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Deep Learning for Micro-Expression
Recognition: A Survey

Yante Li*, Jinsheng Wei*, Yang Liu*, Janne Kauttonen, and Guoying Zhao", Fellow, IEEE

Abstract—Micro-expressions (MEs) are involuntary facial movements revealing people’s hidden feelings in high-stake situations and
have practical importance in various fields. Early methods for Micro-expression Recognition (MER) are mainly based on traditional
features. Recently, with the success of Deep Learning (DL) in various tasks, neural networks have received increasing interest in MER.
Different from macro-expressions, MEs are spontaneous, subtle, and rapid facial movements, leading to difficult data collection and
annotation, thus publicly available datasets are usually small-scale. Currently, various DL approaches have been proposed to solve the
ME issues and improve MER performance. In this survey, we provide a comprehensive review of deep MER and define a new taxonomy
for the field encompassing all aspects of MER based on DL, including datasets, each step of the deep MER pipeline, and performance
comparisons of the most influential methods. The basic approaches and advanced developments are summarized and discussed for
each aspect. Additionally, we conclude the remaining challenges and potential directions for the design of robust MER systems. Finally,
ethical considerations in MER are discussed. To the best of our knowledge, this is the first survey of deep MER methods, and this survey

can serve as a reference point for future MER research.

Index Terms—Micro-expression recognition, deep learning, micro-expression dataset, Survey

1 INTRODUCTION

ACIAL expression (FE) is one of the most powerful and uni-
Fversal means for human communication, which is highly
associated with human mental states, attitudes, and inten-
tions. Besides ordinary FEs (also known as macro-expres-
sions) that we see daily, emotions can also be expressed in a
special format of Micro-expressions (MEs) under certain con-
ditions. MEs are FEs revealing people’s hidden feelings in
high-stake situations when people try to conceal their true
feelings [1]. Different from macro-expressions, MEs are
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spontaneous, subtle, and rapid (1/25 to 1/3 second) facial
movements reacting to emotional stimulus [2], [3].

The ME phenomenon was first discovered by Haggard
and Isaacs [4] in 1966. Three years later, Ekman and Friesen
also declared the finding of MEs [5] during examining psychi-
atric patient’s videos for lie detection. In the following years,
Ekman et al. continued ME research and developed the Facial
Action Coding System (FACS) [6] and Micro Expression
Training Tool (METT) [7]. Specifically, FACS breaks down
FEs into individual components of muscle movement, called
Action Units (AUs) [6]. AU analysis can effectively resolve
the ambiguity issue to represent individual expression and
increase Facial Expression Recognition (FER) performance
[8]. Fig. 1 shows the example of micro- and macro-expressions
as well as activated AUs in each FE. On the other hand, METT
is helpful for increasing people’s emotional awareness. It can
promote manual ME detection performance which provides a
potential chance to build reliable ME datasets.

MER is the task of classifying ME clips into various emo-
tion categories. In each ME clip, the frame starting facial
movements is denoted as the onset frame, while the end
frame is the offset frame. The frame with the largest intensity
is the apex frame. Like FER, MER also classifies facial
images/sequences into categories such as anger, surprise,
and happiness. However, MER is more challenging as sponta-
neous MEs are involuntary, subtle, and fleeting. In addition,
MEs can also be impacted by emotional context and cultural
background [11], [12], [13]. Therefore, it is difficult to collect
and annotate ME data, leading to small-scale ME datasets and
existing methods are incapable of dealing with subtleness
and fleetness.

MER has drawn increasing interest recently due to its
practical importance in many human-computer interaction
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Fig. 1. Examples of micro-expressions in CASME Il [9] and macro-
expressions in MMI [10], as well as the active AUs. The red arrow repre-
sents the muscle movement direction. AU4, AU6, AU7, AU9, AU12,
AU15, and AU25 represent brow lowerer, cheek raise, lids tight, nose
wrinkle, lip corner puller, lip corner depressor, and lips part, respectively.

systems. The first spontaneous MER research can be traced
to Pfister et al. 's work [14] which utilized a Local Binary
Pattern from Three Orthogonal Planes (LBP-TOP) [15] on
the first public spontaneous ME dataset: SMIC [16]. Follow-
ing the work of [15], various approaches based on appear-
ance and geometry features [17], [18] were proposed for
improving the performance of MER.

In recent years, with the advance of Deep Learning (DL)
and its successful extensions on object detection [19],
human tracking [20], and FER [21], researchers have
started to exploit MER with DL. Although MER with DL
becomes challenging because of the limited ME samples
and low intensity, great progress on MER has been made
through designing effective shallow networks, exploring
Generative Adversarial Net (GAN) [22] and so on. Cur-
rently, DL-based MER has achieved the state-of-the-art
performance.

In this survey, we review the research on MER by DL
since 2016 when the DL technology was first adopted in
MER. Due to the page limitation, the representative works
published in well-known journals and conferences, such
as IEEE TPAMI, IEEE TAC, IEEE TIP, and ACM MM are
specifically discussed. The ordinary FER approaches and
MER with traditional learning methods are not considered
in this survey. Although a few MER surveys have dis-
cussed the historical evolution and algorithmic pipelines
for MER [23], [24], [25], [26], [27], [28], they mainly focus
on traditional methods and only introduce some recent DL
approaches. The DL-based MER has not been discussed
systematically and specifically. As far as we know, this is
the first survey of the DL-based MER. Different from pre-
vious surveys, we analyze the strengths and shortcomings
of dynamic network inputs which are important for MER
based on DL. Furthermore, the network blocks, architec-
tures, training strategies, and losses are discussed and
summarized in detail and future research directions are
identified. The goal of this survey is to provide a DL-based
MER dictionary that can serve as a reference point for
future MER research.

This paper is organized as follows: Section 2 introduces
spontaneous ME datasets. Section 3 presents the taxonomy
we defined for MER based on DL. Section 4 discusses the
various inputs for deep MER. Section 5 provides a detailed
review of neural networks for MER. The evaluation matrix,
protocol, and the performance of representative DL-based
MER are described in Section 6. Section 7 summarizes cur-
rent challenges and potential study directions. Finally, Sec-
tion 8 discusses the ethical considerations.
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2 DATASETS

Different from macro-expressions which can be easily cap-
tured in our daily life, MEs are involuntary brief FEs, partic-
ularly occurring under high stake situations. Four early
databases appeared continuously around 2010: Canal9 [35],
York-DDT [36], Polikvsky’s database [36] and USF-HD [37].
However, Canal9 and York-DDT are not aimed for ME
research. Polikvsky’s database and USF-HD include only
posed MEs which are collected by asking participants to
intentionally pose or mimic a micro movement. The posed
expressions contradict with the spontaneous nature of MEs.
Currently, these databases are not used anymore for MER.
In the recent years, several spontaneous ME databases were
created, including: SMIC [16] and its extended version
SMIC-E, CASME [29], CASME II [9], CAS(ME)? [30], SAMM
[31], and micro-and-macro expression warehouse (MMEW)
[27]. In this survey, we focus on the spontaneous datasets.

In a general ME dataset collection procedure, participants
are asked to keep a poker face while watching video clips to
induce spontaneous MEs. The video clips are selected
according to previous psychological studies, which can elicit
strong emotions. Commonly, a high-speed camera is utilized
to record facial videos. After one participant watched a video
clip, he/she fills in a self-report questionnaire to report his/
her true feelings about the video clip. As well, considering
cultural backgrounds may have an impact on MEs [38], par-
ticipants from different ethnicities could be recruited [31] for
the potential study of cultural impact on MEs.

Since the MEs are subtle and rapid, annotators are usually
trained with FACS and certified facial action unit coders are
employed to detect the MEs in the facial videos. The FACS
helps people look precisely at the facial movements to make
ME detection reliable. Specifically, when the duration of the
facial action unit is less than 0.5s, the clip is regarded as a ME
clip. The MEs are annotated into discrete categories. In SMIC
[16], the emotions are labeled as “positive’, ‘negative’, and
‘surprise’ according to the participants’ self-reports. How-
ever, mixed emotions may be induced while the participants
watch one video clip. Annotations based on the general emo-
tion reported after watching the video, which usually allows
one emotion, are not accurate. To this end, several datasets,
such as CASME [29] and CASME 1II [9], consider AUs, self-
reports, and the watched video clips to label the MEs. When
there are ambiguities and conflicts in the emotion annota-
tion, the emotion is annotated as ‘others’. Furthermore, to
alleviate annotation bias caused by an individual annotator,
the ME annotations are always carried out through cross-val-
idation by multiple annotators. The specific details of data-
sets are introduced as followings:

SMIC [16] is consisted of three subsets: SMIC-HS, SMIC-
VIS and SMIC-NIR. SMIC-VIS and SMIC-NIR contain 71 sam-
ples recorded by normal speed cameras with 25 fps of visual
(VIS) and near-inferred light range (NIR), respectively.

CASME [29] contains spontaneous 159 ME clips from 19
subjects including frames from onset to offset. The emotions
were labeled partly based on AUs and also taking account
of participants’ self-reports and the content of the video epi-
sodes. Besides the onset and offset, the apex frames are also
labeled. The shortcoming of CASME is the imbalanced sam-
ple distribution among classes.
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TABLE 1
Spontaneous Datasets for MER
Database Resolution | Facial size | Frame rate | Samples | subjects Expression AU | Apex | Eth | Env
SMIC ) ) o Pos (51) Neg (70) Sur (43) / Pos (28) Neg (23) Sur (20) /
HS/NIR/VIS [16] 640 x 480 190 x 230 | 100/25/25 | 164/71/71 | 16/8/8 Pos (28) Neg (24) Sur (19) o o 3 L
640 x 480 Hap (5) Dis (88) Sad (6) Con (3) Fea (2)
CASME [29] 1980 X 720 150 x 90 60 195 35 Ten (28) Sur (20) Rep (40) ° . 1 L
CASME II [9] 640 x 480 | 250 x 340 200 247 35 Hap (33) Sur (25) Dis (60) Rep (27) Oth (102) . . 1 L
CAS(ME)? [30] 640 x 480 30 I‘ﬁfcrr‘;?;;o 2 Hap (51) Neg (70) Sur (43) Oth (19) . o 1 L
SAMM [31] 2040 x 1088 | 400 x 400 200 159 32 Hap (24) Ang (20) Sur (13) Dis (8) Fea (7) Sad (3) Oth (84) . o 13| L
MEVIEW [32] 720 x 1280 - 25 31 16 Hap (6) Ang (2) Sur (9) Dis (1) Fea (3) Unc (13) Con(6) . o - w
MMEW [27] 1920 % 1080 | 400 x 400 90 300 36 Hap (36) Ang (8) Sur (80) Dis (72) Fea (16) Sad (13) Oth (102) | e . 1 L
640 x 480 150 x 90
Composite ME [33] | 1280 x 720 | 250 x 340 200 442 68 Pos (109), Neg (250), and Sur (83) e | oe | 13| L
720 x 1280 400 x 400
640 x 480
. Neg (233) Pos (82) Sur (70)
Compound ME [34] %ggoxxlgzg 150 x 90 200 1050 90 PS (74) N S (236) PN (197) NN (158) oe ce 13 L

1 Eth: Ethnicity; Env : Environment.

2 Pos: Positive; Neg: Negative; Sur: Surprise; Hap: Happiness; Dis: Disgust; Rep: Repression; Ang: Anger; Fea: Fear; Sad: Sadness;
Con: Contempt; Unc: Unclear; Oth: Others; PS: Positively surprise; NS Negatively surprise; PN: Positively negative; NN:

Negatively negative; L:Laboratory; W:In the wild.
3o represents unlabeled; o represents labeled and - represents unknown

CASME 11 [9] is an improved version of the CASME data-
set. Samples in CASME II are increased to 247 MEs from 26
subjects and they are recorded by high-speed camera at 200
fps with face sizes cropped to 280 x 340. Thus, it has a
greater temporal and spatial resolution, compared with
CASME.

CAS(ME)? [30] consists of spontaneous macro- and
micro-expressions elicited from 22 subjects. CAS(ME)? has
samples with longer durations which makes it suitable for
ME spotting. Compared to the above datasets, the samples
in CAS(ME)? were recorded with a relatively low frame rate
in a relatively small number of ME samples, which makes it
unsuitable for DL approaches.

SAMM [31] collects 159 ME samples from 32 participants.
The samples were collected by a gray-scale camera at 200
fps in controlled lighting conditions to prevent flickering.
Unlike previous datasets that lack ethnic diversity, the par-
ticipants are from 13 different ethnicities.

MEVIEW [32] is in-the-wild ME dataset. The samples in
MEVIEW are collected from poker games and TV inter-
views on the Internet. In total, 31 videos from 16 individuals
were annotated in the dataset and the average length of vid-
eos is three seconds.

MMEW [27] contains 300 ME and 900 macro-expression
samples acted out by the same participants with a larger
resolution (1920 x 1080 pixels). MEs and macro-expressions
in MMEW were annotated to the same emotion classes.

The composite dataset [33] is proposed by the 2nd Micro-
Expression Grand Challenge (MEGC2019). The composite
dataset merges samples from three spontaneous facial ME
datasets: CASME II [9], SAMM [31], and SMIC-HS [16]. This
is to facilitate the evaluation of newly developed methods.
As the annotations in the three datasets vary hugely, the
composite dataset unifies emotion labels in all three data-
sets. The emotion labels are re-annotated as positive, negative,
and surprise.

The compound micro-expression dataset (CMED) [34], [39] is
constructed by combining MEs from the CASME, CASME
II, CAS(ME)?, SMIC-HS, and SAMM datasets. Specifically,
the MEs are divided into basic and compound emotional

categories, as shown in Table 1. Psychological studies dem-
onstrate that there are usually complex expressions in daily
life. Multiple emotions co-exist in one FE, termed as
“compound expressions” [39]. Compound expression anal-
ysis reflects more complex mental states and more abundant
human facial emotions.

The specific comparisons of the ME datasets are shown
in Table 1 and example samples are shown in Fig. 2.
Although MEVIEW collects MEs in the wild, the number of
ME samples is too small to learn robust ME features. The
state-of-the-art approaches are commonly tested on the
SMIC-HS, CASME [29], CASME 1I [9], and SAMM data-
bases. As some emotions are difficult to trigger, such as fear
and contempt, these categories have only a few samples
and are not enough for learning. In most practical experi-
ments, only the emotion categories with more than 10 sam-
ples are considered. Recently, the composite dataset is
popular, because it can verify the generalization ability of
the method on datasets with different natures. For further
increasing the MER performance, MMEW collected micro-
and macro-expressions from the same subjects which may
be helpful for further cross-modal research.

3 A TAaxonNomy FOR MER BASED ON DL

Fig. 3 shows a taxonomy we summarize for MER based on
DL, built along the important components including input
and network. As the ME sequences have subtle movements
and limited samples, different inputs have big impacts on
MER performance. Thus the input plays an important role

(e) SAMM (f) MMVIEW

(g) MMEW

Fig. 2. Examples of ME samples in ME datasets for MER.
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Face detection: Adaboost [40] CNN-based [41] !
Face registration: ASM [42] AMM [43] CNN-based [44]
Temporal normalization: TIM [45] CNN-based [46]

Pre-processing

Motion magnification: EVM [47] GLMM [43] CNN-based [48]
Regions of interest: Grid [49] FACS [50], [51] EyeMouth [52] landmarks [53] Learning-based [54]
Data augmentation: Multi-ratio [55] Temporal [56] GAN [22], [53]
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Future direction

}_ Deep-based augmentation
(Small-scale dataset)

Optical flow [57] Feature contrast [17], [58] Frequency [59] 0

I t — ing:
Py _ Apex spOtting: N 1aced [60], 61, [62]
Static
Apex based recognition: [54], [59], [63], [64] Multi-modality combination
Sequence: [53], [56], [65], [66], [67] (Multi-modal MER)
. Frame aggregation: Onset-Apex [68] Snippets [69] Selected frames [70] }'
Modality —| Dynamic — .
Image with dynamic information: Dynamic image [71], [72] Active image [73] Deep-based ME spotting
(Realistic situation)
Optical flow: Lucas-Kanade [74] Farnebiick [75] TV-L1 [55] [76] FlowNet [77]
MER
with DL | .. Optical flow+Apex [78] Optical flow+Sequence [79] Optical flow+Key frames [66]
Combination: Optical flow+Landmarks [80] -
Block: RES [71], [81] Inception [76] HyFeat [73] Capsule [78] RCN [55] Attention [56], [82], [83] Graph [84], [85], [86] 3D Graph & Transformer
" Transformer [87] (3D MEs)
Single stream: 2D [59], [69], [88] 3D [82], [83], [89]
Same block: Dual [90], [91], [92] Triple [93], [94], [95], [96] Four [97]
Multiple stream: Different blocks: Dual [98], [99], [100] Triplet [101], [102] Lightwljight multi-stream
Architecture networl
Network — Handcraft+CNN: Dual [103], [104], [105] (Multi-modal MER)

Training strategy: Finetune [69], [82] Knowledge distillation [64], [113], [114] Domain adaption [115], [116], [117]
Loss: Cross-entropy [118] Metric [119], [120] Margin [121], [122], [123] Imbalance [86], [124]

Cascade: CNN+RNN [106] CNN+LSTM [100], [107], [108], [109], [110], [111] CNN+GCN [53]
Multi-task learning: landmark [112] Gender [71] AU [86] Multi-binary-class [104]

Semi- & un- supervision
} (Small-scale dataset)
Imbalanced loss
} (Imbalanced ME dataset)

Fig. 3. Taxonomy for MER based on deep learning. The studies cited on the branches are example approaches discussed in this paper. The future
directions and corresponding approaches are shown on the right side. The future directions are annotated in brackets.

in MER. First, the inputs need to be pre-processed for training
a robust network. The specific pre-processing approaches
and the strengths and shortcomings of various input modali-
ties are discussed in Section 4. Then, the networks introduced
in Section 5 are utilized to discriminate between MEs. A com-
mon MER network can be described from four aspects: block,
architecture, training strategy, and loss. First, we introduce
the special blocks designed to solve the ME challenges. Then,
we describe the architecture in terms of single-stream, multi-
stream, cascaded networks, and multi-task learning. Finally,
the training strategies and loss functions for training net-
works are discussed. The future directions are annotated on
the right side of Fig. 3. All the methods discussed in this sur-
vey are face-based MER with DL.

4 INPUTS

4.1 Pre-Processing

Like ordinary FEs, pre-processing involving face detection
and alignment is required for robust MER. Compared with
common FEs, MEs have low intensity, short duration, and
small-scale datasets making MER more difficult. Therefore,
besides traditional pre-processing steps, motion magnifica-
tion, temporal normalization, regions-of-interest, and data
augmentation have also been undertaken for better MER
performance.

4.1.1 Face Detection and Registration

For processing MEs, face detection which removes the back-
ground and gets the facial region is the first step. One of the
most widely used algorithms for face detection is Viola-

Jones [40] based on a cascade of weak classifiers. However,
this method can not deal with large pose variations and
occlusions. Matsugu et al. [41] first adopted CNN network
for face detection with a rule-based algorithm, which is
robust to translation, scale, and pose. Recently, face detec-
tors based on DL have been utilized in popular open source
libraries, such as dlib and OpenCV.

Since spontaneous MEs involve muscle movements of
low intensity, even little pose variations and movements
may heavily affect MER performance. To this end, face reg-
istration is crucial for MER. It aligns the detected faces onto
a reference face to handle varying head-pose issues for suc-
cessful MER. Currently, one of the most used facial registra-
tion methods is the Active Shape Models (ASM) [42]
encoding both geometry and intensity information. Then,
the Active Appearance Models (AAM) [43] is presented for
matching any face with any expression rapidly. With the
fast development of DL, deep networks with cascaded
regression [44] have become the state-of-the-art methods for
face alignment due to their excellent performances.

4.1.2 Motion Magnification

One challenge for MER is that the facial movements of MEs
are too subtle to be distinguished. Therefore, motion magni-
fication is important to enhance the ME intensity level. One
of the commonly used methods is the Eulerian Video Mag-
nification method (EVM) [47]. For MEs, the EVM is applied
for facial motion magnification [17]. EVM magnifies either
motion or color content across two consecutive frames in
videos. However, a larger motion amplification level leads



Fig. 4. Examples of regions of interest. (a) Equal block; (b) FACS-based
Rols [50]; (c) Rols Masked eye and cheek [88]; (d) Eye and mouth [126];
(e) Difference-based ME datasets [127]; (f) landmark-based local
regions [128].

to a larger scale of motion amplification, which causes big-
ger artifacts. Different from EVM considering local magnifi-
cation, Global Lagrangian Motion Magnification (GLMM)
[125] was proposed for consistently tracking and exaggerat-
ing the FEs and global displacements across a whole video.
Furthermore, the learning-based motion magnification [48]
was first used in ME magnification by Lei et al. [84] through
extracting shape representations from the intermediate
layers of networks. Compared with the traditional methods,
the shape representations from the intermediate layers
introduce less noise.

4.1.3 Temporal Normalization (TN)

Besides the low intensity, the short and varied duration also
increases the difficulty for robust MER. This problem is
especially serious when the videos are filmed with rela-
tively low frame rate. To solve this issue, the Temporal
Interpolation Model[45] (TIM) was introduced to interpo-
late all ME sequences into the same specified length based
on path graph between the frames. There are three strengths
of applying TIM: 1) up-sampling ME clips with too few
frames; 2) more stable features can be expected with a uni-
fied clip length; 3) extending ME clips to long sequences
and sub-sampling to short clips for data augmentation.
Additionally, CNN-based temporal interpolation [46] have
been proposed to solve complex scenarios in reality.

4.1.4 Regions of Interest (Rols)

FEs are formulated by basic facial movements [6], [129], which
correspond to specific facial muscles and relate to different
facial regions. In other words, not all facial regions contribute
equally to FER. Especially for MEs, the MEs only trigger spe-
cific small regions, as MEs involve subtle facial movements.
Moreover, the empirical experience and quantitative analysis
in [130] found that the outliers such as eyeglass have a seri-
ously negative impact on the performance of MER. Therefore,
itis important to suppress the influence of outliers.

Some studies alleviate the influence of regions without
useful information by extracting features on the Rols [88].
Several MER approaches [17], [131] divided the entire face
into several equal blocks for better describing local changes
(see Fig. 4a). Davison et al. [50], [51] selected Rols from the
face based on the FACS [6], shown in Fig. 4b. In addition, to
eliminate the noise caused by the eye blinking and motion-
less regions, Le et al. [88] proposed to mask the eye and
cheek regions for each image (see Fig. 4c). However, the
motion of eyes has a big contribution to MER under certain
situations, e.g.lid tighten refers to negative emotion. In
work [126], Liong et al. utilized the eyes and mouth regions
for MER, as shown in Fig. 4d. Besides, Xia et al. [127] found

IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 13, NO. 4, OCTOBER-DECEMBER 2022

()

Apex Apex
Ratio  Original 10 20 Ratio  Original 2.0 3.0
(a) EVM magnification (b) Learning-based magnification

Syn. Syn.

image seq.

1
Emotion Negative Positive Surprise :H; gg; 13: 1§j
(c) ICE-GAN (d) AU-ICGAN

Fig. 5. Examples of magnified and synthesized MEs.

that the regions around the eyes, nose, and mouth are
mostly active for MEs and can be chosen as Rols through
analyzing difference heat maps of ME datasets, as shown in
Fig. 4e. Furthermore, Xie et al. [53] and Li et al. [128] pro-
posed to extract features on small facial blocks located by
facial landmarks (see Fig. 4f). In this way, the dimension of
learning space can be drastically reduced and helpful for
deep model learning on small ME datasets.

4.1.5 Data Augmentation

The main challenge for MER with DL is the small-scale ME
datasets. The current ME datasets are too limited to train a
robust DL model from scratch, therefore data augmentation
is necessary. The common way for data augmentation is ran-
dom crop and rotation in terms of the spatial domain. Xia
et al. augmented MEs through magnifying MEs with multi-
ple ratios [55]. Figs. 5a and 5b show the examples of magni-
fied ME apex frames with different ratios on the basis of
EVM [47] and learning-based magnification [48], respec-
tively. Additionally, Generative Adversarial Network (GAN)
[132] can augment data by producing synthetic images. Xie
et al. [53] introduced the AU Intensity Controllable GAN
(AU-ICGAN) to synthesize subtle MEs. As Fig. 5d shows, the
ME sequences with continuous AU intensity can be synthe-
sized through [53]. Yu et al. [22] proposed a Identity-aware
and Capsule-Enhanced Generative Adversarial Network
(ICE-GAN) to complete the ME synthesis and recognition
tasks. ICE-GAN outperformed the winner of MEGC2019 by
7%, demonstrating the effectiveness of GAN for ME augmen-
tation and recognition. The synthesized images correspond-
ing to different emotions are shown in Fig. 5c. Besides, Liong
et al. [133] utilized conditional GAN to generate optical-flow
images to improve the MER accuracy based on computed
optical flow. For ME clips, sub-sampling MEs from extended
ME sequences through TIM can augment ME sequences [56].

4.2 Input Modality

Since the MEs have low intensity, short duration, and lim-
ited data, it is challenging to recognize MEs based on DL
and the MER performance varies with different inputs. In
this section, we describe the various ME inputs and summa-
rize their strengths and shortcomings, as shown in Table 2.

4.2.1 Static Image

For FER, a large volume of existing studies are conducted
on static images without temporal information due to the
availability of the massive facial images online and the
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TABLE 2
The Comparisons of Inputs for MER
‘ Input modality ‘ Strength ‘ Shortcoming ‘
Static Efficient; Take advantage of massive facial images Require magmﬁca’gon and apex detection
Without temporal information
Sequence Process directly Not efficient; Information redundancy
Dvnamic Frame aggregation Efficiently leverage key temporal information Require apex detection
y Image with dynamic information | Efficiently embed spatio-temporal information Require dynamic information computation
Optical flow Remove identity to some degree; Movement considered | Optical flow computation is necessary
Combination ‘ Explore spatial and temporal information High computation cost
LI s : j B
N &' o\ | :
¥ i
. ; T AT el 4] f
Apex Onset to offset ||Onset & apex || Dynamic  Active Lucas Kanade FlowNet 2.0 || Landmark

(a) Static image (b) Sequence (c) Frame aggregation (d) Image with dynamic information

Fig. 6. Examples of various inputs.

convenience of data processing. Inspired by efficient FER
with static images, some researchers [59], [63] explored the
MER based on the apex frame with the largest intensity of
facial movement among all frames (See Fig. 6a). Li et al. [54]
studied the contribution of the apex frame and verified that
DL can achieve good MER performance with the single
apex frame. Furthermore, the research of Sun et al. [64]
showed that the apex frame-based methods can effectively
utilize the massive static images in macro-expression data-
bases [64] and obtain better performance than onset-apex-
offset sequences and the whole videos.

Apex spotting is one of the key components for building
a robust MER system based on apex frames. Patel et al. [57]
computed the motion amplitude of optical flow shifted over
time to locate the onset, apex, and offset frames of MEs,
while other works [17], [58] exploited feature differences to
detect MEs in long videos. However, optical flow-based
approaches required complicated feature operation and the
feature contrast-based methods ignored ME dynamic infor-
mation. Different from above methods estimating the facial
change in the spatio-temporal domain, Li et al. [59] pro-
posed to locate the apex frame in rapid ME clips through
exploring the information in the frequency domain which
clearly describes the rate of change. Furthermore, SME-
ConvNet [60] first adopted CNN for ME spotting and a fea-
ture matrix processing was proposed for locating the apex
frame in long videos. Following SMEConvNet, various
CNN-based ME spotting methods [61], [62] were proposed.
In general, the performance of CNN-based spotting method
is limited because of the small-scale ME datasets and mixed
macro- and micro-expressions clips in long videos. Further
studies on reliable spotting methods are required in the
future.

4.2.2 Dynamic Image Sequence

As the facial movements are subtle in the spatial domain,
while change fast in the temporal domain, the temporal
dynamics along the video sequences are essential in
improving the MER performance. In this subsection, we
describe the various dynamic inputs.

(e) Optical flow (f) Landmark points

Sequence. Most ME researches utilize consecutive frames
in video clips [49], [134], [135], as shown in Fig. 6b. With the
success of 3D CNN [136] and Recurrent Neural Network
(RNN) [137] in video analysis [138], [139], MER based on
sequence [53], [56], [65], [66], [67], [102], [140] is developed
that considers the spatial and temporal information simulta-
neously. However, the computation cost is relatively high
and the complex model tends to overfit the small-scale
training data.

Frame aggregation. MEs are mostly collected with a high-
speed camera (e.g.200 fps) to capture the rapid subtle
changes. Liong et al. discovered that there is redundant
information in ME clips recorded with high-speed cameras
[141]. The redundancy could decrease the performance of
MER. The experimental results of [141] demonstrate that the
onset, apex, and offset frames can provide enough spatial
and temporal information to ME classification. Liong et al.
[68] extracted features on onset and apex frames for MER, as
shown in Fig. 6¢. Furthermore, in order to avoid apex frame
spotting, Liu et al. [69] and Kumar et al. [70] designed simple
strategies to select aggregated frames automatically.

Image with dynamic information. Image with dynamic
information [142] is a standard image that holds the dynam-
ics of an entire video sequence in a single instance. The
dynamic image generated by using the rank pooling algo-
rithm has been successfully used in MER [71], [72], [88], [143]
to summarize the subtle dynamics and appearance in an
image. Similar to dynamic images, active images [73] encap-
sulated the spatial and temporal information of a video
sequence into a single instance through estimating and accu-
mulating the change of each pixel component (See Fig. 6d).

Optical flow. The motion between ME frames contributes
important information for ME recognition. Optical flow
approximates the local image motion, which has been veri-
fied to be helpful for motion representation [144]. It specifies
the magnitude and direction of pixel motion in a given
sequence of images with a two-dimension vector field (hori-
zontal and vertical optical flows). In recent years, several
novel methodologies have been presented to improve opti-
cal flow techniques [74], [75], [145], [146], [147], such as
Farneback’s [75], Lucas-Kanade [74], TV-L1 [147], FlowNet
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[77], as shown in Fig. 6e. Currently, many MER approaches
utilize optical flow to represent the micro-facial movement
and reduce the identity characteristic [55], [94], [148].
Researches [55], [94] indicated that optical flow-based meth-
ods always outperform appearance-based methods. To fur-
ther capture the subtle facial changes, multiple works [76],
[86], [101] extracted features on computed optical flows on
the onset and mid-frame/apex in horizontal and vertical
directions separately.

4.2.3 Input Combination

Considering the strengths of apex frame and dynamic
image sequences, some works [66], [78], [79], [94] analyze
multiple inputs to learn features from different cues in ME
videos. Specifically, in Liu et al. s work [78], the apex
frames and optical flow are utilized to extract static-spatial
and temporal features, respectively. Besides the above
modalities, Song et al. [94] added local facial regions of the
apex frame as inputs to embed the relationship of individ-
ual facial regions for increasing the robustness of MER. In
addition, Sun et al. [79] employed optical flow and sequen-
ces for fully exploring the temporal ME information.
Recently, inspired by the successful application of land-
marks in facial analysis (See Fig. 6f), Kumar et al. [80] pro-
posed to fuse the landmark graph and optical flow to
enhance the discriminative ability of ME repression. Cur-
rently, the approaches with multiple inputs achieve the best
MER performance through leveraging as much as ME infor-
mation on limited ME datasets.

4.3 Discussion

In summary, the input is one of the key components to guar-
antee robust MER. The various ME inputs have different
strengths and shortcomings. The comparisons of inputs are
shown in Table 2.

The input pre-processing is the first step in the MER sys-
tem. Besides common face pre-processing approaches (face
detection and registration), motion magnification, Rols, and
TIM also play important roles for robust MER, due to the
subtle and rapid characteristics of MEs. Current motion
magnification approaches always introduce noises and arti-
facts. More effective motion magnification approaches
should be explored. Furthermore, considering the small-
scale ME datasets are far from enough to train a robust deep
model, data augmentation is necessary for MER. In the
future, studying more robust GAN-based ME generation
approaches is a promising research direction.

Regarding the static input, the apex-based MER can
reduce computational complexity and take advantage of the
massive FEs to resolve the small-dataset issue in some
degree. But, magnification is necessary since all the temporal
information is dropped in single apex-based methods and
the motion intensity is still low in the apex frames. Moreover,
as the apex label is absent in some ME datasets, the perfor-
mance of apex-based MER severely relies on the apex detec-
tion algorithm. Currently, the apex frame detection in long
videos is still challenging. The end-to-end framework for
apex frame detection and MER needs to be further studied.

Compared with the static image, the dynamic input is
able to leverage spatial and temporal information for robust
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MER. The simplest dynamic input is ME sequence which
doesn’t require extra operations. However, there is redun-
dancy in ME sequences, and the complexity of the deep
model is relatively high and tends to overfit on small-scale
ME datasets. To solve the problem of redundancy, frame
aggregation cascading multiple key frames is utilized.
Besides, the dynamic image improves the computation effi-
ciency through embedding the temporal and spatial infor-
mation to a still image. It can simultaneously consider
spatial and temporal information in one image without
challenging apex frame detection. Furthermore, optical flow
is widely used for MER as the optical flow describes the
motions and removes the identity in some degree. How-
ever, most of the current optical flow-based MER methods
are based on traditional optical flow, which is not end-to-
end. In the future, more DL-based optical flow extraction
can be further researched.

In addition, combining various inputs is the inevitable
trend to fully explore spatial and temporal information and
leverage the merits of various inputs. Correspondingly, the
combined inputs also inherit the shortcomings of the inputs.
However, the multiple inputs could be complementary in
some degree. So far, the method with various inputs has
achieved the best performance. Considering the success of
multiple inputs and limited ME samples, more combined
modalities, such as optical flow, key frames, and landmarks
can be promising research directions.

5 DEEP NETWORKS FOR MER

Convolutional Neural Networks (CNNs) have shown excel-
lent performances for various computer vision tasks, such as
action recognition [152] and FER [21]. In general, for image
classification, CNNs employ two dimensional convolutional
kernels (denoted as 2D CNN) to leverage spatial context
across the height and width of the images to make predic-
tions. Compared with 2D CNN, CNNs with three-dimen-
sional convolutional kernels (denoted as 3D CNN) are
verified more effective for exploring spatio-temporal infor-
mation of videos [153]. 3D CNN can take advantage of spa-
tio-temporal information to improve the performance but
comes with a computational cost because of the increased
number of parameters. Moreover, the 3D CNN only can deal
with videos with the fixed length due to the pre-defined ker-
nels. Recurrent Neural Network (RNN) [137] was proposed
to process the time series data with various duration. Fur-
thermore, Long Short-Term Memory (LSTM) was developed
to settle the vanishing gradient problem that can be encoun-
tered when training RNNs.

Unlike common video-based classification problems, for
the recognition of subtle, fleeting, and involuntary MEs,
various DL approaches have been proposed to boost MER
performance. In this section, we introduced the approaches
in the view of special blocks, network architecture, training
strategy, and loss.

5.1 Network Block

In terms of solving the two main ME challenges: overfitting
on small-scale ME datasets and low intensity of MEs, various
effective network blocks have been utilized and designed,
such as ResNet family with residual modules [149], [154],
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[155], and Inception module [150]. In this subsection, we
introduce the special network blocks utilized for MER
improvement.

For the challenge of small-scale datasets, recent researches
[149] demonstrate that residual blocks with shortcut connec-
tions (shown in Fig. 7a) achieves easy optimization and
reduces the effect of the vanishing gradient problem. Multi-
ple MER works [84], [99], [156], [157], [158] employed resid-
ual blocks for robust recognition on small-scale ME datasets.
Instead of directly applying the shortcut connection, [159]
further designed a convolutionable shortcut to learn the
important residual information and AffectiveNet [160] intro-
duced an MFL module learning the low- and high-level
feature parallelly to increase the discriminative capability
between the inter and intra-class variations.

Since the fully connected layer requires lots of parame-
ters which makes it prone to extreme loss explosion and
overfitting [161], the Inception module [162] aggregates dif-
ferent sizes of filters to compute multi-scale spatial informa-
tion and assembles 1 x 1 x 1 convolutional filters to reduce
the dimension and parameter, as shown in Fig. 7b. Multiple
works [76], [86] utilized the Inception module for efficient
MER. Inspired by the Inception structure, a Hybrid Feature
(HyFeat) block [72], [73], [163] was proposed to preserve the
domain knowledge features for expressive regions of MEs
and enrich features of edge variations through using differ-
ent scaled convolutional filters.

Furthermore, considering the fact that CNN with more
convolutional layers has stronger representation ability, but
easy to overfit on small-scale datasets, paper [55] and [164]
introduced Recurrent Convolutional Network (RCN) which
achieved a shallow architecture though recurrent connec-
tions, as shown in Fig. 7c.

On the other hand, MEs perform as the combination of
multiple facial movements. The latent semantic information
among subtle facial changes contributes important informa-
tion for MER performance. Recent researches illustrate that
the Graph Convolutional Network (GCN) is effective to
model these semantic relationships and can be leveraged
for face analysis tasks, as shown in Fig. 7h. Inspired by the
successful application of GCN in FER, [53], [84], [85], [86]

developed the GCN for MER to further improve the perfor-
mance by modeling the relationship between the local facial
movements. Lei et al. [84], [87] built graphs on the Rols
along facial landmarks contributing information to subtle
MEs. The TCN residual blocks [84], [165] and transformer
[87], [166] were applied for reasoning the relationships of
Rols. On the other hand, as the FE analysis can be benefited
from the knowledge of AUs and FACS, the works [53], [85],
[86] built graph on AU-level representations to boost the
MER performance by inferring the AU relationship.

Besides graph, Capsule Neural Network (CapsNet) [151]
was employed to explore part-whole relationships on face
to promote MER performance through better model hierar-
chical relationships by routing procedure [22], [63], [78], as
shown in Fig. 7f.

In addition, since MEs have specific muscular activations
on the face, MEs are related with local regional changes
[167]. Therefore, it is crucial to highlight the representation
on Rols [8], [108]. Several approaches [98], [168], [169],
[170], [171], [172] have shown the benefit of enhancing spa-
tial encoding with attention module.

Except for spatial information, the temporal change also
plays an important role for MER. As MEs have rapid
changes, the frames have unequal contribution to MER.
Wang et al. [89] explored a global spatial and temporal atten-
tion module (GAM) based on the non-local network [173] to
encode wider spatial and temporal information to capture
local high-level semantic information, as shown in Fig. 7g.

Moreover, Yao et al. [174] learned the weights of each
feature channel adaptively through adding squeezeand-
and-excitation blocks. Additionally, recent works [56], [82],
[83], [175] encoded the spatio-temporal and channel atten-
tion simultaneously to further boost the representational
power of MEs. Specifically, CBAMNet [82] presented a con-
volutional block attention module (CBAM) cascading the
spatial attention module (see Fig. 7d) and channel attention
module (see Fig. 7e).

In summary, due to the special characteristics of MEs,
many DL-based methods designed special blocks to extract
discriminative ME representations from the latent semantic
information. Recent MER researches indicate that attention
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and graph blocks are effective to model the semantic rela-
tionships. Current GCN-based MER are always based on
the local facial regions and AU labels. In the future, more
compact and concise representation, such as landmark loca-
tion, can be further developed for efficient MER. Moreover,
the transformer [166] has been verified effectively on model-
ing the relationship. For future MER research, transformers
can be further applied to model the relationships between
facial landmarks, AUs, Rols and frames to enhance ME
representation. On the other hand, other special blocks [55]
targeted at learning discriminative ME features with less
parameters to avoid overfitting. In the future, more efficient
blocks should be studied to dig subtle ME movements on
limited ME datasets.

5.2 Network Architecture

Besides designing special blocks for discriminative ME
representation, the way of combining the blocks is also very
important. The current network architecture of MER meth-
ods can be classified to five categories: single-stream, multi-
stream, cascaded, multi-task learning and transfer learning.
In this section, we will discuss the details of the five net-
work architectures.

5.2.1 Single-Stream Networks

Typical deep MER methods adopt single CNN with indi-
vidual input [176]. The apex frame, optical flow images and
dynamic images are common inputs for single-stream 2D
CNNs, while single-stream 3D CNNs extract the spatial and
temporal features from ME sequences directly. Considering
the limited ME samples are far from enough to train a
robust deep network, multiple works designed single-
stream shallow CNNs for MER [135], [177], [178]. Belaiche
et al. [156] achieved a shallow network through deleting
multiple convolutional layers of the deep network Resnet.
Zhao et al. [39] proposed a 6-layer CNN in which the input
is followed by an 1 x 1 convolutional layer to increase the
non-linear representation.

Besides designing shallow networks, many studies [59],
[69], [88] fine-tuned deep networks pre-trained on large face
datasets to avoid the overfitting problem. Li et al. [59] first
adopted the 16-layer VGG-FACE model pre-trained on VGG-
FACE dataset [179] for MER. Following [59], the MER with
Resnet50, SEnet50 and VGG19 pre-trained on Imagenet was
explored in [88]. The results illustrate that VGG surpasses
other architectures regarding the MER topic and is good at
distinguishing the complex hidden information in data.

All of above works are based on 2D CNN with image
input, while several works employed single 3D CNN to
directly extract the spatial and temporal features from ME
sequences. GAM [89], MERANet [83] and CBAMNet [82]
combined attention modules to 3D CNN to enhance the
representation in spatial and temporal dimensions.

5.2.2 Multi-Stream Network

Single stream is a basic model structure and only extracts
features from the single view of MEs. However, MEs have
subtle movements and limited samples, the single view is
not able to provide sufficient information. As we discussed
in Section 4.2, the various inputs from different views is
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able to effectively explore spatial and temporal information.
Thus, the multi-stream network is adopted in MER to learn
features from multiple inputs. The multi-stream structure
allows the network extracting multi-view features through
multi-path networks, as shown in Fig. 8g. In general, multi-
stream networks can be classified to networks with the
same blocks, different blocks and handcrafted features.

Multi-Stream Networks With the Same Blocks. The Optical
Flow Features from Apex frame Network (OFF-ApexNet)
[90] and Dual-stream shallow network (DSSN) [91] built the
dual-stream CNN for MER based on optical flow extracted
from onset and apex. Furthermore, Liong et al. [133]
extended OFF-ApexNet to multiple streams with various
optical flow components as input data. The multi-stream
CNN with optical flow [81] and Three-Stream CNN
(TSCNN) [93], [94] designed three-stream CNN models for
MER with three kinds of inputs (See Fig. 8c). Specifically,
the former one utilized apex frame, optical flow and the
apex frame masked by the optical flow threshold, while the
latter approach employed the apex frames, optical flow
between onset, apex, and offset frames to investigate the
information of the static spatial, dynamic temporal and local
information. In addition, She et al. [97] proposed a four-
stream model considering three Rols and global regions as
each stream to explore the local and global information.
Besides multi-stream 2D CNNs, 3DFCNN [95], SETFNet
[174] and [92] applied 3D flow-based CNNs for video-based
MER consisting of multiple sub-streams to extract features
from frame sequences and optical flow, or Rols.

Multi-stream networks with different blocks. For enhancing the
ME feature representation, some works [97], [98], [101], [102],
[160] investigated the combination of different convolutions.
Liong et al. designed a Shallow Triple Stream Three-dimen-
sional CNN (STSTNet) [101] adopting multiple 2D CNN with
different kernels. Instead of utilizing different kernels, Affecti-
veNet [160] constructed a four-path network with four differ-
ent receptive fields (RF) to obtain multi-scale features for
better describing subtle MEs. On the other hand, Landmark
Relations with Graph Attention Convolutional Network (LR-
GACNN) [70] and MER-GCN [85] built two-stream graph
networks to explore relationships between landmark points
and the local patches, and AUs and sequence, respectively.
Furthermore, [98] and [102] integrated 2D CNN and 3D CNN
to extract spatio-temporal information.

Multi-stream networks with handcrafted features. Since the
subtle facial movements of MEs are highly related to face
textures, the handcrafted features for low-level representa-
tion also plays an important role in MER. Multiple works
[103], [104], [105] combined deep features and handcrafted
features to leverage the low-level and high-level informa-
tion for robust MER. Specifically, in the works [103] and
[105], the CNN features on apex frame and LBP-TOP were
concatenated to represent MEs.

5.2.3 Cascaded Network

Cascaded network combines various modules for different
tasks sequentially to construct an effective network, as
shown in Fig. 8g. Recent FE studies [21] demonstrate that
learning a hierarchy of features gradually filters out the
information unrelated to expressions.
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the training strategy of transferring knowledge.

Inspired by the FE studies [21], for further exploring the
temporal information of MEs, Nistor et al. [106] cascaded
CNN and RNN to extract features from individual frames of
the sequence and capture the facial evolution during the
sequence, respectively. Furthermore, Bai et al. [109] and Zhi
etal. [111] combined CNN with LSTMs in series to deal with
ME samples with various duration directly, as shown in
Fig. 8b. Besides, in order to explore the AU semantics in MEs,
Xie et al. proposed an AU-assisted Graph Attention Convolu-
tional Network (AU-GACN) [53] cascading 3D CNN and
GCN to infer MEs based on AU features (see Fig. 8f).

In addition, multiple MER works combined multi-stream
and cascaded structure to further explore the multi-view
series information. VGGFace2+LSTM [109], Temporal Facial
Micro-Variation Network (TFMVN) [108] and MER with
Ternary Attentions (MERTA) [96] developed three stream
VGGNets followed by LSTMs to extract multi-view spatio-
temporal features. Different from above works, Khor et al.
[107] proposed an Enriched Long-term Recurrent Convolu-
tional Network (ELRCN) adding one VGG+LSTM path
with channel-wise stacking inputs for spatial enrichment.
Besides, AT-Net [99] and SHCFNet [100] extracted spatial
and temporal features by CNN and LSTM from the apex
frame and optical-flow in parallel and concatenated them
together to represent MEs.

5.2.4 Multi-Task Network

Most existing works for MER focus on learning features that
are sensitive to expressions. However, MEs in the real world
are intertwined with various factors, such as subject identity
and AUs. The approaches aiming at a single MER task are
incapable of making full use of the information on face. To
address this issue, several multi-task learning-based MER
approaches have been subsequently developed for better
MER [71], [112]. First, Li et al. [112] developed a multi-task

network combining facial landmarks detection and optical
flow extraction to refine the optical flow features for MER
with SVM. Following [112], several end-to-end deep
multi-task networks leveraging different side tasks were
proposed. GEnder-based ME recognition (GEME) [71]
designed a dual-stream multi-task network incorporating
gender detection task with MER (see Fig 8d), while feature
refinement [180] and MER-auGCN [86] simultaneously
detected AUs and MEs and further aggregated AU repre-
sentation into ME representation. On the other hand, con-
sidering that a common feature representation can be
learned from multiple tasks, Hu et al. [104] formulated
MER as a multi-task classification problem in which each
category classification can be regarded as one-against-all
pairwise classification problem.

In summary, the network architecture can be roughly
divided into single-stream, multi-stream, cascaded net-
works, and multi-task learning, as shown in Fig. 8g. Single
stream is the simple basic model architecture. However, sin-
gle-stream networks only consider the single view of MEs.
To further leverage the ME information, the multi-stream
network is proposed to learn features from multiple views
for robust MER. Moreover, since learning a hierarchy of fea-
tures can gradually filter out the information unrelated to
expressions, the network cascades various modules, such as
LSTMs and GCNs, sequentially to construct an effective
MER network. In the future, more effective modules should
be combined in multi-stream and cascaded ways to further
boost the MER performance.

In terms of the tasks, multiple task learning [181] can
share knowledge among tasks, introducing extra informa-
tion and a low risk of overfitting in each task. Currently,
most ME research only studied the contribution of land-
marks detection, gender classification, and AU detection.
Other tasks, such as face recognition and eye gaze tracking
may also introduce useful knowledge for MER. Exploring
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and taking advantage of more face related-tasks is a practi-
cal way to further improve MER performance.

5.3 Training Strategy

As we discussed before, DL-based MER suffers from a lack
of adequate data. It is almost impossible to train a reliable
deep model from scratch. Currently, there are large-scale FE
datasets with labels. Leveraging the FE datasets by special
training strategy, such as fine-tuning [94], knowledge distil-
lation [64], and domain adaptation [117], is a reasonable
way to solve the problem of a small amount of data. The
knowledge of a pre-trained model for a related task can be
transferred to MER to boost performance. The training strat-
egy of transferring knowledge is shown in Fig 8g.

Fine-tuning ME datasets on pre-trained models is widely
used in MER [54], [69], [82], [94]. Patel et al. [182] provided
two models pre-trained on ImageNet dataset and FE data-
sets, respectively. The feature selection method was also
adopted to improve the model’s performance. It was found
that features captured from the FE datasets performed bet-
ter in terms of accuracy, as it is more similar to the ME data-
sets than object/face datasets.

Besides fine-tuning, another effective transfer learning
strategy is knowledge distillation. Knowledge distillation
achieves small and fast networks through leveraging infor-
mation from pre-trained high-capacity networks. Sun et al.
[64] utilized Fitnets [183] to guide the shallow network
learning for MER by mimicking the intermediate features of
the deep network pre-trained for macro-expression recogni-
tion and AU detection, as shown in Fig 8e. However, the
appearances of MEs and macro-expressions are different
due to the different intensity of facial movements. Thus,
mimicking the macro-expression representation directly is
not reasonable. Instead, SAAT [116] transferred attention on
the style aggregated MEs generated by CycleGAN [184].

In addition, domain adaptation methods can obtain
domain invariant representations by embedding domain
adaptation in the pipeline of deep learning. In [115], [117],
and [185], the gap between the MEs and macro-expressions
was narrowed down by domain adaption based on adversar-
ial learning strategy.

In general, fine-tuning is most widely used in MER. To
further effectively transfer meaningful information from
massive FEs, knowledge distillation and domain adaptation
are also applied to MER by distilling knowledge and
extracting domain invariant representations, respectively.
However, the domain adaptation with adversarial learning
increases the learning complexity. There are significant dif-
ferences both spatially and temporally between macro-
expressions and MEs, therefore, directly transferring the
knowledge is not able to fully leverage the macro-expres-
sion information. Considering that the facial muscle move-
ments are consistent between MEs and macro-expressions,
the attention and AUs can be further studied for transfer
learning in future ME research. Moreover, semi-supervised
and unsupervised learning could also be further developed
to take advantage of unlabeled facial images.

5.4 Loss Functions
Different from traditional methods, where the feature extrac-
tion and classification are independent, deep networks can

IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 13, NO. 4, OCTOBER-DECEMBER 2022

perform end-to-end classification through loss functions by
penalizing the deviation between the predicted and true
labels during training. Most MER works directly applied the
commonly used softmax cross-entropy loss [118]. The soft-
max loss is typically good at correctly classifying known
categories. However, in practical classification tasks, the
unknown samples need to be classified. Therefore, in order to
obtain better-generalized ability, the inter-class difference
and intra-class variation should be further optimized and
reduced, respectively, especially for subtle and limited MEs.
The metric learning techniques, such as contrastive loss [119]
and triplet loss [120], was developed to ensure intra-class
compactness and inter-class separability through measuring
the relative distances between inputs. Xia et al. [117] adopted
an adversarial learning approach and triplet loss with
inequality regularization to converge the output of MicroNet
efficiently. However, metric learning loss usually requires
effective sample mining strategies for robust recognition per-
formance. Metric learning alone is not enough for learning a
discriminative metric space for MEs. Intensive experiments
demonstrate that importing a large margin on softmax loss
can increase the inter-class difference. Lalitha et al. [186] and
Li et al. [54] combined softmax cross-entropy loss and center
loss [187] to increase the compactness of intra-class variations
and separable inter-class differences through penalizing the
distance between deep features and their corresponding class
centers.

Some special MEs are difficult to trigger, thus leading to
data imbalance. Multiple MER works [55], [71], [86], [158]
utilized the Focal loss to overcome the imbalance challenge
by adding a factor to put more focus on misclassified and
hard samples which are difficult to recognize. Moreover,
MER-auGCN [86] designed an adaptive factor with the
Focal loss to balance the proportion of the negative and pos-
itive samples in a given training batch.

In summary, MER suffers from high intra-class variation,
low inter-class differences, and imbalanced distribution
because of the low intensity and spontaneous characteristics
of MEs. Currently, most MER approaches are based on the
basic softmax cross-entropy loss, but others utilized the trip-
let loss, center loss, or focal loss to encourage inter-class sep-
arability, intra-class compactness, and balanced learning. In
the future, exploring more effective loss functions to learn
discriminative representation for MEs can be a promising
research direction. Considering the low intensity of facial
movements leading to low inter-class differences, better
metric space and larger margin loss for MER should be fur-
ther studied. Recently, various methods [188] have been
proposed for the classification of imbalanced long-tail distri-
bution data. ME research can leverage the ideas for long-tail
data to improve the MER performance.

5.5 Discussion

MEs are involuntary, subtle, and brief facial movements.
How to extract high-level discriminative representations on
limited subtle ME samples is the main challenge for robust
MER with DL. In order to extract discriminative ME repre-
sentation, various blocks have been designed based on
exploring the special characteristics of MEs with less param-
eters, such as the attention module and capsule module. In
the future, more effective blocks, such as attention, GCN



LI ETAL.: DEEP LEARNING FOR MICRO-EXPRESSION RECOGNITION: A SURVEY

and transformer, should be further developed for MER per-
formance improvement. On the other hand, considering the
limited ME samples, more efficient blocks should be studied
to learn discriminative ME features with less parameters for
avoiding overfitting on small-scale ME datasets.

In terms of the network architecture, compared with
basic single stream networks, multi-stream networks can
extract features from multi-view inputs to provide more
information for MER. On the other hand, the cascaded net-
work combines various modules for different tasks sequen-
tially to construct an effective network and gradually filter
out the information unrelated to MEs. Considering the
strengths of multi-stream and cascaded networks, multi-
stream cascaded networks have been developed to boost
the MER performance further. In the future, exploring
multi-stream cascaded networks combined with various
efficient blocks is a promising research direction for MER.
In addition, the multi-task learning framework achieves
robust MER through leveraging information from related
tasks. Multi-task learning is able to make use of more avail-
able information on the face. Current MER explored gender
classification, landmark detection, and AU detection to take
advantage of existing information as much as possible. In
the future, more relevant tasks, such as identity classifica-
tion and age estimation, could be studied.

Fine-tuning is widely used in MER. Recent research [64]
illustrated that borrowing information from large FE data-
sets through knowledge distillation and domain adaptation
can achieve promising performance. For future ME research,
how to effectively leverage massive face images will be a
focus. Besides, the semi-supervised learning [189] and unsu-
pervised learning [190] could be promising research
directions.

For the losses, most DL-based MER employs the basic
softmax cross-entropy loss. Several works utilized the met-
ric learning loss and margin loss to increase the compact-
ness of intra-class variations and separable inter-class
differences. Furthermore, since the ME datasets are imbal-
anced, multiple works aimed to boost MER performance
through Focal loss. However, current MER methods just
employed the losses designed for common tasks, such as
image classification and face recognition. MER is a special
task due to the ME characteristics (low intensity and imbal-
anced small-scale ME datasets), effective losses aimed for
MER should be explored in the future.

6 EXPERIMENTS

6.1 Evaluation Matrix

The common evaluation metrics for MER are accuracy and
Fl1-score. In general, the accuracy metric measures the ratio
of correct predictions over the total evaluated samples.
However, the accuracy is susceptible to bias data. F1-score
solves the bias problem by considering the total True Posi-
tives (TP), False Positives (FP) and False Negatives (FN) to
reveal the true classification performance.

For the composited dataset which combines multiple
datasets leading to severe data imbalance, Unweighted F1-
score (UF1) and Unweighted Average Recall (UAR) are uti-
lized to measure the performance of various methods. UF1 is
also known as macro-averaged F1-score which is determined
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by averaging the per-class Fl-scores. UF1 provides equal
emphasis on rare classes in imbalanced multi-class settings.
UAR is defined as the average accuracy of each class divided
by the number of classes without consideration of samples
per class. UAR can reduce the bias caused by class imbalance
and is known as balanced accuracy.

6.2 Model Evaluation Protocols

Cross-validation is the widely utilized protocol for evaluat-
ing the MER performance. In cross-validation, the dataset is
splitted into multiple folds and the training and testing
were evaluated on different folds. It regards a fair verifica-
tion and prevents overfitting on the small-scale ME data-
sets. In the MER field, cross-validation includes leave-one-
subject-out (LOSO), leave-one-video-out (LOVO), and K-
Fold cross-validations.

In LOSO, every subject is taken as a test set in turn and
the other subjects as the training data. This kind of subject-
independent protocol can avoid subject bias and evaluate
the generalization performance of various algorithms.
LOSO is the most popular cross-validation in MER.

The LOVO takes each sample as the validation unit
which enables more training data and alleviates the overfit-
ting to some degree. However, it is not subject-independent,
thus it can not well evaluate the generalization capability.
Another problem is that the test number of LOVO is the
sample size which may lead to huge time cost, not suitable
for deep learning.

For K-fold cross-validation, the original samples are ran-
domly partitioned into k equal-sized parts. Each part is
taken as a test set in turn and the rest are the training data.
Thus, the number of cross-validation tests is K. In practice,
the evaluation time can be greatly reduced by setting an
appropriate K. The typical K values are 5 or 10.

Since the MEs have small-scale datasets, the experiments
on MER do not have reliable validation datasets. According
to the released codes, some works [115] utilized the test
datasets as the validation datasets directly and reserved the
best epoch results on each fold as the final results. As the
data is limited, even only two samples for some subjects,
the final MER results will be greatly improved by regarding
the test data as the validation data. According to [164], com-
pared to the experiments based on the same epoch on all of
the folds, the results can be increased by more than 10% by
testing on the test datasets. But, in practice, the test data is
unknown and it is not reasonable to reserve the best epoch
results on each fold of the test data as the final results.

Tables 3 and 4 list the reported performance of represen-
tative recent work of DL-based MER on popular ME data-
sets. As we discussed before, the evaluation protocol is
varying and the practical training rule of each paper is
ambiguous, we can not directly make a conclusion that
which method performs best for MER. But, from the experi-
mental results, the general trends of MER can be found.

For the input, in general, the combined inputs can pro-
vide promising results on all of the datasets [70], [94], [175].
This is because the different input modalities can contribute
information from different views. On the basis of various
input modalities, we can explore useful information on lim-
ited ME samples to the greatest extent. Since the combined
inputs is a good choice for robust MER, the multi-stream
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TABLE 3
MER on SMIC, CASME, CASME 1l, SAMM, and CMED Datasets
Dataset Method Year | Pre-p. Input Network architecture Block Pre-train Protocol | Cate. F1 ACC (%)
TSCNN [94] 2019 | E,R OF+Apex 35-CNN - FER2013 [191] LOSO 3 | 07236 | 7274
DIKD [64] 2020 - Apex CNN+KD+SVM - - LOSO 3 0.71 76.06
CK+ [192],MMI [10],
MTMNet [117] 2020 - Onset-Apex 25-CNN+DA+GAN RES Oulu-CASIA [193] LOSO 3 0.744 76.0
SMIC MiMaNet [185] 2021 T Apex+sequence 25-CNN+DA RES CK+ [192],MMI [10] LOSO 3 0.778 78.6
DSTAN [175] 2021 T OF+sequence 25-CNN+LSTM+SVM Attention - LOSO 3 0.78 77
AMAN [172] 2022 ET sequence CNN Attention FER2013 [191] LOSO 3 0.77 79.87
TSCNN [94] 2019 | ER OF+Apex 35-CNN - FER2013 [191] LOSO 4 07270 | 7388
DIKD [64] 2020 - Apex CNN+KD+SVM RES - LOSO 4 0.77 81.80
CASME AffectiveNet [160] | 2020 E DI 4S-CNN MFL - LOSO 4 - 72.64
DSTAN [175] 2021 T OF+sequence 2S5-CNN+LSTM+SVM Attention - LOSO 4 0.75 78
OFE-ApexNet [90] | 2019 - OF 25-CNN - - LOSO 3 0.8697 88.28
TSCNN [94] 2019 E, R OF+Apex 35-CNN - FER2013 [191] LOSO 5 0.807 80.97
STSTNet [101] 2019 E OF 3S-3DCNN - - LOSO 3 0.8382 86.86
Graph-TCN [84] | 2020 | L,R Apex TCN+GCN Graph - LOSO 5 0.7246 73.98
SMA-STN [69] 2020 - Snippet CNN Attention WIDER FACE [194] LOSO 5 0.7946 82.59
CASME I GEME [71] 2021 - DI 25-CNN+ML RES - LOSO 5 0.7354 75.20
MiMaNet [185] 2021 T Apex+sequence 25-CNN+DA RES CK+ [192],MMI [10] LOSO 5 0.759 79.9
LR-GACNN [70] | 2021 E OF+Landmark 25-GACNN Graph - LOSO 5 0.7090 81.30
DSTAN [175] 2021 T OF+sequence 25-CNN+LSTM+SVM Attention - LOSO 5 0.73 75
AMAN [172] 2022 ET sequence CNN Attention FER2013 [191] LOSO 5 0.71 75.40
DIKD [64] 2020 - Apex CNN+KD+SVM - - LOSO 4 0.83 86.74
SMA-STN [69] 2020 - Snippet CNN - WIDER FACE [194] LOSO 5 0.7033 77.20
. CK+ [192] MMI [10],
MTMNet [117] 2020 - Onset-Apex 25-CNN+GAN+DA RES Oulu-CASIA [193] LOSO 5 0.736 74.1
SAMM MiMaNet [185] 2021 T Apex+sequence 25-CNN+DA RES CK+ [192], MMI [10] LOSO 5 0.764 76.7
LR-GACNN [70] 2021 E OF+Landmark 25-GACNN - - LOSO 5 0.8279 88.24
GRAPH-AU[87] | 2021 | L Apex 2S-CNN+GCN T Graph, - LOSO 5 | 07045 | 7426
ransformer
AMAN [172] 2022 ET sequence CNN Attention FER2013 [191] LOSO 5 0.67 68.85
CMED | Shallow CNN [39] | 2020 | E OF CNN - - LOSO 7 106353 | 66.06
I Pre-p.: Pre-processing; E:EVM; R: Rol; T: Temporal normalization ; L: Learning-based magnification.
2 OF: Optical flow; DI: Dynamic image.
3 nS-CNN: n-stream CNN; ML: Multi-task learning; DA: Domain adaption; KD: Knowledge distillation.
4 Cate: Category; F1: F1-score; ACC: Accuracy; RES: Residual block.
TABLE 4
MER on the Composite Dataset (MECG2019)
Method Year Pre-p. Input Network architecture Block Pre-train Protocol Cate.  UF1 UAR
NMER [115] 2019 E,R OF CNN+DA - - LOSO 3 0.7885 0.7824
Dual-Inception [76] 2019 - OF 25-CNN Inception - LOSO 3 0.7322  0.7278
ICE-GAN [22] 2020 GAN Apex CNN+GAN Capsule ImageNet LOSO 3 0.845  0.841
MTMNet [117] 2020 - Onset-Apex 25-CNN+GAN+DA RES CK+ [192], MMI [10], LOSO 3 0.864  0.857
Oulu-CASIA [193]
FR [180] 2021 - OF 25-CNN+ML Inception - LOSO 3 0.7838  0.7832
MiMaNet [185] 2021 T Apex+sequence 25-CNN+DA RES CK+ [192], MMI[10] LOSO 3 0.883 0.876
GRAPH-AU [87] 2021 L Apex 25-CNN+GCN Graph, Transformer - LOSO 3 0.7914  0.7933
BDCNN [131] 2022 L OF 4S-CNN - - LOSO 3 0.8509  0.8500

! Pre-p.: Pre-processing; E: EVM; R: Rol; T: Temporal normalization ; L: Learning-based magnification.

2 OF: Optical flow; DI: Dynamic image.

3 nS-CNN: n-stream CNN; ML: Multi-task learning; DA: Domain adaption; KD: Knowledge distillation

4 Cate.: Category; RES: Residual block.

network is recommended to learn effective representations
from various inputs [70], [94], [175]. In contrast to the com-
bined inputs, the sole sequence performs worse [172], due
to the limited information and redundancy.

Besides, from Tables 3 and 4, it can be seen that the learn-
ing strategy including fine-tuning [69], domain adaptation
[117], [185] and knowledge distillation [64] can achieve
state-of-the-art results on both the individual datasets and
the composite dataset. This could be explained that the lim-
ited ME sample is the main challenge for MER and leverag-
ing other related data sources is a reasonable and effective

solution. In the future, domain adaption and knowledge
distillation should be further researched to boost MER
performance.

In some latest works [70], [84], [87], the GCN becomes a
mainstream choice for MER and shows promising perfor-
mance. Currently, the spatio-temporal graph representation
combined with GCNs obtains more attention in MER studies.
The possible reason is that the landmark and AU information
are helpful and effective for locating and representing the
facial muscle movements. However, the small-sample
ME datasets limit the ability of graph representation. The
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combination of transfer learning and graph should be a prom-
ising direction for future ME studies.

7 CHALLENGES AND FUTURE DIRECTIONS

MER has a wide range of potential applications in various
fields, such as psychological disorders, education, business
negotiation, and security control. More specific descriptions
about applications of MER are introduced in Appendix A.
Although MER could facilitate society in various fields,
there are many challenges. In this section, we discuss the
challenges and future directions of MER.

7.1 Dealing With Small-Scale Dataset

Deep learning is a data-driven method, and successful train-
ing requires various large-scale data. Recent studies indicated
that annotation bias, emotional contexts, and cultural back-
grounds could affect the ME perception [195]. They may mis-
lead the model training and finally cause misclassification.
Unfortunately, existing ME datasets are far from enough for
training a robust model. To this end, more diverse ME data-
sets should be collected. Besides, effective deep-based data
augmentation approaches should be further developed for
ME analysis to avoid over-fitting. Semi-supervised and unsu-
pervised learning could also be potential solutions.

In addition, some emotions, such as fear, are challenging
to be evoked and collected. The data imbalance causes the
network to be biased towards classes in the majority. There-
fore, effective imbalanced losses are needed.

7.2 3D ME Sequence

Currently, the main focus of MER is based on the 2D domain
because of the data prevalence in the relevant modalities
including images and videos. Although significant progress
has been made for MER in recent years, most existing MER
algorithms based on 2D facial images and sequences can not
solve the challenging problems of illumination and pose var-
iations in real-world applications. Recent research about FE
analysis illustrates that the above issues can be addressed
through 3D facial data [196]. Inherent characteristics of 3D
face make facial recognition robust to lighting and pose var-
iations. Moreover, 3D geometry information may include
important features for FER and provide more data for better
training. Thanks to the benefits of 3D faces and the techno-
logical development of 3D scanning, MER based on 3D
sequence could be a promising research direction. Special
3D blocks, such as 3D Graph and Transformer, should be
studied in 3D MER.

7.3 AU Analysis in MEs

MEs reveal people’s hidden emotions in high-stake situa-
tions [3], [197] and have various applications such as clinic
diagnosis and national security. However, ME interpreta-
tion suffers ambiguities [50], e.g., the inner brow raiser may
refer to surprise or sad. The FACS [6] has been verified to be
effective for resolving the ambiguity issue. In FACS, action
units (AUs) are defined as the basic facial movements,
working as the building blocks to formulate multiple FEs
[6]. Furthermore, the criteria for AU and FE correspondence
is defined in FACS manual. Encoding AUs has been verified
to benefit the MER [53], [64], [198] through embedding AU
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features. In the future, the relationship between AUs and
ME:s can be further explored to improve MER.

7.4 Multi-Modal MER

One of the MER challenges is that the low-intensity and
small-scale ME datasets provide very limited information
for robust MER. Recent research demonstrated that utilizing
multiple modalities can provide complementary informa-
tion and enhance classification robustness. Different emo-
tional expressions can produce different changes in
autonomic activity, e.g.fear leads to increased heart rate and
decreased skin temperature. Thus, the physiological signal
can be utilized to incorporate complementary information
for further improving MER. Besides, in recent years, new
micro-gesture datasets [199] had been proposed. The micro-
gesture is body movements that are elicited when hidden
expressions are triggered in unconstrained situations. The
hidden emotional states can be reflected through micro-ges-
tures. How to combine multiple modalities to enhance MER
performance is an important future direction. Lightweight
multi-stream networks should be developed to learn multi-
view ME information effectively and efficiently.

7.5 The Explainanty of MER Based on DL

The neural network is a brain-inspired model developed by
neurobiologists and psychologists to test the computational
analog of neurons [200]. Naturally, it could be a tool to verify
the theory in other disciplines, such as psychology, to enhance
psychological and human communication study. In addition,
the current DL is a “black box” algorithm [200] and focuses on
learning features and recognizing patterns by updating the
weights of networks. The interpretation and understanding
of the inside DL process can get experts from cross disciplines
involved in the internal state analysis and therefore facilitate
building interpretable and reliable deep models.

7.6 MEs in Realistic Situations
Currently, most existing MER researches focus on classify-
ing the basic MEs collected in controlled environments from
the frontal view without any head movements, illumination
variations or occlusion. However, it is almost impossible to
reproduce such strict conditions in real-world applications.
The approaches based on the constrained settings usually
do not generalize well to videos recorded in-the-wild envi-
ronment. Practical and robust algorithms for recognizing
ME:s in realistic situations with pose changes and illumina-
tion variations should be developed in the future.
Moreover, most ME researches assume that there are just
ME:s in a video clip. However, in real life, MEs can appear
with macro-expressions. Future studies should explore
deep-based ME spotting methods to detect and distinguish
the micro- and macro-expressions when they occur at the
same time. Analyzing the macro and micro-expressions
simultaneously would be helpful to understand people’s
intentions and feelings in reality more accurately.

8 ETHICAL CONSIDERATIONS

As discussed above, MEs can help reveal people’s hidden feel-
ings in high-stake situations and have practical applications in
various fields, such as medical treatment and interrogations.
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MER, like many other computer vision and machine learning
tasks, could be misused, especially when used in surveillance
with predatory data collection practices [201], [202], [203],
[204] Therefore, ethical issues should be considered.

Privacy and data protection is the primarily and fre-
quently discussed ethical issue in machine learning. For
MER, the critical privacy concern is the privacy of personal
data. Currently, data protection laws are well established to
regulate data privacy, for example, the EU General Data
Protection Regulation (GDPR) [205]. The legislation defined
rules for the protection of personal data, including interna-
tional data protection agreements, privacy shields, transfer
of participant names, record data, etc. In the research com-
munity, consent forms concerning data collection, process-
ing, and sharing need to be signed when collecting ME
data. In practical applications, consent forms should also be
considered to regulate the usage, as people’s faces are pres-
ent in the recorded images/videos with sensitive and bio-
metric information that may be misused beyond the
intended purpose. Pilot studies aim to remove sensitive
information like identity while preserving facial properties
[206], which could be further explored in MER.

Moreover, questions of reliability in MER systems are fur-
ther pointed out together with privacy and data protection
[207]. Results of a deep learning-based MER system usually
depend on the quality of training data, which are difficult to
ascertain because of possible data biases. Transparency of
data and models should be aware and well-studied.
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