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Abstract—Computing optical flow is a fundamental problem in computer vision. However, deep learning-based optical flow techniques

do not performwell for non-rigid movements such as those found in faces, primarily due to lack of the training data representing the fine

facial motion.We hypothesize that learning optical flow on facemotion data will improve the quality of predicted flow on faces. Thiswork

aims to: (1) exploring self-supervised techniques to generate optical flow ground truth for face images; (2) computing baseline results on

the effects of using face data to train Convolutional Neural Networks (CNN) for predicting optical flow; and (3) using the learned optical

flow in micro-expression recognition to demonstrate its effectiveness.We generate optical flow ground truth using facial key-points in

the BP4D-Spontaneous dataset. This optical flow is used to train the FlowNetS architecture to test its performance on the Extended

Cohn-Kanade dataset and a portion of the generated dataset. The performance of FlowNetS trained on face images surpassed that of other

optical flowCNNarchitectures. Our optical flow features are further compared with other methods using theSTSTNetmicro-expression

classifier, and the results indicate that the optical flow obtained using thiswork has promising applications in facial expression analysis.

Index Terms—Optical flow, deep learning, micro-expression detection, facial expression analysis

Ç

1 INTRODUCTION

FACIAL expressions are generated due to non-rigid move-
ment in faces. From the perspective of automatic facial

expression recognition (FER), the motion information has
been well explored for the task of both micro and macro
expression analysis. Optical flow is used to estimate the
motion of sets of pixels across images. This information on
faces can help characterize both micro and macro expres-
sions, which are useful in expression recognition. A major
motivation for using the motion information for FER is
based on what is known as the facial feedback hypothesis
[1], which, in summary, suggests that facial actions can both
encode current emotions as well as induce or amplify emo-
tions. An example of this would be that the furrowing of the
brow could increase anger [1]. It has also been demon-
strated that some facial muscle movements are linked to the
compound facial expression of negation [2]. Also, the rela-
tion between motion information extracted from the eyes
and mouth has been studied in its association with the facial

expressions of psychopaths [3]. Facial and head movements
are also important in social contexts, such as head motion
used to indicate particular social cues, or the famous twitch-
ing of the lip corners that may suggest lying [4].

Faces have a peculiar structure. Hence, in this work, we
focus on learning optical flow specialized for faces, which we
will attempt to constrain the algorithm to learn only lifelike
expressions on faces. In doing so, we explore how well a deep
network can perform in this task and compare it to traditional
optical flow algorithms. The results can serve as a precursor to
designing motion-based features for supervised and unsuper-
vised learning in tasks such as FER and action unit (AU)
recognition.

We use the BP4D-Spontaneous dataset [5] consisting of
videos of 41 participants with different facial expressions to
generate the ground-truth optical flow between every pair
of consecutive frames in the dataset. The ground-truth opti-
cal flow is obtained using facial key-points and image warp-
ing with affine transformations. We then use this facial
optical flow ground truth to train a convolutional autoen-
coder based architecture, FlowNetS [6] (specialized for opti-
cal flow estimation), to learn optical flow specialized for
facial motions, meaning that the motion learned should
exhibit local coherency as would be expected on faces. We
also modify the architecture by adding a cyclic loss to help
the network reconstruct the latter image in a given image
pair using the optical flow predicted by the network. We
argue that adding this reconstruction in the learning frame-
work improves the predicted optical flow by guiding it
using the structure of the image pairs. We perform an abla-
tion study with different loss functions, and compare the
performance of our network and other baseline optical flow
CNNs by testing on both the Extended Cohn-Kanade data-
set [7] and a portion of BP4D-Spontaneous dataset. Finally,
we test the usefulness of our network by using the learned
optical flow predictions for micro-expression detection
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using optical flow and the Shallow Triple Stream Three-
dimensional CNN (STSTNet) [8].

Hence, the contributions of this paper are:

� Introduction of a“noisy” optical flow dataset for
faces, making use of the peculiar structure of faces.
The noisiness of the data comes from the sparse trian-
gulation over the 68 facial landmarks that are used
to generate the dataset.

� Learning a network for optical flow estimation, spe-
cialized for movements induced by facial expressions.
We then complement the structure with a cyclic loss.
Our modified architecture outperforms several other
networks used for optical flow estimation.

� Exhibiting the usefulness of our trained network by
applying it for micro-expression detection.

The remainder of the paper is organized as follows.
Section 2 contains related literature in the relevant topics.
Section 3 describes the details of the automatic dataset gener-
ation used in this paper, while details of the networks trained
on the generated dataset are explained in Section 4. The
results of the ablation study and micro-expression recogni-
tion are presented in Section 5. And finally, we present the
concluding remarks and recommendations for improvement
and futurework in Section 6.

2 RELATED WORK

First, we discuss works related to optical flow estimation
using classical and deep learning techniques, along with
some of the common challenges. We follow this up by a sur-
vey of optical flow methods as applied to faces in particular,
and how optical flow is used in tasks such as micro-expres-
sion detection.

2.1 Optical Flow Estimation

Optical flow in images is used to estimate the motion of sets
of pixels across images. Classical methods, such as [9] and
[10], use the intensity derivatives and energy methods to
estimate the optical flow.

2.1.1 Optical Flow Challenges

Over the last four decades, notable challenges have been
identified in optical flow generation and the methods were
specifically developed to overcome them. Shah and Xuezhi
[11] provide an extensive review on each challenge, which
include motion discontinuities, motion blur and occlusions,
brightness, and large motions.

In-the-wild datasets are prone to occlusions in their
scenes, since an uncontrolled environment is likely to con-
tain moving objects that overlap in the video sequences. No
one method is sufficient to solve the problem in general.
Some popular solutions are reviewed in [11], which are
image warping and bidirectional inconsistency. Janai et al.
[12] approach the problem by considering a triplet instead of
a pair of frames and a photometric loss to handle the occlu-
sions. Meister et al. [13] build on these concepts by applying
their own loss function to improve results of unsupervised
learning of optical flow, as well as learning the flow in the
forward and reverse directions as in [12], and Ren et al. [14]
also use a consistency loss tomitigate the occlusion.

Motion discontinuities can arise in occluded settings and
in non-rigid motion, and can result in erroneous optical
flow continuation in regions of discontinuity [11]. Sun et al.
[15] devise a non-local term that assists the objective function
in accounting for motion discontinuity. Tian et al. [16] mod-
ify this non-local term in a CNN-based method to account
for discontinuity in their objective. In addition, Wang et al.
[17] adapt it as a CNN block for the same purpose. Other
existing approaches include detecting the discontinuous
boundary and correcting for the flow [18] and a suitable
energy-minimization [19].

2.1.2 Deep Learning for Optical Flow Estimation

With the surge and success of deep learning applications in
the past decade, there has also been a rise in using convolu-
tional neural networks to learn optical flow, beginning with
the groundbreaking work of Fischer et al. [6] with their Flow-
Net CNN architecture. Building on the success of FlowNet,
FlowNet2.0 [20] was introduced a few years later to improve
performance by stacking networks, scheduling the training
data, and learning on small-motion datasets. FlowNet3.0 [21]
was also proposed afterwards for scene flow estimation. For
our experiments, we use the FlowNetS architecture adapted
from [6] to train on our dataset. By demonstrating how we
can adapt FlowNetS to perform well on datasets consisting
of only faces, we can later improve even further by training
more advanced architectures on such datasets.

While FlowNet is one of the most popular optical flow
deep learning architectures, several other architectures have
since been proposed to deal with certain challenges.

Sun et al. [22] used the pyramid-structure CNN architec-
ture PWC-Net for optical flow prediction, which we use in
this work to test on the face optical flow dataset as a bench-
mark implementation and compare with our performance.
Another optical flow CNN we use for comparison in this
work is LiteFlowNet by Hui et al. [23], which surpassed Flow-
net2.0’s performance on the KITTI and Sintel final datasets.

In their pioneering work, Zhu et al. [24] developed the
cycleGAN, which is a type of generative adversarial network
(GAN), that implements a cyclic loss function which is used
as a metric to evaluate the network’s prediction as compared
with one of the inputs. Both Yu et al. [25] and Lai et al. [26]
adapt the cyclic loss for optical flow learning. Both of the lat-
ter architectures used a differentiable spatial transformer
layer with learnable parameters, adapted from Jaderberg
et al. [27].

2.2 Optical Flow and Facial Expression Analysis

We now discuss various optical flow methods as applied to
facial expression analysis, many of which are based on deep
networks. One important work in learning optical flow for
facial expressions, by Snape et al. is Face Flow [28], which
minimizes a proposed energy to learn the flow field for a
sequence of frames consisting of facial expressions. Another
relevant work is optical flow dataset generation done by Le
et al. [29] who are also concerned with producing optical
flow ground-truth data for general video sequences.
According to them, little prior work exists on how the per-
formance of CNNs is influenced by optical flow datasets,
and their main focus is that of non-rigid motion. Our work
can be considered to be a contribution to the study of optical
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flow’s effects on CNNs, with the difference being that we
focus on facial datasets instead. We attempt to learn optical
flow from the face movements themselves. On a side note,
an evaluation of different optical flow techniques applied
for facial expression recognition can be found in [30].

We mention a few implementations of deep networks in
facial expression analysis using optical flow. Koujan et al.
[31] recently proposed DeepFaceFlow, in which they con-
struct a 3D optical flow dataset for faces from a large collec-
tion of videos and compare the performance of their U-net
trained on their dataset with other CNN architectures for
both 2D and 3D optical flow estimation. One key difference
between our work and theirs is that we incorporate a cyclic
loss to test how well the flow fields reconstruct the second
image in the image pairs. Additionally, the training data we
generate is based upon the BP4D-Spontaneous dataset,
which is specifically tuned to exhibit various emotions and
thus more specialized for expression recognition tasks. In
addition, we also test our network’s performance on micro-
expression detection.

Several works also use optical flow for action unit recog-
nition. Ma et al. [32] proposed Action Unit (AU) R-CNN to
improve AU recognition by using expert prior knowledge,
which can be in the form of optical flow, to guide an R-
CNN in locating the action region. Yang and Yin [33] learn
both optical flow and facial action units for static images in
one combined CNN architecture. They learn optical flow in
an unsupervised manner, as an intermediate output of a
deep model (OFNet), which when combined with the first
image in a pair (also the input of the model), gives the sec-
ond reconstructed image at the final output. They call this
intermediate output as coming from a hidden layer. They use
the output of this hidden layer as an input to another net-
work (AU-Net) to detect facial AUs. They train both AU-Net
and OFNet jointly.

In another work that uses a cyclic loss, Li et al. [34]
learn a symmetric encoder-decoder architecture to learn
AU representations in a semi-supervised manner. They
train it with pairs of face images of the same person in a
video with different facial actions and head poses. Hence,
these images are not coming from consecutive frames.
They attempt to disentangle the embeddings related to
head pose and action units, by constraining the pixel
movements related to the AUs to be subtle, compared to
those related to head-pose. They then use the learned AU
and pose related displacements to reconstruct the second
image in an image pair, given the first one. After learning,
they use the AU embeddings for facial AU detection.
Note, that since embeddings are being learnt here on
frames of a person that are not consecutive, within a
video, these embeddings will not be able to learn the sub-
tle pixel movements that happen within a certain AU.
Other works that use optical flow for action unit recogni-
tion can be found in [35], [36], and [37]. Our work, on the
other hand, focuses on learning optical flow specialized
for faces. We introduce a noisy optical flow dataset, that
we generate using the motion of sparse facial landmarks.
We then learn a network for optical flow estimation, spe-
cialized for movements induced by facial expressions. We
then complement the structure with a cyclic loss. We
show that our modified architecture outperforms several

other networks used for optical flow estimation. In addi-
tion, we demonstrate the usefulness of our approach by
applying it for micro-expression detection.

Liong et al. [38] exploit the optical flow in a video
sequence between the frame with the highest intensity,
called apex, and each of the rest of the frames, using the opti-
cal flow as input to a deep network for micro-expression
detection. They also use apex and onset frames in [8] to com-
pute optical flow along with an added feature, the optical
strain, as input to STSTNet, which we adapt in this work to
test for micro-expression recognition. Verburg and Menkov-
ski [39] use optical flow histograms as feature inputs to a
recurrent neural network for the recognition of micro-
expressions. Li et al. [40] use a CNN to locate facial keypoints
and FlowNet2.0 to compute optical flow, and the flow fea-
tures are then used with a support vector machine for micro-
expression detection.

After having reviewed several related works, we now
describe the dataset preparation in our work.

3 DATASET PREPARATION

Our method is inspired by the progress in self supervised
learning techniques for action recognition [41] and eye gaze
prediction [42]. We use the BP4D-Spontaneous dataset [5],
which consists of 41 subjects with 8 video sequences each,
containing videos of elicited emotions. The motivation for
using BP4D-Spontaneous is its inclusion of both head and
facial motion. While local non-rigid facial motion estimation
is the primary focus of this work, it is also useful to capture
this local facial flow in the presence of head motion. Since
BP4D-Spontaneous is concerned with spontaneously elicited
expression sequences and 3D encoding, more general motion
is available. Other datasets, such as the ExtendedCK+ [7], are
more specialized for AU or facial expression detection, and
thereby are less suited for a more general motion framework.
Moreover, this allows us to test how optical flow performs on
micro-expression detection when trained on a dataset not
specialized formicro-expression detection.

Fig. 1 shows the overall pipeline for a pair of frames
and how they can be used for dataset generation and CNN
training.1

We introduce the notation that we’ll use throughout this
section to generate the optical flow ground truth from the
BP4D-Spontaneous dataset [5]. For a given sequence S in the
dataset, we denote the frames contained in S by F ¼ ffkgNf

k¼0,
where fk 2 RH�W�3 are the ordered frames. Our aim in this
section is to compute a set of optical flow fields, UUUUUUU separately

for every ordered set of frames, F , where UUUUUUU ¼ fuuuuuuukgNf�1

k¼0 con-

tains the optical flow fields uuuuuuuk : R
H�W 7! RH�W�2 for each

frame except the final one in that sequence. The uuuuuuuk are vec-
tor-valued functions defined on the image grid.

Landmarks PPPPPPP on the face in S are tracked for each frame
using the open source OpenFace pipeline [43], which uses
the Convolutional Experts Constrained Local Model [44] to
obtain 68 landmarks for the kth face, PPPPPPPk ¼ ðppppppp0000000ppppppp68686868686868ÞTk 2 R68�2,
where T denotes the transpose operation.

1. Our code implementing the algorithm in this section will be made
publicly available at https://github.com/malkaddour/Self-Supervised-
Approach-for-facial-movement-based-optical-flow
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Next, we use Scipy’s Delaunay triangulation package to
obtain a triangularmesh over PPPPPPP 0 in the first face f0. Thismesh
divides the face in f0 into Nt disjoint triangles TTTTTTT 0 ¼ ftttttttlgNt

l¼0,
where each tttttttl ¼ vvvvvvv0; vvvvvvv1; vvvvvvv2ð ÞTl 2 R3�2 is the matrix with
rows composed of vertices of triangle l. After triangulating f0,
we use similar triangulation on the remaining frames in the
sequence, yielding the set of triangulations fTTTTTTTkgNf

k¼0 on S.
We use the triangulation TTTTTTTk�1 to capture the local motion

on every triangle in the face partition from frame fk�1 to frame
fk. Given the triangle tttttttlk�1, we infer an affinemapAAAAAAAl

k�1 2 R3�3

that sends its vertices to the vertices in tttttttlk. Specifying three
mappings are sufficient to uniquely define an affine map [45].
We can define tttttttl;� ¼ tttttttlllllll; 11111113�1

� �T 2 R3�3 to be the matrix of
homogeneous coordinates of each vertex. Then, for all trian-
gles in fk�1 and fk, AAAAAAA

l
k�1 that sends tttttttl;�k�1 to tttttttl;�k is uniquely

determined by,

Al
k�1Al
k�1Al
k�1Al
k�1Al
k�1Al
k�1Al
k�1 ¼ tttttttl;�k�1

� ��1
tttttttl;�k : (1)

This gives the required matrix for the affine map. Note that
if the triangle is degenerate, then ttttttt�k�1 will be singular. Once
the correspondence between the two triangles across frames
is known, AAAAAAAl

k�1 also maps the interior of tttttttlk�1 to the interior
of tttttttlk, since barycentric coordinates [46] are invariant under
affine maps [45].

We use the barycentric coordinates to compute the interi-
ors of all the triangles in TTTTTTT 0, and then learn each affine map
AAAAAAAl

0 as described above to map all the triangle interiors from
TTTTTTT 0 to TTTTTTT 1. To compute the interior of the triangle using bary-
centric coordinates, an efficient algorithm from [47] can be
used to test if an arbitrary point vvvvvvv is contained in a given tri-
angle by solving,

VVVVVVV ������� ¼ bbbbbbb, where,

VVVVVVV ¼ kvvvvvvv1 � vvvvvvv0k22 ðvvvvvvv2 � vvvvvvv0Þ � ðvvvvvvv1 � vvvvvvv0Þ
ðvvvvvvv2 � vvvvvvv0Þ � ðvvvvvvv1 � vvvvvvv0Þ kvvvvvvv2 � vvvvvvv0k22

 !
, and

bbbbbbb ¼ ðvvvvvvv� vvvvvvv0Þ � ðvvvvvvv1 � vvvvvvv0Þ
ðvvvvvvv� vvvvvvv0Þ � ðvvvvvvv2 � vvvvvvv0Þ

� �
(2)

for ������� ¼ �1; �2ð ÞT , and �3 ¼ 1� �1 � �2 [47]. If each �i 2
½0; 1�, then vvvvvvv lies in the closure of the triangle of interest, i.e.,
vvvvvvv is a convex combination of the columns of ttttttt. We test all
points in this way using a rectangular discrete grid sur-
rounding the triangle. Repeating this for all fk in the

sequence is overall computationally expensive, so we only
do it for triangles in the first frame of that video. By invari-
ance of barycentric coordinates under the affine maps AAAAAAAl

k�1,
this also determines the barycentric coordinates for all sub-
sequent frames fk, k > 0.

After determining the affine maps and mapping the tri-
angles and their interior pixels vvvvvvvk�1 to vvvvvvvk, we compute the
per-pixel optical flow vector ~uuuuuuuk�1 by

~uuuuuuuk�1 ¼ vvvvvvvk � vvvvvvvk�1: (3)

However, when the domain is not a discrete grid, the opti-
cal flow fields ~uuuuuuuk are defined on points that are not neces-
sarily pixel coordinates, which affects the frames after f0.
The optical flow field ~uuuuuuuk�1 from Equation (3) is defined on
a discrete grid, but the pixels that are mapped from f0 to
f1 will subsequently be mapped from f1 to f2, in which
case it is not guaranteed that they also lie on a discrete
grid. To recover the optical flow field uuuuuuuk�1 on a discrete
grid in the target image, we use bicubic spline interpola-
tion over the irregular grid using ~uuuuuuuk�1. We only do this to
define the optical flow field at each frame, but continue to
learn the affine maps on the irregular grids, since we wish
to preserve the same barycentric coordinates obtained in
f0 for all frames. The flow fields are stored in .flo formats
for later use in the experiments.

Together with the resampling stage, this procedure gives
us the ground-truth vector field for all pixels of frame fk�1.
The details can be summarized as follows:

1) Starting from frame f0, determine the interiors of all
triangles tttttttl0, using barycentric coordinates.

2) Learn the affine maps sending all tttttttl0 to tttttttl1 and trans-
form the entire face to obtain the first optical flow
field uuuuuuu0.

3) For all frames starting from f1, again infer the affine
maps sending all tttttttl1 to tttttttl2 and apply the transforma-
tion on all the pixels which have already been
mapped from frame f0. This removes the need to
expensively compute the triangle interiors for frame
f1 while still finding the optical flow field ~uuuuuuu1.

4) From ~uuuuuuu1, resample the flow field over a discrete grid
to yield the ground-truth flow uuuuuuu1.

5) Repeat steps 3-4 for the remaining frames in a
sequence ffkgNf

k¼2, for all sequences and subjects.

Fig. 1. Overall pipeline for data generation and network training: Two examples of the affine maps are shown for some triangles l1, l2, and an illustra-
tion of the resampling process is shown on a 3� 3 grid of a portion of the optical flow field.
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The total number of images in the generated dataset is
325720, and these were partitioned into 228171, 65130, and
32419 for training, validation, and test data respectively.
The dataset generation was completed in a total of about
five days using multicore CPU parallel processing with four
parallel processes running at a time. Our method generates
optical flow that captures the motion induced by facial
expressions but is noisy due to the relatively sparse number
of landmarks used to triangulate the face. However, the
overall mapping from one frame to the next is a piecewise-
affine map that can capture the discontinuous nature of
facial expression motion, since there are no continuity
restrictions imposed between a given mesh and its neigh-
bors. Of course, smaller and denser meshes, such as those
around the eyes and mouth in our triangulation, can better
detect any nonlinear or discontinuous motion that may
arise. An improvement to our method would be to increase
the sampling of landmarks and allow for finer resolution in
the piecewise-affine map.

4 BASELINE NETWORKS

In this section, we describe the CNN architecture used to
train the optical flow, followed by the training and ablation
study details. These details include the different hyperpara-
meters used in the different experimental setups, such as
the choices of loss functions, the loss weights, and training/
testing data split.

4.1 CNN Architecture: FlowNetS

To test the effects of having a large, “noisy” ground-truth opti-
cal flow dataset specialized for faces on CNNs, the FlowNetS
[6] architecture was used. FlowNetS is one of the pioneering
CNNs on optical flow learning. While more sophisticated
optical flow architectures have been developed, our purpose
is to demonstrate the improvement of training a CNN with
face data compared with some other datasets, e.g., the Flying-
Chairs dataset, as a proof of concept. Should we discover an
improvement, we can expand it in the future to tackle other
problems (e.g., robustness to occlusions).

FlowNetS is a convolutional autoencoder architecture
which accepts a pair of images as input and outputs the
per-pixel optical flow from the first image to the second. It
consists of a sequence of downsampling convolutional
layers in the encoder followed by upsampling layers in the
decoder, in addition to intermediate operations and concat-
enations. Another variant of FlowNet, which is FlowNet-
Corr, is characterized by a cross-correlation layer which
fuses two input streams together, contrasted to FlowNetS
which combines them with a simple concatenation. The dif-
ference in performance reported in [6] is not too significant,
and including the cross-correlation layer during training
resulted in the inconvenience of much longer training times.

The output resolutions of each of the flow predictions in
our network are slightly different than the original Flow-
NetS. Specifically, the ratio of our flow prediction heights to
theirs is 24:17, and our widths to theirs is 4:5. The reader is
referred to [6] for specific details on the network architecture.

4.2 Cyclic Loss for Image Reconstruction

For some of the experiments described in the next section, a
cyclic loss is implemented to minimize the difference
between the output predicted using the flow prediction and
the second input image. This resulted in an additional
warping layer to the network that acts on the flow predic-
tion with highest resolution. The warping layer uses the
predicted per-pixel flow field vectors to warp the first input
image, and the result is recovered using bilinear interpola-
tion. We note that structures inherent only to the second
input cannot be reproduced in the warped output, since the
warping function only changes pixel locations from the first
input, and does not contain any learnable parameters. Fig. 2
shows two examples of this phenomena from FlyingChairs
and our face dataset, showing the original input image pair
ðX1, X2Þ, the image X0

2 deformed using the flow field, and
visualization of the flow field Y .

The dominant motion in the FlyingChairs image pair
from the flow field is rightward motion of the left armchair.
The location of the armchair in the warped image is correct,
but the reconstruction of the warped portion is missing.

Fig. 2. Effect of using flow field Y to warpX1 toX0
2 is demonstrated for images with large (top) and small (bottom) motion. Flow vector magnitudes are

not to scale and are amplified for illustrative purposes.

ALKADDOUR ETAL.: SELF-SUPERVISEDAPPROACH FOR FACIAL MOVEMENT BASED OPTICAL FLOW 2075



This is also present in the smaller desk chair, making a copy
of itself at the warped location during reconstruction. Due
to these large differences in the images, adding a warping
layer while training on the FlyingChairs dataset is likely to
worsen the network’s performance. However, this effect is
much more subtle in our face dataset due to the higher
frame rate of the sequences, which causes lower magnitude
motion between every two consecutive frames. For the face
example in Fig. 2, the deformed image X0

2 is perceptually
similar to the actual X2, particularly in the upwards motion
of the eyes and the slight rightward motion caused by the
furrowing of the brow. Since the time difference between
two frames is very small in the face dataset, it is very
unlikely for new structures to be introduced in X2. A nota-
ble exception to this is the opening (closing) of the mouth
due to revealing (hiding) teeth, which cannot be reproduced
by pixel rearrangement alone. Another exception would be
the squinting or widening of the eyes for the same reason,
since the eyelid or eyeball would not be present in the first
image. Although the artifacts caused by the warping pro-
duced a flawed image in the FlyingChairs dataset, we
hypothesize and show that it still helps guide the directions
of the predicted flow when training on faces since the unde-
sirable effects are considerably less due to the lower amount
of new structure.

4.3 Training and Ablation Studies Details

The training details of the aforementioned architecture are
described in this section2. Ablation studies are performed
on FlowNetS by training the network with different loss
functions and their corresponding weights.

We denote by ðXi;Xiþ1Þ the pair of successive input

frames, where Xi;Xiþ1 2 R384�512�3 and YYYYYYY i ¼ fðYiÞkg5k¼1,
ŶYYYYYY i ¼ fðŶiÞkg5k¼1 contain the intermediate multi-scale
ground-truth and prediction flow fields respectively, where
the elements ðYiÞk, ðŶiÞk 2 RHk�Wk�2. The i enumerates the
entire training set, and successive image frames are input to
the network at every iteration. The resolutions of the inter-
mediate flow fields are ðHk;WkÞ ¼ ð384� 2�k; 512� 2�kÞ for
k 2 f1; . . . ; 5g in the decoder. ðYiÞ1, ðŶiÞ1 are the largest flow
fields, as in the original FlowNetS network. Note that, in the
following, we drop the added subscript and refer to them as
Yi and Ŷi.

Since we assume that the background is stationary, much
of the ground-truth flow field outside of the boundaries
defined by the key-points are zero vectors. Tomake the train-
ing more practical, we zoom on the boxwith vertices defined
by the key-points with maximal and minimal coordinates
plus an offset of 10 pixels each in the x and y directions. The
cropped images and flow fields are then resized using bilin-
ear interpolation. To preserve the units of the flow vectors as
pixels, they are scaled accordingly in the horizontal and ver-
tical directions.

Next, we describe the different experimental setups used
to train the networks.

4.3.1 Experimental Setup 1: No Cyclic Loss

In this experiment, the architecture is used without the addi-
tional warping layer. The networkwas trained for 30, 40, and
400 epochs on the face, FlyingChairs, and Sintel datasets
respectively, with 15000, 21592, and 870 training and 1000,
640, and 271 validation input image pairs each. The batch
size used for training is 16 input pairs. The loss function is
the average endpoint error (EPE), Li

1ðYYYYYYY i; ŶYYYYYY iÞ, defined for one
output by,

Li
1ðYYYYYYY i; ŶYYYYYY iÞ ¼

X5
k¼1

wk

HkWk

XHkWk

j¼1

ðyyyyyyyijÞk � ðŷyyyyyyijÞk
�� ��

2
: (4)

Here, the wk are loss weights for each intermediate flow
prediction loss, given by wk ¼ 2�k. Hk;Wk are the sizes of
the intermediate predictions and the ðyyyyyyyijÞk; ðŷyyyyyyijÞk are the
flow vectors for the jth pixel of the kth ground-truth and
predicted flow fields ðYiÞk and ðŶiÞk. The optimizer used is
Adam, with b1 ¼ 0:9 and b2 ¼ 0:999 as in [6]. This performs
better than alternative optimizers. We initialized the learn-
ing rate a at 1e�4 for faces and 5e�5 for FlyingChairs and
scheduled similar to [6].

For preliminary experimentation, we trained the network
once on the face data for a 15k and 1k training and valida-
tion split. We then used a disjoint set of 3k image pairs from
the face dataset as the test set. Also, we used the aforemen-
tioned validation sets for FlyingChair and Sintel validation
sets as test sets, since we do not have access to their original
test sets.

We then tested the model, learnt on 15k training image
pairs from the face data, separately on the face, FlyingChairs,
and Sintel test sets [48]. Then we repeated this by training on
FlyingChairs and Sintel training datasets individually and
testing them on all three test sets. We report these results in
Table 1.

After the preliminary experiment, we trained the same
network again from scratch on faces only for a 228k, 65k,
and 32.5k train/val/test split, exactly as in the next two
experiments, to make them comparable. The latter setup is
referred to as Experiment 1, from here onwards.

4.3.2 Experimental Setup 2: With Cyclic Loss

When the warping layer [26] at the end of the network is
included, it is necessary to define a cyclic loss function
for the warped output X̂iþ1 and the second input Xiþ1.
We expect to see an improvement in the flow prediction
due to the cyclic loss. For this experiment, we define the
additional cyclic loss function Li

2ðXiþ1; X̂iþ1Þ for one out-
put pair i as:

TABLE 1
The Average EPE for Each Network Described in Section 4.3.1,

Trained and Tested on All Three Datasets

Tested on

Trained on Faces FlyingChairs Sintel

Faces 0.4054 5.8495 5.1731
FlyingChairs 1.4040 1.4413 3.0300
Sintel 0.8282 7.7613 6.23580

2. Source code for training and evaluation, as well as the trained
models, will be available at https://github.com/malkaddour/Self-
Supervised-Approach-for-facial-movement-based-optical-flow
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Li
2ðXiþ1; X̂iþ1Þ ¼ 1

HW

XHW

j¼1

1

3

X3
k¼1

xiþ1;j;k � x̂iþ1;j;k

�� ��
H1

xk kH1
¼

1
2x

2 jxj � d
1
2 d

2 þ dðjxj � dÞ jxj > d

(
(5)

which uses the Huber loss function kxkH1
[49], a variant of

the L1 loss that is everywhere differentiable, since it is qua-
dratic for small values of x. The xiþ1;j;k; x̂iþ1;j;k are values of
the jth pixel of Xiþ1; X̂iþ1 at color channel k. We also note
that X̂iþ1 is a function of the first image of the input pair,
Xi, and Ŷi, which is the flow prediction with largest resolu-
tion. The total loss function JðX; X̂; Y; ŶYYYYYY Þ for all training
pairs is then

JðX; X̂; YYYYYYY ; ŶYYYYYY Þ ¼ 1

M

XM�1

i¼0

�1Li
1ðYYYYYYY i; ŶYYYYYY iÞ þ �2Li

2ðXiþ1; X̂iþ1Þ
	 


(6)

with the Li
1;Li

2 defined in Equations (4) and (6) and �1; �2 to
be specified, averaged over all M training examples. In this
experiment, we train the network on both faces and Flying-
Chairs datasets using two different sets of loss weights
�1; �2. One network has more emphasis on reconstruction,
with �2 ¼ 0:6; �1 ¼ 0:4. We refer to this as Case I. The other
network has higher weight assigned to the EPE with �1 ¼
0:75; �2 ¼ 0:25. We refer to this as Case II. Note that the wi

in Equation (4) should sum to �1. For both cases, we trained
the network on faces for 15 epochs and 228160 training
pairs. Learning rates were kept constant for these experi-
ments throughout training, since scheduling them as previ-
ously done lead to very large gradients halfway through
training. In Case I, the learning rates were 2:5e�6 and
1:25e�6 for faces and FlyingChairs respectively, and in Case
II, they were both set to 2:5e�6. We then tested the trained
networks on the test set of 32416 image pairs.

4.3.3 Experimental Setup 3: With Cyclic Loss,

Smoothness Constraint, and Average Angular

Error

In this experiment, we added an additional loss function
Li
3ðŶiÞ. In Case I of this experiment, a smoothness constraint

was imposed on the flow prediction by minimizing the flow
gradients, defined as:

Li
3ðŶiÞ ¼ 1

HW

XHW

j¼1

 
@ûij

@x

����
����
H1

þ @ûij

@y

����
����
H1

þ @v̂ij
@x

����
����
H1

þ @v̂ij
@y

����
����
H1

!
(7)

where ðûij; v̂ijÞ are the components of the predicted flow
vector ŷyyyyyyij at every pixel j.

Another common metric to quantify performance of opti-
cal flow algorithms [50] is the average angular error (AAE).
The average angular error between two flow vectors is the
average of the angle difference between every ground-truth
and predicted flow vectors in the homogeneous coordi-
nates, which are yyyyyyy�j ¼ ðyyyyyyyTj ; 1ÞT and ŷyyyyyy�j ¼ ðŷyyyyyyTj ; 1ÞT respectively.

In Case II, the loss function Li
3ðYi; ŶiÞ is defined as:

Li
3ðYi; ŶiÞ ¼ 1

HW

XHW

j¼1

arctan
yyyyyyy�ij � ŷyyyyyy�ij
��� ���

2

yyyyyyy�ij � ŷyyyyyy�ij

0
@

1
A (8)

The total loss function is then a weighted sum of the loss
functions

JðX; X̂; YYYYYYY ; ŶYYYYYY Þ ¼ 1

M

XM�1

i¼0

½�1Li
1ðYYYYYYY i; ŶYYYYYY iÞþ�2Li

2ðXiþ1; X̂iþ1Þ

þ�3Li
3ðYi; ŶiÞ� (9)

We trained the network on only the faces dataset for 14
epochs and 228160 training pairs, with �1 ¼ 0:3, �2 ¼ 0:5,
�3 ¼ 0:2, and learning rate 2:5e�6. We initialized the
weights from the results of Experiment 2 (Case I), to see if
there is any improvement in flow prediction after adding
L3. In the next sections, we will use abbreviations for experi-
ment and case numbers in the discussions for brevity. For
example, Experiment 2, Case II is referred to as Exp. 2II,
and no Roman numerals mean we refer to both cases of that
particular experiment.

4.4 Micro-Expression Detection

In this section, we describe how optical flow features are
used for a micro-expression recognition task to demonstrate
the efficacy of the optical flow generated using our method.
The use of optical flow in micro-expression recognition
has proven useful in several prior works, as described in
Section 2.2.

4.4.1 CNN and Optical Flow Features

To train the optical flow features, we use the three-dimen-
sional lightweight CNN proposed by Liong et al. [8], named
the ”Shallow Triple Stream Three-dimensional CNN”, or
STSTNet, which shows improved results compared with
their previous work and other deep networks for micro-
expression recognition. Their algorithm is evaluated on the
CASME II [51], SAMM [52], and SMIC [53] datasets, com-
posed of videos containing micro-expressions that represent
either negative, positive, or surprise emotions (three-class
classification). For comparison, we do the same using our
optical flow features on the SAMM and SMIC datasets. For
each video sequence, they compute the optical flow between
the onset and apex frames, and use this optical flow as input
to train STSTNet classifier. The apex frames in SAMM are
provided with the dataset, which is not the case with SMIC.
The apex frames were also used for micro-expression recog-
nition on SMIC dataset by Quang et al. [54]. We make use of
their labeling for the SMIC dataset. We crop the faces based
on keypoints obtained using the OpenFace 2.0 toolbox [43]
for SAMM. For SMIC, since OpenFace failed to detect the
keypoints for some images, we instead use the dlib facial
landmark detector [55], which is based on an ensemble of
regression trees [56], and define the crop border at 15 pixels
away from the maximum and minimum x and y image
coordinates.

We follow the recommended approach in [8] to train the
STSTNet. The optical flow from the onset to the apex frame
is used to compute the optical flow strain �������ðUUUUUUUÞ for a given
flow field, UUUUUUU ¼ ðuðx; yÞ; vðx; yÞÞ. The strain is defined [8] by
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the symmetric matrix known as the strain tensor

������� ¼ 1

2
rUUUUUUU þ ðrUUUUUUUÞT
h i

¼
@u
@x

1
2

@u
@y þ @v

@x

� �
1
2

@u
@y þ @v

@x

� �
@v
@y

0
B@

1
CA: (10)

The strain of a planar displacement field ðu; vÞ is well-
known in solid mechanics, consisting of normal strains
�xx; �yy, which are the diagonal elements, and shear strains
�xy ¼ �yx, which are the off-diagonal elements [8]. The strain
values represent the type of local deformation that occurs
at each point in the flow field. The optical strain norm
jj�������ðuðx; yÞ; vðx; yÞÞjjs is then defined [8] as:

jj�������ðuðx; yÞ; vðx; yÞÞjjs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2xx þ �2yy þ 2�2xy

q
; (11)

The optical strain feature VVVVVVV 2 RH�W�3 is an RGB image
and for a given pixel coordinate ðxh; yhÞ, takes the value
ðuðxh; yhÞ; vðxh; yhÞ; jj�������ðu; vÞjjsÞ 2 R3. Fig. 3 shows an exam-
ple of the optical flow feature computed for an image pair,
using the optical flow obtained from each network. In this
example, the salient motion is an upwards curling of the
lips plus a subtle leftwards shift in glance.

4.4.2 Micro-Expression Detection Experimental Setup

The authors of STSTNet [8] evaluate their model using leave-
one-subject-out cross-validation (LOSOCV), and we do the
same to train the micro-expression recognition networks.
The SAMM (normal) and SMIC HS datasets were both used
for the task. All optical flow networks described in Sec-
tion 4.3.2 are used separately to train STSTNet. For every
optical flow network, we train the network three times: once
on SAMM, once on SMIC, and once on the combined dataset
consisting of both. Prelabeled onset and apex frames for each
sequence were used to compute the optical flow. The total
number of samples across all subjects is 290, which was split
into a distinct training and test set for each subject due to the
LOSOCV. This caused the number of samples in the test set
to vary between the minimum at 1 (0.345%) and the maxi-
mum at 37 (12.76%), since the number of samples across sub-
jects was not uniform. We use the publicly available code
provided by the authors [8], and thus replicate the exact

same network architecture, with a learning rate of 5e�5 and
maximum epochs set to 500. We note that the RGB input
images, described in Section 4.4, are resized to a resolution of
28� 28� 3. We also compute the TVL1 optical flow on
SAMMand SMIC, as done in [8], to compare its performance
with the optical flow features obtained from other networks.

To deal with the class imbalance, we use macro-averaged
recall, precision, and F1-scores to evaluate the performance
of every trained network. Additionally, the metrics speci-
fied by Yap et al. [57] are the micro-averaged F1-score and
Unweighted Average Recall (UAR). The definition of UAR
is equivalent to macro-averaged recall RM . UAR is also pop-
ular for imbalanced multiclass problems [8]. The perfor-
mance measures are defined as [58]:

RM ¼ 1

n

Xn
i¼1

Pm
j¼1 tp

j
iPm

j¼1 tp
j
i þ fnj

i

; Rm ¼
Pn

i¼1
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j¼1 tp

j
iPn

i¼1

Pm
j¼1 tp

j
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j
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ni

: (12)

The subscripts M; m denotes macro and micro-averaging,
respectively, and for the F1-score, x 2 fM; mg. tpji , fpji , and
fnj

i denote the true positive, false positive, and false nega-
tive of class i, sample j, for a total of n ð¼ 3Þ classes and m
samples. Note that when the prediction for a given class is a
true positive, this also counts as a true negative for each of
the other two classes. The macro-averaged metrics tend to
remove the bias caused by the imbalance degree, since it
does not ”favor” the classes with higher number of exam-
ples, as opposed to micro-averaging [58].

Moreover, since LOSOCV is used, this yields one metric
per subject. We will combine the metrics to a single scalar,
which we will refer to as the aggregated metric. This has been
done in other works such as [59] (following a different
experimental setup), and the aggregation is done by taking
the mean of the metric across all subjects for every iteration.

5 RESULTS AND DISCUSSION

To evaluate the flow network, we first report preliminary
results as discussed in Section 4.3.1. As mentioned earlier,
the performance measure for this experiment is the average

Fig. 3. An example of the computed optical flow features used as inputs to train STSTNet for each network variant. Source: subject 03, SMIC [53].
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EPE. We then show the results of the ablation study for the
experiments trained on the full dataset, and compare the
networks using the average EPE and AAE. Next, we evalu-
ate a number of other popular optical flow methods on the
test set. These include FlowNet2.0 [20], FlowNet3.0 [21],
LiteFlowNet [23], PWC-Net [22], and the classic Gunnar-
Farneback optical flow [60]. These CNN-based methods are
chosen due to their impact and relevance in the community.
To select Gunnar-Farneback flow, we used Allaert et al.’s
[30] review, who recommend optical flow methods well-
suited for facial motion, namely Gunnar-Farneback, Flow-
Field, and Normalized Convolutional Upsampling (NCUP).
Performance varied depending on the datasets, but Farne-
back, FlowField, and TV-L1 were consistently among the
top. Based on this, we felt that Farneback would be an
appropriate candidate from the non-CNN category.

Finally, the results of the micro-expression detection task
using all networks are presented, which shows the useful-
ness of our method for a practical application. For this task,
we use the same networks as in optical flow prediction with
the addition of TV-L1, since the latter was used to compute
the optical flow in STSTNet [8], the microexpression classi-
fier we used in this work.

5.1 Results for Ablation Studies

We first describe the initial results of Exp. 1, which comprise
of the networks trained and tested on faces, FlyingChairs,
and Sintel datasets. We report the performance in terms of
average EPE. The average EPE is computed for only the
largest flow prediction, which is defined by the k ¼ 1 term
from Equation (4) and obtained by setting w1 ¼ 1. This rep-
resents the average EPE for the largest flow prediction.
Table 1 shows these preliminary results as described in Sec-
tion 4.3.1. It is worth noting that the subjects that appear in
the training set do not appear in the validation or test sets of
our face data.

The error values in Table 1 are in pixels, averaged over
each of the test sets. Row 1 shows the results when the net-
work was trained on faces and tested on all three datasets.
Similarly, rows 2 and 3 are trained on FlyingChairs and Sin-
tel and tested on all three. From Table 1, we observe that the
network trained on our BP4D-derived face dataset performs
best when tested on faces. This is likely due to the nature of
the dataset the network was trained on. The flow fields on
our face dataset consist of small, non-rigid motions, espe-
cially when the head motion is lacking, whilst the motion
fields in the FlyingChairs dataset have larger magnitude and
is more rigid. The Sintel dataset is also different in nature
than the face dataset. It is likely that the network trained on
FlyingChairs overestimates the motion on the face dataset.
Note that the results in Table 1 are comparable to state of the
art methods on the Sintel dataset, as can be seen in [48].

One interesting thing to note here is that the perfor-
mance of the optical flow algorithm when trained on
face data and tested on Sintel data, is much better com-
pared to when trained on Sintel data and tested on Sintel
data. We conjecture that this may show the usefulness of
our generated dataset to problems that are even unre-
lated to faces. On a side note, the optical flow contained
in the Sintel dataset is notable for its large motion and
occlusions [48]. Due to the large flow vectors present in

Sintel, we suspect that the network trained on Sintel
tends to also predict flow fields with large vector magni-
tudes when tested on Sintel. Hence, in our FlownetS
implementation, large erroneous predictions may have
impacted the EPE more than the smaller-valued predic-
tions from the face-trained model. It is also possible that
the range of motions present in the face dataset trains
the network for a variety of scenarios. However, the
results for training and testing on Sintel dataset may be
further improved by using a model better adapted to the
optical flow challenges present in the Sintel dataset, but
this may make the model more dataset specific.

After adding the cyclic loss and training for more data
and epochs, we expect to observe a difference in perfor-
mance compared with Exp. 1. Here, we train the setup for
Exp 1 again, using the same data split as the other experi-
ments, for comparison purposes. Now we show the results
of the networks trained with cyclic loss as described in Sec-
tions 4.3.2 and 4.3.3.

Table 2 summarizes the statistics computed based on the
results of Exp. 2 and Exp. 3, evaluated on all 32.5k image
pairs in the BP4D-Spontaneous test set and on 9930 out of a
total of 10115 available consecutive image pairs of the CK+
dataset. The ground-truth for the image pairs from CK+
were computed in an identical manner to those in BP4D-
Spontaneous, but some samples were omitted due to some
errors in the generation process.

The average EPE is defined the same way as in Table 1,
and the AAE is computed exactly as defined in Equation (8),
since the loss function for the AAE is only evaluated on the
largest flow prediction, contrary to the EPE. As outlined at
the end of Section 4.3, Exp. 2I and Exp. 2II represent, respec-
tively, the higher and lower reconstruction weight experi-
ments, while Exp. 3I and Exp. 3II represent the experiment
with smoothness constraint and the experiment with aver-
age angular error.

There are several observations to be made from these
results. Adding the cyclic loss but with lower reconstruction
weights (Exp. 2II) improves the flow prediction compared
to using only the EPE loss (Exp. 1), since both EPE and AAE
decrease significantly. When there is higher weight on
reconstruction loss (Exp. 2I), the network alters the pre-
dicted flow to improve the warped output’s semblance to
X2. However, the higher focus on reconstruction worsens
the performance of the AAE and EPE. One reason could be
that the noisy ground truth does not necessarily reconstruct
X2 from X1 very well, i.e., the reconstruction capability of a
predicted flow field is adversarial to the ground-truth flow
EPE and AAE.

TABLE 2
Flow Performance for the Ablation Studies

BP4D-Spontaneous CK+

Experiments Ave. EPE AAE Ave. EPE AAE

Exp. 1 0.2856 0.1975 0.2343 0.2080
Exp. 2I 0.4610 0.3033 0.7936 0.4786
Exp. 2II 0.2498 0.1728 0.2821 0.2440
Exp. 3I 0.7010 0.4524 1.1573 0.5869
Exp. 3II 0.4660 0.2887 1.0082 0.4640
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Exp. 3 with the smoothness and AAE losses yields worse
outcomes than the other two in terms of predicted flow, par-
ticularly compared to Exp. 2I. Note that Exp. 3 weights are
initialized from the latter to test any change in performance.
This could be due to the decreased weight in the EPE loss,
which suggests that the EPE is a stronger indicator of flow
performance than the AAE. The EPE encodes the direction
in addition to the magnitude information. Another explana-
tion would be that training data with angular error as a loss
metric does not generalize well to test data, unlike the EPE.
Exp. 3I exhibits the worst performance in both EPE and
AAE amongst our network variants. This is likely due to the
imposed smoothness constraints, which impose flow
field values in the otherwise null regions outside the face
boundary.

The performance of the network trained on the BP4D-
Spontaneous face data and tested on the CK+ data, reveals
interesting insights. Indeed, for almost all experiments,
there is a decrease in performance from BP4D-Spontaneous
to CK+. This is less pronounced in terms of AAE perfor-
mance. Note that this decrease in performance may be
expected due to cross-database variations. In addition, even
with the decrease, the performance is fairly decent and
shows that the learnt knowledge is transferable to another
dataset. This addresses any concern of database bias.

5.2 Comparison With Other Networks

We now compare the results with other notable optical flow
implementations. Table 3 shows the flow statistics computed
for the network variants described earlier.3 The improvement
is defined to be the percentage improvement of the best per-
forming networks on BP4D-Spontaneous and CK+ test sets
(which are Exp. 2II and Exp. 1 respectively), over the others.

In all cases, the networks trained on our automatic face
dataset perform better in bothmetrics than PWC-Net [22] and
LiteFlowNet [23], which are some of the popular CNN-based
optical flow methods. PWC-Net demonstrates a notably high
average EPE, but a more competitive AAE. This is likely due
to an overestimation of the flowpredictionmagnitudes. Flow-
Net2.0 and FlowNet3.0-CSS, which are both state of the art
improvements on FlowNetS, are both outperformed by all of
our network variants with the exception of average EPE in
Exp. 3I. The Gunnar-Farneback optical flow performs better

than all methods in both average EPE andAAE, but is outper-
formed by Exp. 1 and Exp. 2II. These results confirm
Farneback’s high performance for facialmotion as reported in
[30], as it outperforms all of the other CNN-based works. It
also helps confirm that our generated ground-truth is reliable,
since the flow computed using Farneback is the closest flow
field amongst the other network variants.

Ourwork (Exp. 1 and Exp. 2II) outperforms both the CNN-
based methods and Gunnar-Farneback in both metrics, when
tested on both BP4D-Spontaneous and CK+. Gunnar-Farne-
back is still the most accurate amongst the CNN-based meth-
ods. Note that in the case of CK+, we trained the networks on
BP4D-Spontaneous data, which is a completely different data-
set. This suggests that our method can be extended to face
datasets that are different from those in the training set and
still achieve superior performance than optical flow CNNs
that were not trained on faces, indicating that the learnt
knowledge is fairly independent of the dataset. An improve-
ment would be to also include grayscale images in the train-
ing set, since their presence in CK+ is a possible reason for the
decrease in performance seen by our networks.

To investigate the type of flow produced by each of the
networks on the facial images, Fig. 4 shows a sample subset
of image pairs in the test set with their respective ground-
truth and flow predictions from each network. The EPE and
AAE for each prediction are also labeled, computed the
same way as in Tables 2 and 3. The saturation intensity in a
given image is only representative of the intensity of that
region relative to the other pixels of the same image. The
same intensity in two images may have substantially differ-
ent optical flow vector values. This is common practice in
optical flow visualization, since it places emphasis on which
motion is more salient for a given image. In images with
small motion, as is the case in many frames in the BP4D
dataset, using to-scale visualization would not convey
important local motion information. We note that the fol-
lowing remarks for the remainder of this section are qualita-
tive in nature and are based on a very small subset, but
nevertheless yield some insight to accompany the statistics
from Tables 2 and 3. We first observe the differences in flow
predictions among the networks trained on our dataset.
From these five, Exp. 1 shows the sparsest predictions,
which is expected as it only minimizing the EPE from the
sparse ground-truth flow. After introducing the cyclic loss
in the other four experiments, denser optical features start
to appear, caused by the added emphasis on image recon-
struction. For example, this denser optical flow allowed the
network to better predict the eye motion in rows 3 and 4 of

TABLE 3
Comparing Various Optical Flow Methods

BP4D-Spontaneous Improvement CK+ Improvement

Optical flow methods Ave. EPE AAE Ave. EPE AAE Ave. EPE AAE Ave. EPE AAE

Exp. 1 (this work) 0.2856 0.1975 12.54% 12.51% 0.2343 0.2080 0% (ref.) 0% (ref.)
Exp. 2II (this work) 0.2498 0.1728 0% (ref.) 0% (ref.) 0.2821 0.2440 16.94% 14.75%
PWC-Net 1.1538 0.4643 78.35% 62.78% 1.2340 0.7049 81.01% 70.49%
FlowNet2.0 0.6719 0.4347 62.82% 60.25% 0.6496 0.5078 63.93% 59.04%
FlowNet3.0-CSS 0.6839 0.4457 63.47% 61.23% 0.5168 0.4029 54.66% 48.37%
LiteFlowNet 0.7226 0.4771 65.43% 63.78% 0.6306 0.4826 62.84% 56.90%
Gunnar-Farneback 0.3670 0.2294 31.93% 24.67% 0.3837 0.3118 38.94% 33.29%

3. The interested reader is referred to the supplemental material,
available at https://www.dropbox.com/s/o7158gi46tppvb1/
SupplementalMaterial_OpticalFlow.docx?dl¼0, for the error histo-
grams for both ablation studies and comparison results.
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Fig. 4. Thus, the EPE loss taught the network to predict well
the regional directions and magnitudes, and the cyclic loss
helped it further localize the motion in these regions.

There is higher motion variance across the face in Exp. 2I
compared to Exp. 2II. Although both were trained with cyclic
loss, there is higher emphasis on the loss in Exp. 2I than in
Exp. 2II, whichmore clearly shows the effect of the cyclic loss,
since no other losses were introduced in Exp. 2. The outputs
of the networks with cyclic loss also show coarser representa-
tions compared to the outputs of FlowNet2.0 and Flow-
Net3.0-CSS, such as in rows 9 and 10 in Fig. 4. When the
smoothness constraints were imposed in Exp. 3I, the face seg-
mentation learned by the network was affected, since the
large values of the flow derivatives at the face boundaries
enlarged the gradients in the smoothness loss function.

By both visual perception of these examples and the average
EPE andAAEvalues fromTable 3, theGunnar-Farneback opti-
cal flow shows similarity in both direction and magnitude.
Since themethod is unbiased by any training data, this similar-
ity provides a degree of validation to the ground-truth optical
flow. However, it still underestimates optical flow in some
instances, such as the near-zero regions in rows 6, 8, and 13.
The Gunnar-Farneback flow also segments the face, since the
background has zero motion. This is in contrast to the outputs
of the other four networks (FlowNet2.0, FlowNet3.0-CSS, Lite-
FlowNet, and PWC-Net). The outputs of FlowNet2.0,

FlowNet3.0-CSS, and LiteFlowNet all tend to estimate back-
groundflow.Theflow trendof their outputs from the examples
of Fig. 4 can bematchedwith the outputs of the other networks,
although some examples — especially those with global
motion, such as in rows 4, 5, and 13— show appreciable differ-
ences. PWC-Net demonstrates a more consistent flow pattern
similar to our networks and Gunnar-Farneback. However, the
EPE values in both the Fig. 4 examples and Table 3 suggest that
the network, perhaps, overestimates themagnitude of the opti-
cal flow vectors in the field. Although its AAE is the second-
highest, its value is close to several of the other methods. How-
ever, its EPE is significantly higher in comparison. This fact,
complemented with the shown examples, suggests that the
direction is a lesser problem thanmagnitude in PWC-Net.

The examples in rows 5, 6, 12, and 13 are characterized by
predominantly global motion in one direction only. In these
examples, the subject is mainly tilting their heads without any
change in expression. Those in rows 4, 7, 8, 9 and 10 have the
local motion as their salient feature, mainly in the eyes and
mouth regions. Local facemotion is more indicative of changes
in facial expression, and the network’s ability to identify the
local motion can be used in FER. The remaining examples are
rich with both global and local motions, indicating more
aggressive motion along with the change in expressions. From
these examples, all the networks were able to identify the local
motions, except row 2, where three of the networks were not

Fig. 4. Color-coded optical flow predictions for a small subset of the test set for the networks trained in each of the experimental setups. The exam-
ples contain different types of facial motion, meant to illustrate the type of flow outputs produced by each network for qualitative assessment.
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able to pick up the eye movements. The differences in network
outputs are clearer in the exampleswith globalmotion.

From the overall results of the experiments, one may note
that our networks trained on the automatically generated
face dataset are better-suited at predicting the optical flow
on faces compared to other networks. Our model can be
applied to predict optical flow on any sets of frontal / near
frontal faces. The only pre-processing required is the detec-
tion of key-points using OpenFace [43], cropping the face
using the maximum and minimum x-y coordinate values
plus a small offset in each coordinate, and resizing the result-
ing image to a resolution of 512� 384 pixels to prepare it as
an input for FlowNetS. We use the offset values of 10 pixels
in all four directions, for cropping.

5.3 Results of Micro-Expression Detection

We now report on the results of the experiments described
in Section 4.4.2 for micro-expression detection. The details
of the SAMM and SMIC datasets used for training and test-
ing are given in Table 4 [52], [53], [8].

The micro- and macro-averaged metrics are shown for
every network on each of the SAMM, SMIC, and com-
bined datasets in Tables 5 and 6. In these tables, the
aggregation of the metrics across the subjects from the
LOSOCV is the mean of the metric across the subjects.
The delta values are also computed, where the delta is
defined to be the absolute value of the difference between
a statistic and the maximum of that statistic in the
column.

TABLE 4
Details of the SMIC and SAMM Datasets Used for Micro-Expression Detection [8], [52], [53]

No. of Samples per Class Gender Ethnicities Mean age

Dataset Positive Negative Surprise Male Female

SAMM 26 92 15 16 16 13 33.2
SMIC 51 70 43 10 6 2 28.1
Combined 77 162 58 26 22 13 30.4

The number of samples per class is also the number of video clips.

TABLE 5
Results of the Aggregated Performance Metrics With Their Deltas for Micro-Expression Recognition

on the SAMM and SMIC Datasets Separately, Using TVL1 Optical Flow as Done in [8],
Our Network With Different Variants, and the Other Optical Flow CNN Architectures

The best results in each column are in bold blue font, the second best are underlined, and the third best are in blue italic font.
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The results in Table 5 indicate that the performance of
STSTNet trained on optical flow features from different net-
works also significantly depends on the dataset it is trained
on. For each evaluation measure, the top three performing
networks are indicated in bold blue, underlined, and italic
fonts respectively.

We note that the F1-scores are typically lower than the pre-
cision and recall since these are aggregated metrics, i.e., the
F1-score averaged over all F1-scores in the LOSOCV, and is
not the harmonicmean of the aggregated precision and recall.

For macro-averaged precision PM , as well as the macro and
micro-averaged F1-scores on the SAMMdataset, the top scores
are achieved from Experiments 1, 2II, and 3II, followed closely
by FlowNet3.0-CSS and TVL1. The higher F1-scores are more
influenced by the precision values and less so by the recalls.
Exp. 1 is the highest for these three metrics, while TVL1 scored
highest in RM , and FlowNet3.0-CSS in geometric mean. Exp.
3II is the only variant which is consistently among the top 3 for
allmetrics, at either second or third.

The SMIC results allow for a more consistent inference on
the performance of the classifiers. Across all metrics, the top
three networks were FlowNet2.0, FlowNet3.0-CSS, and Lite-
FlowNet. Both the precision and recall, and consequently the
F1-scores, follow more similar trends, in contrast with the
SAMM and combined training protocols. For precision, recall,

and F1-scores, the lowest three scores are interchanged
amongst Exp. 1, PWC-Net, and Gunnar-Farneback. In fact,
Gunnar-Farneback and PWC-Net are consistently the least per-
forming across all three training protocols.

By comparing the results across the three training proto-
cols, it is difficult to conclude that optical flow features com-
puted from one specific method will be optimal for training
the STSTNet classifier for micro-expression detection.
Although the networks trained using our method performed
well when trained and tested on SAMM, theywere somewhat
outperformed in the other two protocols. However, even in
these cases, they were not as consistently behind when com-
pared to Gunnar-Farneback and PWC-Net, which can be seen
by the delta values in Tables 5 and 6. This could be due to the
sparse nature of the learned optical flow representations from
our generated dataset. It is also plausible that the accuracy of
the flowmagnitude predictionmay not be a consistent predic-
tor of its performance on micro-expression detection. What
we mean here, is not the magnitude in general, but rather
magnitude in regions that do not correspond or assist in
microexpression detection. For example, large head motion
will have large error magnitudes associated with it. However,
smaller regions in the same face such as eyes or mouth may
have smaller error magnitudes that may be key for a microex-
pression. Hence, a good global EPE statistic can be a result of
the (correct) detection of the head motion despite a relatively
less accurate estimate of themotion in themouth/eye region.

We hypothesize that our method will overcome the per-
formance difference in some of the results if we use a denser
keypoint tracker during the optical flow training phase to
generate the BP4D ground-truth. This will likely improve
the network’s ability to more consistently capture fine local
facial motion which may otherwise have been missed in the
current work. Furthermore, as previously discussed, we
have used FlowNetS to train the face data to benchmark its
efficacy compared to other networks, and thus using a bet-
ter-designed CNN along with the denser keypoint ground-
truth will likely further improve the performance.

6 CONCLUSION AND FUTURE WORK

In this paper, we explore the possibility of using a facial
expression dataset to learn optical flow representations
based on a self-supervised technique.Motion information on
faces has been shown to be useful in facial expression analy-
sis inmulti-modal techniques.

The dataset is generated by using the image sequences
from the BP4D-Spontaneous dataset to compute the optical
flow ground-truth. The OpenFace 2.0 toolbox, which uses a
constrained local model, is used to locate the facial landmarks
on every image. Delaunay triangulation is then used on the
resulting set of points to form the face mesh and allow the
computation of the optical flow for every pair of images using
triangle-to-triangle affinemaps to develop an automatic facial
optical flow dataset. The generated dataset, with a total of
nearly 324k image pairs, is used as a noisy ground-truth for
optical flow to train the FlowNetS convolutional autoencoder
architecturewith 228k pairs in the training partition.

It was observed that training the FlowNetS architecture for
optical flow on this automatically generated noisy ground-
truth data improved the network’s ability to predict optical
flow on face data in particular. The learned representations

TABLE 6
Results of the Aggregated Performance Metrics With Their
Deltas for Micro-Expression Recognition on the combined

SAMM and SMIC Dataset, Using TVL1 Optical Flow
as Done in [8], Our Network With Different Variants,

and the Other Optical Flow CNN Architectures

The best results in each column are in bold blue font, the second best are under-
lined, and the third best are in blue italic font.
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also helped the network give good accuracy on the Flying-
Chairs and Sintel datasets. This demonstrates that the facial
movements are nicely encoded in our data which enables the
network to learn subtle movements that are useful on the chal-
lenging Sintel dataset as well. A cyclic loss was also added for
optimization to help the network use the predicted flow to
reconstruct the second image, and the flow results from differ-
ent experimental setups are compared. It was seen that the
flow predictions are best when there is less emphasis on recon-
struction, due to denser representations learned with recon-
struction that are not present in the ground-truth flow fields.
Compared with other optical flow methods (Gunnar-Farne-
back, FlowNet2.0, FlowNet3.0-CSS, LiteFlowNet, and PWC-
Net), it was shown that the networks trained on the generated
dataset predict better flow representations, as quantified by the
flow errormetrics. This implies that a network trained on good
face optical flow ground-truth have the propensity to outper-
formnetworks trained on other datasets.

To investigate the performance of the different optical
flow network variants in an FER application, the optical flow
features were used to train STSTNet for micro-expression
detection. The experimental results using different perfor-
mance metrics were mixed, e.g., FlowNet3.0-CSS performed
better in a number of metrics. However, our method also
demonstrated promising results in a number of cases, partic-
ularly those on the SAMM dataset. Note that further
improvements and extension to this baseline work can help
improve its application to FER.

For further investigation and improvement, future work
related to this work can include the following:

1) Use a denser tracker such as Zface [61] to track a
higher number of key-points for a finer triangulation
and denser optical flow ground-truth in our auto-
matic data generation algorithm.

2) Use a more complex CNN architecture to train the
denser optical flow ground-truth.

3) Train the optical flow network on faces with some
head rotation, such as pan and tilt, to learn optical
flow for non-frontal faces.

4) Tackle challenges in optical flow learning, such as in
environments with occlusion and illumination, to
increase the robustness of facial optical flow.

In addition to these improvements for optical flow learn-
ing, the empirical analysis can be extended to evaluate the
performance of the face-trained optical flow CNN in other
problems in facial expression analysis, such as action unit
recognition.
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