzing the bottom
plot on the RHS, we note that when ridge and RIX are used
together in a model, the variance of ridge’s coefficient becomes
significantly larger than when ridge is used without RIX. We
can make a similar observation for RIX by reading the plot
the middle plot on the RHS in Figure 8. All this shows
that using multiple correlated variables together in a model
is prone to variance inflation. The overall message regarding
the dependence of power curve on terrain characteristics,
that is, whether an increase in a particular terrain variable
increases or decreases the power productivity, remains the
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Fig. 8. Comparison of the coefficient’s mean and variance for models with
different terrain subsets. The left hand side (LHS) plots are for logistic curve
parameter θ1 and the right hand side (RHS) plots are for θ2.

same for different combinations of terrain inputs. However, the
strength of these dependence is impacted (reduced) by using
two correlated terrain variables. Thus, one should consider
using either RIX or ridge along with slope to get an accurate
understanding of the importance of the variables for the terrain
modeling task. Given the definition of RIX and ridge in
Section II A, we believe that RIX, when compared to ridge,
captures a holistic profile of the entire terrain. The maximum
ridge height, on the other hand, is based on one point in the
terrain profile.

B. Prediction on a test site
The second goal of this case study is to evaluate the

transferability of BHM to an unseen turbine. As described
earlier, we employ a LOO-CV to assess the performance of
BHM on an unseen turbine. The BHM model uses the terrain
characteristics at a hold-out (unseen) turbine used to predict
its power curve as per Equation (8).

To compare the performance of BHM with binning (the
industry benchmark method), we propose multiple ad hoc
schemes that can be used to transfer the binning power curves
to the unseen/test turbine. One of the most straightforward
ways to transfer the power curve is to take the average of all
the training power curves as the power curve of the test turbine,
as done in [14]. This approach, however, does not explicitly
take into account terrain information. We denote this method
as Avg-binning in the results.

The second way to transfer the power curve is to use the
overall terrain category information, as described in Section

II-A, with the binning power curve. For every test turbine, we
find the subset of training turbines that have the same overall
terrain category as that of the test turbine. We then use the
average power curve of this subset of training turbines as the
predicted power curve for the test turbine. This method is
denoted as Terrain-binning in the results.

The third way to transfer the binning power curve is by con-
sidering the k-nearest neighbors of the test turbine, and using
the average power curve of the k-nearest neighboring turbines.
We denote this method as kNN-binning. While implementing
this method, we try two different values of k: 10, 20. Thus,
we actually have two results for this method, namely 10NN-
binning and 20NN-binning. We want to, however, stress the
following—a critical limitation for this nearest neighborhood
approach is that it is only applicable when one is trying to
transfer the power curve within an existing wind farm, where
all the turbines have been constructed and operated, and thus
the data are available to fit their power curves. For testing the
transferability of power curve to a new wind farm where no
turbine has been constructed, such method does not work.

To test the transferability of power curves to a different wind
farm, a more realistic neighborhood proxy is to use the farthest
k (k = 10 or 20) neighbors from the target test turbine and
use the farthest neighbor to mimic the circumstances where
training and test turbines are on different wind farms. This
approach is referred to as 10FN- or 20FN-binning, where FN
means farthest neighborhood.

The results for all the aforementioned methods are tabulated
in Table IV. The results show the following. Using terrain
information improves the prediction accuracy over other meth-
ods. Secondly, using the terrain information in an ad hoc way,
such as in the method Terrain-binning, can also provide an
improvement (about 3%) over just using the average (Avg-
binning). Comparing BHM with Terrain-binning, BHM with
terrain can deliver an improvement 6–7%, meaning that the use
of terrain information by BHM is more effective than simply
using it for group averaging. Figure 9, top panel, presents
the estimated wind power curve and observed sample data
from Turbine 1. Since BHM uses two dimensional inputs—
wind speed and temperature, we fix the temperature to a small
interval [−15,−14] to get the power-vs-wind speed plot that
is comparable with other methods. We observe that the BHM
predictions (denoted by hollow circles) are much closer to
the data (denoted by ∗). Such a good fit is in fact true for
BHM by and large. To visualize the goodness-of-fit across all
temperature values in a dimension agnostic way, we plot, in
the bottom panel of Figure 9, the actual-vs-predicted power for
a set of data points sampled across all temperature values from
Turbine 1. We note that the prediction output from BHM are
in general closer to the 45◦ dashed diagonal line, confirming
a better fit of BHM.

The nearest neighbors of a turbine carry valuable infor-
mation about an unseen location, and as a result, their pre-
diction accuracy can be almost as good as that of a terrain-
incorporating power curve. What this suggests is that suppose
one has a set of turbines already constructed and wants to
know how a supposed turbine would behave anywhere in that
neighborhood, one does not have to explicitly worry about the
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TABLE IV
THE AVERAGE LEAVE-ONE-OUT CROSS-VALIDATION (LOO-CV) RMSE

AND MAE USING DIFFERENT METHODS.

Method Average
LOO-CV
RMSE

Increase
Over
Best
(RMSE)

Average
LOO-CV
MAE

Increase
Over
Best
(MAE)

BHM 4.241 0.00% 2.788 0.00%
Avg-binning 4.613 8.77% 3.086 10.68%
Terrain-binning 4.485 5.75% 2.984 7.04%
10NN-binning 4.329 2.07% 2.831 1.56%
20NN-binning 4.411 4.01% 2.920 4.73%
10FN-binning 5.139 21.17% 3.502 25.60%
20FN-binning 5.065 19.43% 3.449 23.73%

terrain characteristics. The neighborhood turbines implicitly
incorporate such information in their power curves.

The more practical need for power curve transfer is to a
different location. The Terrain-binning can be used for such
purpose. But if one really wants to use a neighborhood method,
then a more realistic comparison is with the farthest neighbor-
hood method. As shown in the comparison between BHM and
10FN/20FN-binning, the FN methods are not competitive—if
the training turbines are far away (although in the same wind
farm), the prediction accuracy can drastically deteriorate as
compared to a terrain-based model like BHM. One would be
better off simply using the Terrain-binning approach.

In summary, BHM performs better than all the ad hoc meth-
ods used in this case study both in terms of RMSE and MAE.
Comparing with the methods of averaging all binning-based
power curves or those power curves associated with a specific
terrain, respectively, BHM is about 6–9% better in terms of
RMSE or 7–11% better in terms of MAE. Such consistent
results confirm that using the terrain characteristics provides
valuable information for predicting the power curve of an
unseen site. The way that BHM uses the terrain information
is better than the ad hoc approaches

C. A two-step point estimation for fast computation

In this work, we considered a Bayesian hierarchical model
to jointly model all the turbines. The advantage of the model is
its ability to naturally quantify uncertainty and model multiple
turbines jointly. The disadvantage of such a model is its long
computation. The Bayesian models are generally slower to
compute than their frequentist counterpart. Using a computer
with Apple silicon chip, running an instance of our proposed
model took about 7,200 seconds (2 hours) on a single core,
whereas the binning method took 15 seconds for one turbine,
or 15 minutes for all the turbines.

In order to provide a faster solution for practical purposes,
we experimented by converting our model to a two-step
point estimation using a frequentist approach. In particular,
we estimate the parameters of the logistic curves, θ1,i, θ2,i,
separately for each turbine i using a least-squares approach,
that is, minimize the sum residuals to obtain θ’s:

(θ̂1,i, θ̂2,i) = argmin
∑

j=1...M

(yi,j − p(xi,j ; θ1,i, θ2,i))
2 (10)

These separately estimated parameters θ’s are then passed
to a linear regression model as response, with terrain variables
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Fig. 9. Goodness-of-fit plot for various power curve methods. Top panel:
power-vs-wind speed plot after fixing temperature interval. Bottom panel:
actual-vs-predicted power plot across all temperature values, and the closer a
data point is to the 45◦ dashed diagonal line, the better fit is the corresponding
method.

ri as the inputs for estimating the coefficients β’s. When we
used this two-step model to conduct a LOO-CV evaluation,
as we have done in the previous section, we found that the
prediction accuracy of the two-step approach is about one
percentage worse than the original BHM. In general, a two-
step procedure is known to introduce bias in the estimates and
also provides only a point estimate. Given the large amount
data in our study, the two-step approach performs reasonably
well while reducing the computation time significantly. The
entire computation of the frequentist two-step approach took
15 minutes on a single CPU, very much comparable to those
binning-based alternatives in Table IV . Hence, when there is a
shortage of computational resources, practitioners can resort to
the two-step approach for ensuring power curve transferability
with help of the terrain information.

V. CONCLUSION

Wind turbines are installed over terrains with various de-
grees of complexity. However, their power productivity as a
function of the terrain is not yet well quantified using actual
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power production data. This work is a step towards filling this
gap in knowledge. The main innovation is the Bayesian hierar-
chical power curve model that incorporates terrain information
and jointly models all the turbines on a wind farm. This new
approach is in contrast with existing wind power curves in
the literature, which model each turbine separately and do not
consider explicitly the terrain information.

By developing the Bayesian hierarchical model, the paper
presents one of the first terrain-incorporating power curves,
leading to a better understanding of the relationship between
wind turbine power generation and terrain characteristics. Such
model produces more accurate power predictions when being
reused for turbines on a different terrain. Specifically, the
explicit use of terrain information through BHM improves
the prediction performance by 7–10% in terms of MAE as
compared to a naive transfer of the binning power curve that
is the average of the power curves either over the whole wind
farm or in the respective terrain category. Our model also
demonstrates that the ruggedness of the terrain seems to have
the largest impact on power productivity and a rugged terrain
reduces the power production efficiency of a wind turbine.

A few assumptions that we make in this study are: em-
ploying a parametric power curve power and a linear ter-
rain dependence on the power curve parameters. Parametric
models (specifically, the linear models) are good for model
interpretability, but have low degrees of freedom and cannot
model complex relationships between variables. In order to
check if the terrain variables have a more complex relationship
with the power curve than what a linear model can capture,
a natural future work would be to extend the current work
to include nonlinear relationship between the terrain variables
and the power curve parameters. A further enhancement is to
use nonparametric power curve models. The main challenge
is how to incorporate the hierarchical terrain information in
nonparametric power curve models. Such a model would have
large degrees of freedom, which makes the inference less
tractable and causes the resulting model prone to overfitting.
New research is needed to overcome these challenges to render
a nonparametric hierarchical terrain-incorporating power curve
model practical and useful.
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