
Multilevel Longitudinal Analysis of Shooting
Performance as a Function of Stress and

Cardiovascular Responses
Derek P. Spangler , Sazedul Alam , Saad Rahman, Joshua Crone , Ryan Robucci,Member, IEEE,

Nilanjan Banerjee, Scott E. Kerick, and Justin R. Brooks

Abstract—Virtual reality (VR) systems are increasingly using physiology to improve human training. However, these systems do not

account for the complex intra-individual variability in physiology and human performance across multiple timescales and

psychophysiological demands. To fill this gap, we propose a theory of multilevel variability where tractable neurobiological mechanisms

generate complex variability in performance over time and in response to heterogeneous sources. Based on this theory, we also

present a study that examines changes in cardiovascular activity and performance during a stressful shooting task in VR. We examined

physiology and performance at three important levels of analysis: task-to-task, block-to-block, session-to-session. Findings indicated

joint patterns of physiology and performance that notably varied by the level of analysis. At the task level, higher task difficulty

worsened performance but did not change cardiovascular activation. At the block level, there were nonlinear changes in performance

and heart rate variability. At the session level, performance improved while blood pressure decreased and heart rate variability

increased across days. Of all the physiological metrics, only heart rate variability was correlated with marksmanship performance.

Findings are consistent with our multilevel theory and highlight the need for VR and other affective computing systems to assess

physiology across multiple timescales.

Index Terms—Stress autonomic, nervous system, shooting performance

Ç

1 INTRODUCTION

1.1 Background

THE last two decades have witnessed a surge of research
on affective computing systems that aim to detect human

emotion and stress based on physiological signals [1], [2],
[3]. Such systems have been used in a variety of applications
with the aim of inferring, with some specificity, the occur-
rence of emotional and/or cognitive states that in turn affect
human user engagement, performance, and health [4], [5],
[6], [7]. Especially important for operational domains such as
the military, principles of affective computing can be imple-
mented in virtual reality (VR) systems for the purpose of
training human performance outcomes (e.g., shooting
marksmanship) [8], [9], [10], [11]. In addition to simulating
real-world stressors, VRmay enhance training because it can
be integrated into closed-loop systems that adapt to the user
[12], [13]. Such systems aim to customize stimuli (e.g.,

training aids) to changes in performance and psychological
states (e.g., stress, workload) that are inferred from physio-
logical responses [14], [15], [16], [17], [18], [19]. Cardiovascu-
lar (CV) responses in particular have shown promise as
affordable and unobtrusive indicators of performance-rele-
vant states within VR [20], [21], [22], [23], [24], [25].

VR systems that measure physiology, and affective com-
puting systems more generally, are limited because they do
not consider the multiple levels of variability that have been
noted in prior psychophysiological theory [26], [27], [28].
Here, we define “levels” as the different timescales over
which physiology and performance can change, in combina-
tion with the different sources (exogenous and endogenous
factors) that drive such change. With respect to human per-
formance in affective computing systems (e.g., VR systems
using physiology), we outline three particularly important
levels of variability: (1) Task-to-task: changes induced by
exogenous tasks that typically last in the range of minutes.
This level encompasses both changes between rest and a per-
formance task as well as changes between different perfor-
mance tasks, (2) Block-to-block: within-task changes that
occur between chunks of similar trials. These changes can
occur on a second-to-second and/or minute-to-minute basis
(specifically, <0.1 Hz) and are driven by endogenous factors
(e.g., intrinsic biological rhythms, thoughts), (3) Session-
to-session: much slower day-to-day changes across experi-
mental sessions, where such changes are driven by both
endogenous and exogenous factors.

Many existing systems and basic research in this area have
used CV physiology to only estimate task-to-task changes in
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emotional and cognitive states (e.g., workload, stress) [23],
[29], [30], [31], [32]. However, computing systems that model
all three levels of variability simultaneously are likely to pro-
duce more precise estimates of state and performance. For
example, also modeling block-to-block variability in physiol-
ogy can prevent researchers frommistaking CV changes (e.g.,
heart rate increases) as being due to workload when such
increases are due to intrinsic oscillations in blood pressure
[33]. Also, since training often takes place across multiple
days, computing systems that target training (e.g., VR-based
training) could benefit from tracking slowday-to-day changes
in physiology and then using this information to optimize
training to daily levels of stress or fatigue [11], [34], [35].

We argue that affective computing systems—including VR
training technologies—do not sufficiently exploit multilevel
variability because basic research has not investigated such
patterns of variability within the same analysis. The deeper
root of the problem is likely that researchers in this domain
lack a clear theoretical perspective that can generate specific
hypotheses regarding multiple timescales and stressors.
Addressing these gaps, the current paper proposes a theory of
multilevel variability, where tractable neurobiological mecha-
nisms link physiology and performance at multiple timescales
and in response to heterogeneous stimuli. In support of this
model, we also present a study that is the first to show unique
patterns of physiology and performance at all three levels of
variability (block, task, session) simultaneously. Importantly,
the current paper presents and examines our theory with
respect to VR. However, the theory can also be applied to
any computing system that utilizes multi-timescale changes in
physiology to infer performance-relevant states (e.g., emotion,
cognition). We describe our theory below and highlight how
prior work has failed to examine CV physiology and perfor-
mance (and their relations) at all theoretically important levels.

1.2 Multilevel Theory of Performance Variability

Synthesizing multiple theories in psychophysiology and neu-
roscience, we conceptualize the human as an assemblage of
interacting yet non-redundant response systems at the cogni-
tive, motor, emotional, and physiological levels (see Fig. 1)
[36], [37], [38], [39], [40], [41]. Behavioral performance is deter-
mined by the interactions between these systems where lim-
ited energetic (e.g., metabolic, neural) resources are shared
and exchanged across specialized neurobiological systems
[42], [43]. That is, such interactions are regulated by an inte-
grated neurobiological architecture composed of pathways in
central, autonomic, and skeletal nervous systems as well as
the endocrine system [44], [45]. Their flexible coordination
permits diverse adjustments to cardiovascular physiology,
cognition, and hence behavior on multiple timescales and in
response to heterogeneous stimuli [36], [46]. Thus, depending
on the stressor, energetic resources can be routed to the appro-
priate system(s) to yield adaptations to performance at the
proper timescale. In this way, response systems and their neu-
robiological mechanisms exhibit dynamics that give rise to
performance variability at all three levels outlined above (task,
block, session) [47].

Our multilevel perspective posits two themes that are
important for human performance in VR training. First,
although multiple response systems influence performance

variability, their effects are often mediated through cognition
(i.e., information-processing mechanisms that shape percep-
tion, thought, action) [48]. Attention is especially critical to
performance and training and describes the selective process-
ing of goal-relevant stimuli [49], [50]. Attention requires that
the frontal lobes utilize energetic resources to suppress the
processing of irrelevant information and to bias responses to
task stimuli [51], [52]. Attention is also critical for effortful
behavioral strategies that guide performance, such as the
speed-accuracy tradeoff (i.e., slowing of response times to
achieve better accuracy) [53]. Maintaining task attention and
hence adaptive strategies is difficult because many stimuli
(e.g., performance anxiety, environmental distractors) com-
pete for neural resources during performance tasks [49].

Second, the above neurobiological architecture controls
response systems with varying degrees of integration, such
that a single pattern of CV physiology can reflect a number
of cognitive and emotional processes [54]. The particular
performance-related state that is indexed by a CV pattern
depends on the: (i) timescale over which physiology
changes, and (ii) stimuli that evoke such changes. For exam-
ple, greater decreases in vagally mediated heart rate vari-
ability (vmHRV; a metric of parasympathetic regulation of
heart rate) in response to a cognitive task might accompany
better performance because these decreases track task-
related augmentations in attention. In contrast, overall
increases in vmHRV across days may reflect a lowering of
tonic negative emotion and hence be associated with daily
performance improvements [55], [56]. We now distinguish
each level by its neurobiological and psychological pro-
cesses and highlight relevant gaps in prior research.

Task-to-Task. Initiating performance on a performance task
requires shifting from a resting state to an active state of

Fig. 1. Multilevel theory of performance variability. The circles represent
different emergent, psychophysiological responses systems. The over-
lap between circles represent the interaction and/or exchange of limited
energetic (neural, metabolic) resources between responses systems.
The arrows represent bidirectional control of response system dynamics
(i.e., variability) by varying yet integrated neural and endocrine systems.
The differential functional specialization and frequency dynamics of
these neural and endocrine systems allows for adjustments to the
response systems in reaction to different stimuli (exogenous and endog-
enous stimuli; presented in boxes on the left) across a range of time-
scales. The resulting dynamic interactions between response systems
gives rise to complex, multi-timescale variability in human performance.
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attention to the environment. Here, neural resources must be
routed from the default mode (task-off) to the dorsal attention
(task-on) brain network, in order to support strategies
required for optimal performance (e.g., speed-accuracy trade-
off) [57], [58]. Task-to-task changes also describe the impairing
effects of negative emotional and stressful tasks (e.g., tasks
with high difficulty or threat) on performance relative to neu-
tral tasks. These effects are mediated by emotional stimuli
hijacking resources away from prefrontal cortex regions that
are critical for attention and behavioral strategies [59], [60].
Similar mechanisms are seemingly implicated in the worsen-
ing of performance during high versus low difficulty tasks.
The increased effort during high difficulty conditions (which
may inherently elicit negative emotion) consumes more lim-
ited energetic resources, which in turn worsens performance
[43], [58], [61], [62].

Much research has examined task-to-task changes in CV
physiology and their relations to concomitant performance.
Task-to-task variability is often studied as change in CV
activity between a baseline task and performance task (i.e.,
CV reactivity) [63]. Here, linear change in the CV metric
(e.g., blood pressure) from baseline across the whole task
(i.e., across all blocks) reflect physiological activity induced
by exogenous stressors that require sustained effort [64],
[65], [66], [67]. CV reactivity during performance tasks and
other stressors is thought to be mediated by the autonomic
nervous system (ANS) [68]. Parasympathetic withdrawal
(measured as vmHRV decreases) and increases in sympa-
thetic activity elicit CV activation, a pattern of reactivity
marked by augmentations in heart rate and blood pressure.
CV activation in turn mobilizes metabolic resources for task
effort [69]. Consistently, greater decreases in vmHRV and
higher CV activation from rest to stress have been linked to
relatively better task performance [70], [71]. Task-to-task
variability also encompasses differences in CV reactivity
between performance tasks (e.g., mental arithmetic, speech
preparation). Here, more difficult tasks evoke greater CV
activation and more performance errors [72]. Such effects
are likely due to difficult tasks eliciting greater effort and
perhaps more negative emotion, both of which mobilize CV
responses to cope with stressors [64], [73].

Block-to-Block. Even within the same task and in the
absence of major environmental change, there are important
changes in performance and physiology across trials. Dur-
ing a single task, the default mode exhibits endogenous <
0.1 Hz (every 10s or slower) oscillations commensurate with
changes between chunks of similar trials (i.e., block-to-block
change) [74], [75]. Within such cyclical oscillations, some
blocks of trials periodically exhibit heightened default
mode activity, which is believed to drive the occurrence of:
(1) spontaneous task-unrelated thoughts (often emotional in
nature), (2) lapses in task attention and behavioral control
(e.g., speed-accuracy tradeoff), and (3) hence decreases in
performance on some blocks relative to others [76], [77],
[78], [79], [80]. In sum, endogenous block-to-block oscilla-
tions in default mode activity yield concomitant block-to-
block oscillations in performance.

Relative to the task level, the significance of block-related
changes in CV physiology during performance is less clear.
Some research, however, is beginning to show that endoge-
nous activity in sensory/perceptual brain regions (e.g.,

default mode network) is modulated by intrinsic, cyclical
oscillations in heart rate that are commensurate with block-to-
block change (<0.1 Hz) [81]. Indeed, the notion that the
endogenous attentional activity in the brain is modulated by
the viscera implicates ANS afference from the vasculature to
the cortex. Further linking the ANS to block-to-block perfor-
mance, our group and others have begun to link greater vagal
activity (measured with vmHRV) to fewer intermittent
increases in response time (RT) [82], [83]. Here, high vagal
activity may reflect increased outflow of top-down cortical
mechanisms that regulate default mode activity [84]. Adding
even more complexity to the issue, the aforementioned
changes in CV activity and their default mode correlates per-
haps overlap with the endogenous habituation of CV activa-
tion occurring later in a stressor (represented by curvilinear
decreases in heart rate or blood pressure at the end of a task)
[85], [86], [87]. Here, nonlinear decreases in CV activation
across blocks may reflect the down-regulation of stressful off-
task cognition that otherwise impairs performance [88]. Taken
together, nonlinear block-to-block change (e.g., cyclical oscil-
lations, nonlinear decreases) in CV activity may reflect a num-
ber of endogenous mechanisms beyond CV reactivity to the
exogenous stressor (i.e., task-related variability that can be
represented by linear change across blocks).

Session-to-Session. Relative to other levels, session changes
more heavily implicate long-termneural adaptations underly-
ing continuous learning and habituation, thereby making this
level especially critical to track in VR training systems [89].
Prior research generally indicates that performance improves
across days, likely due to practice/learning effects and the
slow habituation of performance-harming stress responses.
[90], [91], [92]. However, performance across sessions can also
exhibit more diverse patterns of variability due to hormonal
influences. That is, unlike the task and block levels, session-
related changes are slow enough to implicate the similarly
protracted activity of the endocrine system [93]. Here, hor-
monal rhythms and their perturbations over days due to sleep
andmood have complex influences on central and autonomic
function [94]. Not surprisingly then, changes in daily emotion
(i.e., mood) and sleep have been correlated with session-to-
session changes in performance [95], [96], [97].

It is unclearwhether session-related changes in performance
can be tracked with CV physiology. This is because research
has yet to identify the pattern and magnitude of day-to-day
changes inCVphysiologywithin healthy populations, let alone
their relations to performance. Many prior studies examining
longitudinal change in cardiovascular physiology are limited
in that they have focused on two or three measurement occa-
sions, often years apart, with the goal of examining consistency
between time points [98], [99], [100], [101], [102]. The studies in
question hence do not meaningfully clarify continuous (day-
to-day) changes in CV physiology that are important for VR
training applications that target daily use. Importantly,
decreases in CV activation across days may in part reflect the
slow habituation to performance-related stress, which could in
turn increase performance across the sessions [103].

1.3 Current Study

Addressing gaps in prior research, our study is among the
first to simultaneously investigate human performance and
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CV physiology at all the levels of variability outlined above.
In the current study, participants visited the laboratory on
six separate days. During each daily session, participants
completed the same stressful, VR-based shooting task.
Here, participants were asked to maintain optimal marks-
manship (i.e., shot accuracy) while under threat of enemy
fire. Performance was measured as marksmanship as well
as response time (RT) to shoot targets; RT metrics can clarify
the strategies and cognitive functions driving changes in
marksmanship. For example, under stress, participants
might adopt a more impulsive strategy, thereby decreasing
mean RT at the cost of accuracy (i.e., speed-accuracy trade-
off) [104]. Trial-to-trial RT variability, in contrast, may con-
vey unique information about the stability and robustness
of attention that underlies accuracy [105]. CV activity was
simultaneously assessed as interbeat interval (IBI), heart
rate variability (HRV), and blood pressure (BP). Such met-
rics are influenced by ANS dynamics and endocrine factors
that give rise to performance variability [106], [107], [108].

Fig. 2 illustrates our experimental design in the light of
our multilevel theory. The difficulty of shooting was manip-
ulated to examine task-to-task variability. Here, perfor-
mance variability represents the adaptation of behavior to
the increased motor-perceptual demands and mental stress
(e.g., anxiety) of high versus low difficulty tasks [63]. For
CV physiology, we examined CV reactivity (changes in
physiology between a preceding baseline and the shooting
condition) and differences in reactivity between the shoot-
ing difficulty conditions. For block-to-block variability, we
examined changes in shooting performance and physiology
between chunks of trials (blocks) within a single difficulty
condition. Importantly, blocks within a single condition did
not notably differ with respect to exogenous demands. For
session-to-session variability, we examined mean level
changes in performance and physiology across the six ses-
sions that were days apart.

We tested four hypotheses based on our multilevel the-
ory, in order to inform how VR training systems should
exploit variability in physiology and performance. For all
hypotheses pertaining to marksmanship, we examined con-
comitant changes in RT metrics (mean RT and trial-to-trial
RT variability) to clarify the underlying cognitive factors
driving shifts in shooting performance.

Hypothesis 1- Task-to-Task. (1a) In line with difficult tasks
requiring more energetic resources, marksmanship will
worsen during the high difficulty relative to the low diffi-
culty condition. (1b) Consistent with the VR shooting task
requiring mental and physical effort, both the low and high
difficulty conditions will elicit increases in CV activation
from baseline across the blocks. By increases in CV activa-
tion, we mean linear increases in BP as well as linear
decreases in IBI and HRV from baseline across the blocks.
(1c) increases in CV activation will be stronger for the high
versus low difficult shooting task, consistent with high diffi-
culty eliciting greater stress and more effort. In the current
findings, we validated predictions for performance.
Although we confirmed CV activation across both shooting
conditions, we falsified the hypothesis of CV reactivity dif-
ferences between the conditions.

Hypothesis 2- Block-to-Block. (1a) Aligned with research
documenting endogenous, within-task change in attentional

function, there will be systematic changes in marksmanship
between blocks of each shooting condition. (1b) Over and
above linear changes in CV metrics across blocks (i.e., task-
related CV activation), CV activity will also exhibit nonlin-
ear changes across blocks. These effects would likely repre-
sent the < 0.1 Hz oscillations and/or habituation-related
changes in CV activity that are theorized to affect perfor-
mance. The present findings validated the prediction for the
performance metrics and for HRV.

Hypothesis 3- Session-to-Session.Marksmanshipwill improve
and average levels of CV activationwill diminishwith increas-
ing sessions. This hypothesis is consistent with practice effects
and stress habituation (respectively) taking place over days.
We confirmed the hypothesis only for marksmanship, blood
pressure, andHRV.

Hypothesis 4- Associations Between CV Physiology and Per-
formance. Intra-individual changes in marksmanship perfor-
mance will be related to concomitant changes in CV
physiology. Here, we explored the level at which these rela-
tions occurred (block-to-block, task-to-task, session-to-ses-
sion). We predicted that these intra-individual associations
between physiology and behavior could be detected even
without modeling task variables as covariates. Such find-
ings would lend support to CV physiology as a robust esti-
mator of performance in real-world VR training systems
where detailed information about the environment may not
be available. This hypothesis was partially confirmed such
that HRV metrics at the task and block levels were related
to marksmanship.

1.4 Participants

Participants were seventeen students (7 women, 10 men)
from a university in the Mid-Atlantic region of the United
States. All participants were volunteers recruited through
flyers and word-of-mouth on campus, and they provided
informed consent in accord with the university’s Institu-
tional Review Board. The sample had a mean age of 26.18
years (SD = 3.70) and was predominantly Asian (76 percent
Asian, 12 percent White, 12 percent Other). Participants
were not excluded based on illness, disease, smoking, drug/
medication usage, or history of video gameplay (i.e., factor
that could affect behavior in our VR game). We chose not to
exclude participants on these factors in order to retain the
real-world noise inherent to actual VR trainings, and to
therefore increase the odds that present findings would gen-
eralize to real-world contexts. However, participants were
still screened on the aforementioned characteristics. No par-
ticipants reported cardiovascular or skeletomuscular condi-
tions. Furthermore, no participants indicated using drugs or
medications that notably influence cardiovascular function.
Only one participant reported smoking (1-2 times per
month), and one participant identified themselves as an
active video game player. All results were identical (p < .05)
when excluding these two participants.

Data were collected during six sessions that were on sep-
arate days. The spacing of sessions was in the order of mag-
nitude of days; the average time between sessions was 4.23
days (s = 4.75). The time-of-day for sessions was not sys-
tematically controlled. The average hour of the session start
time was 12:30PM (s = 2.3 hours). Importantly,

SPANGLER ET AL.: MULTILEVEL LONGITUDINAL ANALYSIS OF SHOOTING PERFORMANCE AS A FUNCTION OF STRESS AND... 651



supplemental analyses suggest that time-of-day could not
account for any of the session-related effects presented in
the paper (results not presented).

Data for some sessions had to be excluded due to missing
data caused by hardware failure and excessive artifact in the
physiological signals. Specifically, most participants com-
pleted five sessions. The mean number (i.e., count) of ses-
sions completed was 4.29 (SD = 1.31). Here, we indicate the
number of subjects who completed each session: Session 1 =
9, Session 2 = 13, Session 3 = 16, Session 4 = 12, Session 5 =
9, Session 6 = 14. Although not ideal, missing data is inher-
ent to longitudinal designs like our own, especially when
physiological signals are recorded over multiple days [109].
The issue of unbalanced data was addressed in the statisti-
cal analysis (described below).

1.5 General Procedures

The present data were extracted from a larger ongoing
study that aims to examine the effects of neurofeedback
training (between-participants factor) on shooting perfor-
mance. Since our focus is on multilevel patterns of intra-
individual variability, we collapsed across training condi-
tions and focus on the VR shooting data. To examine the
potential effects of training on VR data, neurofeedback
training was added as a between-subject predictor (dummy
code, 0= control, 1=experimental) to the multilevel models.
Entry of the training variable did not significantly improve
model fit in any case (results are presented in Supplemen-
tary Materials, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TAFFC.2020.2995769). Thus, in accord with multi-
level modeling guidelines, the training predictor was
dropped from the models [110]. These findings suggest
unlikely effects of training on physiological response and
performance, and they validate our approach of collapsing
across training conditions. See the Supplemental Materials,
available online, for a description of the neurofeedback
training.

Participants visited the lab for seven sessions that were
days apart. On the first day, participants were familiarized
with the VR and physiological recording systems. They also

performed a thresholding shooting session that was used to
titrate the difficulty conditions to individual participants
(see below for more detail). On subsequent days, partici-
pants completed Session 1-6 such that they completed the
same VR shooting task every session, while CV physiology
was continuously recorded. The procedure of each session
was largely identical. Specifically, participants completed
two difficulty conditions of the VR shooting task whose
order was randomly counterbalanced across participants
and sessions. Before each difficulty condition, there was a
one-minute resting baseline while participants wore the VR
headset. Here, participants were asked to calmly attend to a
fixed dot at a central location of the screen while remaining
quiet and as still as possible. The low and high difficulty
conditions were each comprised of four blocks. Each block
contained 90 shooting trials (i.e., targets). This arrangement
yielded eight blocks (720 trials) per session. Before every
block, there were participant-determined break periods,
which ended when participants pressed the space bar. Par-
ticipants were asked to remain as still and quiet as possible
during the break periods. Shooting blocks then commenced
after a 3s, visually presented numerical countdown. The
average duration of break periods across both difficulty
conditions was 9.03s (s = 20.53s). The low and high diffi-
culty conditions had mean break durations of 8.29 (s =
13.34) and 9.77 (s = 25.76), respectively. Importantly, the
break period durations were uncorrelated with perfor-
mance and CV metrics (p>.05, results not presented).

After completing the entire shooting session, participants
were detached from the VR headset and physiological
equipment, and the experimental session ended. The next
session was scheduled by research assistants in person or
via email or phone; participants returned to complete the
same procedures described above. This was done until par-
ticipants completed all six sessions.

1.6 Physiological Recording

Electrocardiography (ECG) was continuously recorded at a
modified lead II configuration using disposable spot electro-
des on the thorax. ECG was collected during each session
using an auxiliary channel of a commercially-available

Fig. 2. Multilevel variability in the current study. Here, we link study elements to the conceptual aspects of our Multilevel Theory. At the Block level, we
examined changes between 90-trial blocks within a single shooting difficulty condition. The blocks did not appreciably differ in environmental
demands; thus, block-to-block variability reflected endogenously driven changes in physiology and behavior. At the Task level, we examined variabil-
ity that is driven by environmental or exogenous change. This involved investigating change in physiology from the baseline (BL) period across the
whole difficulty condition (i.e., cardiovascular reactivity), which encompasses all four blocks of a given difficulty condition. The task level also involved
changes between the low and high difficulty conditions with respect to: (1) the degree of baseline-to-condition CV reactivity, and (2) shooting perfor-
mance. The Session level examined average changes in physiology and performance across the six sessions. Session-related changes reflected
slower, tonic changes in neurophysiological function in response to diverse environmental and internal stimuli. Additional notes: Timescales are
approximate since the spacing of sessions and block durations were variable. *When examining baseline-to-condition differences in physiology, the
task level examined changes between a one-minute baseline and an eight-minute task condition.
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Biosemi ActiveTwo system (http://www.biosemi.com/
products.htm). Beat-by-beat BP was simultaneously recorded
using a commercially available Finapres Medical Systems
Portapres system (http://www.finapres.com). Here, two fin-
ger cuffs were placed on the non-dominant hand to acquire
values of both systolic and diastolic BP for each heartbeat.
Other physiological signals were recorded but not analyzed
in the current paper (see Supplemental Materials, available
online). A picture of the physiological and VR recording suite
is displayed in Fig. 3. All physiological, behavioral, and VR
game event data were synchronized using Lab Streaming
Layer (LSL) [111] and stored for offline analysis.

1.7 Shooting Task

The VR shooting task was a first-person marksmanship task
performed in a head-mounted display using a commercially
available HTC Vive (https://www.vive.com/us/product/
vive-virtual-reality-system/). Our particular simulation was
inspired by similar VR studies on marksmanship [10], [11],
but the particular design was novel and scripted by our
research team in the Unity game environment (https://
www.unity.com). The simulation mimicked a nine-station
shooting range in a daytime, desert environment. The nine
stations were sandbags arranged at three distinct vertical dis-
tances from the shooter and at three distinct horizontal posi-
tions, as shown in Fig. 3. Targets could appear at any one of
the nine stations, and the specific locations of the targets
were randomized across trials. Targets could be either ene-
mies or friends, and the order of target types was random-
ized across trials. Enemy targets were colored red and held
rifles that were raised toward the participant. Enemy targets
were programmed to shoot the player right before disappear-
ing, unless the participant successfully hit the target first.
That is, targets disappeared after successfully being hit by
the player. Friendly targets were blue and held their rifles
down vertically by the sides of their bodies. Friendly targets
never shot at the player. Using a virtual handgun and simu-
lated laser sight, participants were instructed to shoot the
enemy targets but refrain from shooting the friendly targets.
As mentioned above, each shooting block consisted of 90 tri-
als (i.e., targets), yielding 360 targets per difficulty condition
and 720 per session. For each difficulty condition, 90 percent
of targets were enemies and 10 percent were friends (i.e., 324
enemies, 36 friends).

As aforementioned, a thresholding session was performed
for each individual before the six experimental sessions [112].
Prior to the thresholding procedure, each participant became
familiar with experimental setup and completed practice trials
until they were comfortable with the task. The goal of the
thresholding sessionwas to individualize the level of difficulty
for both conditions. Low difficulty was defined as the target

exposure time (TET) that produced 90 percent shot accuracy
on enemy targets, and high difficulty was defined as the TET
that produced 50 percent shot accuracy on enemy targets. In
the low difficulty condition, TETs were randomly selected
from a Gaussian distribution with a mean of the TET corre-
sponding to 90 percent (s= .18s). In the high difficulty condi-
tion, the TETs were randomly selected from a similar
distribution with the 50 percent accuracy TET (s= .18s). The
inter-target interval (ITI)was preserved across difficulty levels,
in that it was randomly selected from Gaussian distribution
with am of 1.5s and s of 0.5s.

The durations of the blocks and difficulty conditions were
variable depending on how quickly participants shot at the
targets. Collapsing across conditions, the average duration of
a single block and task condition was 131.09s (s= 9.20s) and
512.88s (s= 66.69s), respectively. For low stress, the average
duration of a single block and condition was 143.48s (s=
12.97s) and 562.53s (s= 80.24s) , respectively. For, the average
duration of a single block and condition was 118.70s (s=
6.69s) and 463.23s (s= 56.30s), respectively.

1.8 Measures

All performance and physiological measures were computed
for each block (1–4) within the difficulty conditions (low and
high) of the VR shooting task. In the case of physiological met-
rics,measureswere additionally computed for the two baseline
periods. For every measure, this approach yielded multiple
scores for each difficulty condition and sessionwithin a partici-
pant. In the case of performance, each subject would ideally
have eight scores per session (four scores for each difficulty
condition) and ten scores for each physiological metric (inclu-
sive of baseline periods). However, some participants had less
scores due to missing data caused by hardware failure and
excessive noise in the physiological data. Taking this into con-
sideration, participants had an average of 7.56 (s = .88) scores
for performance and an average of 9.47 (s = 1.06) scores for
physiologicalmetrics.

1.8.1 Behavioral Measures

Shooting Performance. Our primary metric of shooting per-
formance was marksmanship M, defined as the proportion
of enemy targets correctly hit: M ¼ H=T , where, H is the
number of enemy targets hit and T is total number enemy
targets per block.

Based on prior work, response time (RT; milliseconds)
may elucidate the cognitive functions and strategies (e.g.,
attention, speed-accuracy tradeoff) underlying marksman-
ship. As such, we measured shot response time (RT) as the
delay in milliseconds between target onset and the depres-
sion of the trigger on the controller. RTs for each target were
averaged for each block to compute mean RT. As an addi-
tional metric of performance, we indexed RT variability with
the coefficient of variation (CV; unit-free): sðRT Þ=mðRT Þ. CV
adjusts RT variability for themean RT because prior research
has shown that statistical relations involving s of RT can be
confounded bym [113].

1.8.2 CV Physiology

ECG signals were pre-processed in Python using the Biosppy
toolbox [114]. Once the ECG signal was cleaned, a Pan-

Fig. 3. On the left, we show participant outfitted with the physiological
and VR recording system. On the right, we show a screenshot from the
VR shooting task.
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Tompkins algorithm was used to detect R-spikes [115]. Inter-
beat Intervals (IBI) were computed as the time between con-
secutive R-spikes in milliseconds. IBIs were classified as
abnormal if they were less than 300 ms or greater than 2000
ms, or if the IBI was more than 30 percent different than the
preceding interval [116]. These abnormal IBIs were removed
from the ECG record and interpolated with a cubic spline
function [117]. Across all participants, this procedure affected
less than 2 percent of IBIs in the ECG records. Corrected IBIs
were then averaged per each block.

Heart rate variability (HRV) was computed with two well-
established time-domain metrics reflecting autonomic ner-
vous system influence on cardiac chronotropy [118]. First,
SDNN (standard deviation of normal IBIs) was computed
as the overall SD of corrected IBIs across the time series
within each block. SDNN is believed to reflect a mixture of
sympathetic and parasympathetic (or vagal) influences on
cardiac chronotropy. Second, we computed the root mean
square of successive differences (RMSSD) in the corrected
IBI time of each block. RMSSD is an established metric of
vagally mediated HRV, thus reflecting cardiac vagal influ-
ence [119]. Both HRVmetrics were transformed with a natu-
ral logarithm to normalize their distributions for statistical
analysis. These transformed metrics are denoted as ln
(SDNN) and ln(RMSSD) in the Results.

Blood pressure (BP) was computed from the Portapres
pressure signal in Python using a standard peak and trough
detection algorithm. The pressure (millimeters of mercury;
mmHg) values for each neighboring peak and trough in a
cardiac cycle served to index beat-to-beat values of systolic
(SBP) and diastolic blood pressure (DBP), respectively.
These scores were then averaged to derive pressure values
for each block.

1.9 Statistical Analysis

Hypotheses were tested with multilevel modeling, which is
effective in disambiguating inter- and intra-individual vari-
ability [110]. Each model included a random intercept of
participant in order to account for inter-individual variabil-
ity, including inter-individual differences in initial perfor-
mance and physiology scores due to prior VR experience
[120]. This approach therefore allowed for a precise test of
intra-individual associations involving physiology and per-
formance. Multilevel modeling is also appropriate for the
current data, because, unlike many other regression meth-
ods, they are robust to unbalanced data resulting from miss-
ing observations [121].

To test Hypotheses 1-3, different models (with the same
predictors) were used so that each performance and physio-
logical metric was a dependent measure in its ownmodel. See
Supplemental Materials, available online, for the specific
structure of thesemodels. At the individual level (Level-1), we
entered the effects of Block (continuous predictor; 1-4), Task
Difficulty (dummy variable; Low= 1, High=2) and Session
(continuous predictor; 1–6). For the models predicting physi-
ology, Block was coded 0–4, to accommodate baseline values
(Block=0) and analysis of physiological reactivity from rest.

In order to test the intra-individual associations between
physiology and performance (Hypothesis 4), two-level
random intercept models were conducted with the same

general form as above. To examine block-to-block associa-
tions, each block-level physiological variable was entered as
a predictor of performance as the dependent measure. Mod-
els were conducted for each performance metric separately
in order to avoid issues with multicollinearity. Difficulty
condition, block, and session codes were not entered as pre-
dictors so that we could be blind to condition. The same
approach was taken for task-level relations except that block
scores were averaged for each physiological metric, and
then corresponding baseline scores were subtracted from
the task mean (to index reactivity). For session-level rela-
tions, the same procedure was carried out, except that we
examined session means for each metric. That is, in a sepa-
rate model for each physiological variable, we predicted
session-level performance with session-level CV activity.

Models were built in accord with guidelines of Kreft and
de Leuuw [110], which are detailed in the Supplemental
Materials, available online. For all models, continuous vari-
ables were group-mean centered, and significant interac-
tions were probed with simple slope analysis [122]. In order
to bolster statistical conclusions, standard errors and confi-
dence intervals were bootstrapped (5,000 resamples) [123].
Model fits were compared with likelihood ratio tests. We
report unstandardized beta coefficients (B) in order to facili-
tate the interpretation of each effect’s practical significance.
All effects were tested with two-tailed 95 percent confidence
intervals (bootstrapped) and p-values.

2 RESULTS

2.1 Hypothesis 1: Task-to-Task Changes

2.1.1 Hypothesis 1a: Shooting Performance Will be

Worse During the High Difficulty Relative to the

Low Difficulty Condition

Speaking to the efficacy of the shooting difficulty manipula-
tion, there was a significant fixed effect of Difficulty on
marksmanship (B = -.30, SE = .007, 95 % CI [-.32, -.29], p <
.05). That is, participants hit 30 percent less enemy targets
during the high relative to the low difficulty condition. Fig. 4
displays each performancemetric and theirmean differences
between difficulty conditions. The decline in marksmanship
was accompanied by an unsurprising 71ms decrease in RT
during high relative to low difficulty, as indicated by the sig-
nificant fixed effect of Difficulty on mean RT (B = -70.79, SE
= 2.80, 95 % CI [-76.21, -65.27], p < .05). Also paralleling the
decrease in marksmanship, the high difficulty condition was
associated with an increase in the coefficient of variation, a
metric reflecting RT variability (Fixed effect of Difficulty:B =
.56, SE = .07, 95% CI [.42, .70], p < .05). Taken together,
when the target exposure times were faster (i.e., the task was
more difficult), marksmanship worsened and RTs became
both shorter andmore unstable.

2.1.2 Hypothesis 1b: Both Difficulty Conditions Will

Elicit Increases in CV Activation From Baseline

Across Blocks

In the model examining IBI, there was a significant linear
effect of Block (B = -6.73, SE = 1.38, 95% CI [-9.39, -4.02],
p < .05), which indicates decreases in IBI from baseline
across the shooting blocks. This pattern is depicted in Fig. 5
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and indicates that this IBI decrease was similar between dif-
ficulty conditions. Consistently, the Block X Difficulty inter-
actions was not significant (B = -1.20, SE = 2.71, 95% CI
[-6.46, 4.11], p > .05).

When examining lnðSDNNÞ, there was a significant qua-
dratic (B = .04, SE = .006, 95 % CI [.03, .05], p < .05) and a
small cubic (B = -.01, SE = .006, 95 % CI [-.02, -.0009], p <
.05) effect for Block. Importantly, there was a significant
interaction between the linear term of Block and Difficulty
(B = -.03, SE = .01, 95% CI [-.06, -.004], p < .05). Simple
slopes revealed that there was no significant linear change
in lnðSDNNÞ for the low difficulty condition (B = -.005, SE =
.02, 95% CI [-.05, .04], p > .05). During the high difficulty
condition, there was a decrease in lnðSDNNÞ but the magni-
tude of the slope was not different from zero (B = -.04, SE =
.02, 95% CI [-.08, .007], p > .05). Given that the simple
slopes were not significant, we do not further interpret the
Block X Difficulty interaction. In sum, reactivity in
lnðSDNNÞ can be characterized as a curvilinear decrease
from baseline across the blocks (reflecting quadratic effect),
such that the decrease is comparable between conditions
(see Fig. 5B). This pattern of reactivity is somewhat consis-
tent with our prediction of a decline in HRV in response to
the shooting task; however, it was surprising that this was a
nonlinear rather than a linear decline.

We next to turn to changes in lnðRMSSDÞ. As indicated
by the significant linear effect (B = -.03, SE = .008, 95% CI
[-.05, -.02], p < .05), it can be said that lnðRMSSDÞ linearly
decreased across the shooting blocks. The magnitude of the
decrease was not different between conditions, as seen in

Fig. 5C and based on the non-significant Block X Difficulty
interaction (B = -.02, SE = .02, 95% CI [-.05, .007], p > .05).

In the model predicting systolic blood pressure (SBP),
there was a significant linear effect of Block (B = 1.22, SE =
.31, 95% CI [.61, 1.82], p < .05). As can be seen in Fig. 5D,
SBP increased across the shooting blocks equally for both
difficulty conditions. Supporting the latter point, there was
no significant Block X Difficulty interaction (B = -.18, SE =
.63, 95% CI [-1.43, 1.03], p > .05). The pattern of change in
diastolic blood pressure (DBP) was the same as that of SBP,
such that there was only a linear effect of Block (B = 1.10,
SE = .28, 95% CI [.56, 1.64], p < .05). As above, the Block X
Difficulty interaction (B = -.08, SE = .54, 95% CI [-.19, .95],
p > .05) was not significant and was therefore dropped
from the model. See Fig. 5E for the decrease in DBP across
both shooting conditions. The nonlinear effects in the above
models have bearing on block-to-block effects, which are
discussed later.

Fig. 4. Shooting performance metrics by block and difficulty condition
(averaged across sessions). Within-participant means and standard
errors are depicted to purely reflect intra-individual patterns apart from
inter-individual variability [124]. Proportion hit (i.e., marksmanship) refers
to the total number of enemy targets hit out of total number enemies per
block. Mean RT (in milliseconds) refers to the m of response times per
block. Coeff. of var. (unit-free) refers to s of response time adjusted by m
of response time per block and is a metric of trial-to-trial response time
variability. The black lines depict the low difficulty condition, and the red
lines depict the high difficulty condition.

Fig. 5. Cardiovascular metrics by block and difficulty condition (averaged
across sessions). Within-participant means and standard errors are
depicted to purely reflect intra-individual patterns apart from inter-individ-
ual variability [124]. IBI refers to interbeat interval (in milliseconds).
LnSDNN refers to the natural logarithm (ln) of the standard deviation of
normalized interbeat intervals (in natural logarithm of milliseconds).
LnRMSSD refers to the natural logarithm (ln) of the root mean square of
successive differences in interbeat intervals (in natural logarithm of milli-
seconds). SBP refers to systolic blood pressure in millimeters of mer-
cury. DBP refers to diastolic blood pressure in millimeters of mercury.
The black lines depict the low difficulty condition, and the red lines depict
the high difficulty condition.
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2.1.3 Hypothesis 1c: CV Activation Will be Stronger for

the High versus Low Difficult Shooting Task

As reported above, there was no strong evidence that the pat-
tern of block-related changes in CV metrics differed between
the difficulty conditions. This pattern can be seen in Figs. 5A,
5B, 5C, 5D, and 5E. Although the interaction between Block
and Difficulty was significant in the model testing ln(SDNN),
the simple effects of Block on ln(SDNN) at low and high diffi-
culty separately were not significant. Thus, they are not inter-
preted further.

2.2 Hypothesis 2: Block-to-Block Changes

2.2.1 Hypothesis 2a: There Will be Changes in

Performance Metrics Between the Shooting

Blocks

We tested the magnitude of performance shifts between the
shooting blocks with the fixed linear and polynomial effects
of Block. For marksmanship (i.e., proportion of enemy targets
hit), there was a significant linear effect of Block (B = -.02, SE
= .01, 95%CI [-.04, -.0008], p < .05), which indicates an overall
increase inmarksmanship across the blocks (Fig. 4A). We also
detected significant quadratic (B = -.009, SE = .003, 95% CI
[-.02, -.002], p < .05) and cubic (B = .02, SE = .005, 95% CI
[.009, .028], p < .05) effects of Block. Based on these findings,
there are significant block-to-block shifts in marksmanship
during both difficulty conditions. Confirming the latter point,
none of the interactions between the Block and Difficulty
were significant (results not presented for clarity).

Formean RT, therewas a significant linear (B = 23.55, SE =
5.72, 95%CI [12.39, 34.74], p < .05) and cubic (B = -6.21, SE =
2.01, 95% CI [-10.15, -2.32], p < .05) effect of Block. In addi-
tion, there was a significant Block XDifficulty interaction (B =
-7.60, SE = 2.60, 95% CI [-12.83, -2.56], p < .05). As indicated
by simple slope analysis and by Fig. 4B, RT decreased across
blocks for the low difficulty condition (B = 15.95, SE = 4.43,
95% CI [7.23, 24.80], p < .05) but did not significantly change
across blocks during the high difficulty condition (B = 8.36,
SE = 4.44, 95% CI [-.54, 16.85], p > .05). Although block-
related changes in mean RT could be characterized as cubic
for both difficulty conditions, low difficulty was associated

with a stronger linear increase in mean RT. Fig. 4 suggests
that marksmanship positively correlated with mean RT at the
block level. This is supported by a separate random intercept
model testing mean RT as a predictor of proportion of hits
(B = .002, SE = .0001, 95%CI [.0017, .0022], p < .05).

When examining the coefficient of variation, there was a
linear effect of Block (B = .44, SE = .10, 95% CI [.24, .64], p <
.05) that was qualified by a significant cubic term (B = -.25, SE
= .05, 95% CI [-.34, -.16], p < .05). As seen in Fig. 4C, there
were notable block-to-block changes in the coefficient of varia-
tion for both difficulty conditions. Consistent with our inter-
pretation, there were no interactions between Block and
Difficulty in the prediction of the coefficient of variation
(results not presented).

2.2.2 Hypothesis 2b: Over and Above Linear Changes

(Representing Task-Related CV Activation), CV

Metrics Will Exhibit Nonlinear Changes Across

Shooting Blocks

All effects of Block are reported under Hypothesis 1b. In
this section, we highlight statistically significant curvilinear
effects of Block because (unlike linear Block effects) the cur-
vilinear effects better speak to endogenously driven block-
to-block variability. Only ln(SDNN) exhibited a statistically
significant curvilinear term. As depicted in Fig. 5B), there
were significant quadratic (B = .04, SE = .006, 95% CI [.03,
.05], p < .05) and cubic (B = -.01, SE = .006, 95% CI [-.02,
-.0009], p < .05) effects of Block. All other CV metrics exhib-
ited strictly linear change across blocks (see above).

2.3 Hypothesis 3: Session-to-Session Changes

2.3.1 Hypothesis 3a: Performance Will Improve Across

Sessions

As hypothesized, there was a linear change in marksman-
ship across sessions (fixed effect of Session: B = .01, SE =
.005, 95% CI [.002, .02], p < .05). Improved prediction of
marksmanship was afforded by the addition of both qua-
dratic (B = -.007, SE = .002, 95% CI [-.01, -.004], p < .05)
and cubic (B = .002, SE = .001, 95% CI [.0001, .004], p < .05)
terms of Session, although these effects were small. Despite
significant polynomial effects, the change in marksmanship
can best be characterized as a linear increase across sessions,
since the effect size of the linear term is notably larger than
that of the polynomial terms. See Fig. 6A. To further clarify
the main effects of session, we also plotted the session-level
averages by session number in Fig. 6. Fig. 6 suggests that
marksmanship negatively correlated with mean RT across
sessions. This is supported by a separate random intercept
model that tested mean RT as a predictor of proportion of
hits (B = -.001, SE = .0003, 95% CI [-.002, -.0007], p < .05).

In the model predicting mean RT, there was a significant
linear effect of Session (B = -3.49, SE = .90, 95% CI [-5.30,
-1.78], p < .05). This result indicates that, as predicted,
mean RT declined across sessions. The linear effect was
qualified by a quadratic term of Session (B = 2.18, SE = .66,
95% CI [.92, 3.49], p < .05). Suggested by visual inspection
(Fig. 6B), much of the decline in RT occurred from session 1
to session 2, with this relationship flattening across the rest
of the sessions.

Fig. 6. Mean performance by session. Here, we present session-level
means that were computed by averaging metrics across all blocks, diffi-
culty conditions, and participants for each session. Within-participant
means and standard errors are depicted to purely reflect intra-individual
patterns apart from inter-individual variability [124]. Proportion hit (i.e.,
marksmanship) refers to the total number of enemy targets hit out of total
number enemies per block. Mean RT (in milliseconds) refers to the m of
response times per block. Coeff. of var. (unit-free) refers to s of
response time adjusted by m of response time per block and is a metric
of trial-to-trial response time variability.
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For CV, there was a significant linear (B = .12, SE = .02,
95% CI [.07, .16], p < .05) and quadratic (B = -.03, SE = .02,
95% CI [-.07, -.001], p < .05) effect of Session. Similar to the
findings formarksmanship, the change in CV across sessions
can best be characterized as a linear increase. This inference
is based on the notably larger effect size of the linear versus
the cubic term and based on visual inspection of Fig. 6C.

2.3.2 Hypothesis 3b: CV Activation Will Decrease

Across Sessions

In the model testing IBI, there was a significant quadratic
term of Session (B = 1.97, SE = .88, 95% CI [.21, 3.67], p <
.05). In Fig. 7A, it is apparent that the change in IBI across
session could be characterized as notably quadratic.

Session-related changes in ln(SDNN) could be character-
ized as a strictly linear increase, as indicated by the fixed
effect of Session (B = .02, SE = .006, 95% CI [.005, .03], p <
.05). Although the pattern of change for ln(SDNN) is graphi-
cally similar to that of ln(RMSSD) (Figs. 7B and 7C), session-
related changes in ln(RMSSD) could be characterized as lin-
ear (B = .04, SE = .02, 95% CI [.004, .07], p < .05), quadratic
(B = .01, SE = .005, 95% CI [.005, .02], p < .05), and cubic
(B = -.008, SE = .003, 95% CI [-.01, .-.002], p < .05). The pat-
terns of session-related change for systolic (SBP) and dia-
stolic (DBP) blood pressure were highly similar to one
another (Figs. 7D and 7E). Specifically, there was a signifi-
cant negative linear effect of Session on both SBP (B = -1.22,
SE = .28, 95% CI [-1.74, -.68], p < .05) and DBP (B = -1.23,
SE = .24, 95% CI [-1.72, -.77], p < .05). However, both linear
effects were qualified by significant quadratic terms (SBP: B
= .92, SE = .20, 95% CI [.53, 1.32], p < .05; DBP: B = .59, SE
= .18, 95% CI [.23, .94], p < .05).

2.4 Hypothesis 4: Direct Intra-Individual
Associations Between Physiology and
Performance

2.4.1 Task-to-Task

Ln(RMSSD) reactivity scores were significantly related to
marksmanship (B = .81, SE = .31, 95% CI [.21, 1.39], p <
.05), such that task conditions with weaker decreases in ln
(RMSSD) from baseline to task had relatively higher marks-
manship. Ln(RMSSD) reactivity was also significantly
related to mean RT (B = 200.16, SE = 92.68, 95% CI [19.70,
378.90], p < .05). Here, task conditions with weaker

decreases in ln(RMSSD) had relatively higher mean RT.
Other task-to-task relations between physiology and perfor-
mance were not statistically significant and appear in the
Supplemental Materials, available online.

2.4.2 Block-to-Block

There was a significant relation between IBI and mean RT
(B = .17, SE = .05, 95% CI [.07, .26], p < .05), suggesting
that block-to-block increases in IBI predicted concomitant
increases in mean RT. Similarly, lnðSDNNÞ was related to
marksmanship (B = .09, SE = .03, 95% CI [.02, .15], p <
.05), mean RT (B = 43.42, SE = 8.72, 95% CI [26.12, 60.37],
p < .05), and the coefficient of variation (B = -.63, SE = .16,
95% CI [-.95, -.32], p < .05). Here, increases in lnðSDNNÞ
predicted concomitant augmentations in accuracy and
mean RT, but declines in RT variability. The pattern of sig-
nificant correlations were the same for lnðRMSSDÞ. That is,
increases in lnðRMSSDÞ also predicted increases in both
marksmanship (B = .06, SE = .03, 95% CI [.004, .17], p <
.05) and mean RT (B = 33.18, SE = 7.67, 95% CI [17.83,
48.71], p < .05), as well as declines in the coefficient of vari-
ation (B = -.57, SE = .14, 95% CI [-.85, -.30], p < .05). Other
effects were not statistically significant (see Supplemental
Materials, available online)

2.4.3 Session-to-Session

Here, we examined session-level mean scores of each per-
formance metric as a function of session-level mean scores
of each physiological metric. None of the associations were
statistically significant; they are hence presented in the Sup-
plemental Materials, available online.

3 DISCUSSION

This is among the first studies to examine joint patterns of
intra-individual variability in CV physiology and human
performance, both within and across multiple daily study
sessions. The present findings largely confirm the heuristic
value of our multilevel model of performance, where the
task, block, and session levels galvanize unique neurobio-
logical mechanisms and performance-relevant states. Con-
sistently, we found that the joint patterns of CV physiology
and performance (as well as their direct correlations) dif-
fered depending on the level of analysis. At the task level,

Fig. 7. Mean cardiovascular metrics by session. Here, we present session-level means that were computed by averaging metrics across all blocks,
difficulty conditions, and participants for each session. Within-participant means and standard errors are depicted to purely reflect intra-individual pat-
terns apart from inter-individual variability [124]. IBI refers to interbeat interval (in milliseconds). LnSDNN refers to the natural logarithm (ln) of the
standard deviation of normalized interbeat intervals (in natural logarithm of milliseconds). LnRMSSD refers to the natural logarithm (ln) of the root
mean square of successive differences in interbeat intervals (in natural logarithm of milliseconds). SBP refers to systolic blood pressure in millimeters
of mercury. DBP refers to diastolic blood pressure in millimeters of mercury.

SPANGLER ET AL.: MULTILEVEL LONGITUDINAL ANALYSIS OF SHOOTING PERFORMANCE AS A FUNCTION OF STRESS AND... 657



we found large decreases in both marksmanship and mean
RT—as well as increases in RT variability—from the low to
high difficulty condition. The performance changes were
not accompanied by changes in CV physiology between dif-
ficulty conditions. Rather, there was a similarly robust pat-
tern of CV activation from baseline to task for both shooting
conditions. At the block level, there were cyclical, intermit-
tent increases in marksmanship across blocks that were
accompanied by increases in mean RT and decreases in RT
variability. Unlike the task level, these performance changes
were paralleled by block-related changes in physiology,
specifically by nonlinear decreases in cardiac autonomic
regulation (i.e., SDNN) across blocks. At the session level, a
very different pattern of performance emerged where there
were increases in marksmanship, decreases in mean RT,
and increases in RT variability across days. At the same
time, SDNN linearly increased across sessions and BP met-
rics showed large attenuation between the first two sessions;
other CV metrics showed unanticipated patterns of change
across sessions. Lastly, of all the CV metrics and levels of
analysis, only changes in HRV at the task and block levels
were directly correlated with simultaneous changes in
marksmanship.

Taken together, the findings imply that CV metrics show
diverse patterns of intra-individual change depending on
the timescale of change and whether such change is driven
by exogenous versus endogenous stimuli. We next describe
how performance and physiological variability reflect dif-
ferent psychophysiological mechanisms at each level of
analysis. We then discuss their implications for future affec-
tive computing systems (e.g., VR training systems).

3.1 Hypothesis 1: Task-to-Task

We increased task difficulty by shortening the target expo-
sure time. In line with hypotheses, the high difficulty condi-
tion was associated with relatively worse marksmanship.
This effect was accompanied by shorter mean RT during
high relative to low difficulty, which is likely a consequence
of the shorter target exposures. Importantly, trial-to-trial RT
variability was also increased during high difficulty, sug-
gesting increased demands on the effortful control of atten-
tion [105], [125]. Together, these findings suggest that the
high difficulty condition required more effort, thus more
strongly taxing energetic and perhaps attentional resources
[43]. These effects are also consistent with a speed-accuracy
tradeoff where participants had to shoot faster at the briefer
targets during high difficulty, thus leading to worse marks-
manship [104].

Despite condition differences in performance, it is likely
that both difficulty conditions elicited substantial shifts in
underlying brain state compared to baseline, such that ener-
getic resources were mobilized for on-task attention [57],
[64]. Indeed, this notion was supported by the statistically
significant linear increases in CV activation (increases in BP
and decreases in IBI from baseline across blocks) for both dif-
ficulty conditions. These changes were hypothesized and are
generally consistent with a well-established pattern of
increased CV activation in response to stress. Such activation
putatively facilitatesmental effort and the activation ofmeta-
bolic resources for motor action [63], [64], [108]. In line with

others, the above patterns of CV activation were in part
mediated by the ANS, specifically by cardiac vagal (para-
sympathetic) withdrawal [68], [126]. The latter inference is
supported by the linear decreases in RMSSD from baseline
across the entire task condition (i.e., across all blocks). The
patternwas detected for both difficulty conditions. A sympa-
thetic involvement in shortening IBI and increasing vasocon-
striction (partly indexed by BP) is also likely responsible for
the observed physiological response [127]. However, pure
sympatheticmetrics cannot be inferred from the presentmet-
rics. It should be noted that SDNN (broadband index of
HRV) showed curvilinear rather than linear decreases in
response to the shooting conditions. The differential pattern
between HRV metrics may reflect the additional contribu-
tions of sympathetic nervous system and lower frequency
vagal influences to SDNN [128].

Contrary to predictions, performance impairment during
the high versus low difficulty conditions was not accompa-
nied by a robust increase in CV reactivity. This finding is
contrary to previous studies that report greater CV activa-
tion in response to higher task difficulty and load [106],
[107]. One reason for the null finding could be that the high
difficulty condition was not sufficiently stressful to elicit
robust cardiovascular activation compared to the low diffi-
culty condition. Indeed, others have noted that cardiac indi-
ces such as HRV are only sensitive to very large changes in
load [129]. In addition, there are notable individual differen-
ces in reactivity to stress documented in the literature, sug-
gesting that task-related differences in CV activation may
be more prominent for some participants [130]. However,
we were statistically underpowered at the participant-level
to examine such effects. Future studies should investigate
this issue more closely.

3.2 Hypothesis 2: Block-to-Block

We also examined variability between chunks of trials on
the same task in order to probe endogenously driven fluctu-
ations in performance and their CV concomitants. Confirm-
ing our predictions, there was significant block-to-block
oscillations in shooting marksmanship as well as RT met-
rics. These oscillations were reflected as cubic changes in
marksmanship, mean RT, and trial-to-trial RT variability.
Since blocks were nearly identical in terms of external
demands (i.e., the timing and nature of stimuli did not nota-
bly change between blocks), it is likely that the oscillations
in performance here (<0.1Hz) reflect endogenous oscilla-
tions in attention that have been noted in prior work [74].

Importantly, the block-to-block changes in the present
study may partially represent a speed-accuracy tradeoff
where participants were less cautious responders on some
blocks. [104]. Importantly, block-related decreases in accu-
racy may also be owed to a less controlled mode of respond-
ing, which is consistent with the fact that RT variability
increased on blocks when accuracy lowered [43], [78], [105],
[131], [132], [133]. That is, high levels of RT variability are
believed to reflect a relative lack of control of attention
whereby energetic resources are perhaps not appropriately
utilized to maintain focus and suppress endogenous dis-
tractors (task-unrelated thought) [105], [132], [134]. Our
inference is consistent with the literature where dorsal
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attention networks implicated in attentional control are anti-
correlated with block-to-block oscillations in default mode
activity [57], [74]. In our findings, blocks with worse marks-
manship but high RT variability feasibly reflect the phase of
this oscillation when default mode activity is on and atten-
tional control is off. Attentional control being off in turn
yields a relatively impulsive response style (i.e., fast RTs
and worse marksmanship).

The cubic changes in performance above were accompa-
nied by nonlinear changes in SDNN across blocks; here,
SDNN increased after an initial decrease from baseline. Con-
sistent with prior studies, this curvilinear decrease likely
reflected an endogenous habituation response to the external
task [66], [85]. Our inference is supported by the lack of a
plausible exogenous mechanisms that would account for
cubic shifts in physiology between nearly identical blocks.
We also detected linear increases in CV activation and
decreases in vagal influence (i.e., RMSSD) across the blocks.
As discussed above, however, the linear changes CV reactiv-
ity were probably exogenously evoked by the shooting task.

We should note that our attempt to linearly decompose
exogenous and endogenous influences in the CV response is
heuristic. Exogenous and endogenous factorsmay interact in
at least two ways within the present study. First, nonlinear
responses reflecting habituation necessarily require some
prolonged external stimulus. Second, in some cases, contin-
ued linear change in CV activity after the initial stress reac-
tion may be affected by thoughts (e.g., worrisome thoughts)
about the stressor [135], [136]. Despite such caveats, it is still
likely—based on the literature—that linear and curvilinear
CV responses across block more strongly reflect exogenous
and endogenous factors, respectively. Future work should
refine methods to more precisely decompose these influence
on physiological variability.

3.3 Hypothesis 3: Session-to-Session

As predicted, marksmanship improved across days. In paral-
lel, there were decreases in mean RT and augmentations in
RT variability across the sessions. These changes were largely
linear but also had curvilinear components. Improvedmarks-
manship at later sessions is consistent with a basic learning
effect, where participants became more skilled at the task
with increased practice [90], [91]. Importantly, RT decreased
across the sessions as marksmanship improved, which is a
very different pattern thanwhatwas observed at the task level
and, to some extent, the block level (i.e., mean RT increased
with improved marksmanship). Also unlike the task and
block levels, session-to-session increases in marksmanship
were paralleledwith increases rather thandecreases inRT vari-
ability. Taking these results together, improved marksman-
ship at the task and block levels appeared to reflect effective
cognitive control over impulsive responding. In contrast,
marksmanship improvements across sessions (accompanied
by mean RT decreases and RT variability increases) appear to
reflect the development of a more efficient mode of respond-
ing [137]. That is, the increased trial-to-trial RT variability at
later sessions is consistent with a reduction in the top-down
control of attention, where a more bottom-up or automatic
mode of cognitive processing accompanies superior perfor-
mance onwell-learned tasks. [138].

Hypotheses pertaining to decreases in average CV activa-
tion across sessions were not universally supported across
metrics. BP robustly decreased across sessions, although
this decrease was predominantly mediated by heavy
decreases from session 1 to session 2, with relatively con-
stant levels of BP for the remainder of the sessions. This
finding is consistent with the rapid nature of physiological
habituation to mental stress and/or negative emotion docu-
mented in the literature [139]. SDNN appeared to show a
progressive increase across the sessions, perhaps due to
habituation-related augmentations in low-frequency vagal
regulation [128]. Unlike RMSSD, SDNN reflects low-fre-
quency oscillations in IBI that have been attributed to auto-
nomically mediated baroreflex function, which serves to
regulate BP [140]. Such putative increases in baroreflex
function (vis-a-vis increases in SDNN) could support the
down-regulation of BP over sessions [141]. Further research
is needed to directly test this possibility.

It should be noted that session-to-session changes in CV
physiology pertained to mean physiology across all task
blocks and baselines. Differences in reactivity between ses-
sions were not statistically significant. Thus, habituation
effects appear to affect more tonic (i.e., mean) levels of car-
diovascular activation across baseline and performance,
such that participants might have felt more acclimated to
the experimental setting at the second session [100], [103].
Such lowered levels of stress and/or negative emotion may
have in turn led to less competition for neural resources
during the task, thereby accounting for the linear improve-
ment in performance over sessions [59].

Interestingly, the patterns of change in the other physio-
logical metrics (IBI, RMSSD, SDNN) were more complex, in
that there were nonlinear trajectories of change across ses-
sions. Such complex patterns suggest involvement of endo-
crinemechanisms. Unlike task and block-related shifts in CV
responses, day-to-day shifts are slow enough to implicate
hormonal chemical signaling. Relative to the neural control
of the ANS, the chemicalmessaging of the endocrine systems
must affect organs via the bloodstream, thus making endo-
crine control of CV activity much slower and more diffuse
thanANSmodulation [93]. As such, with day-to-day fluctua-
tions in physiology, there is potential for many interactions
between varied organ systems and autonomic feedback
mechanisms, thereby resulting in potentially complex pat-
terns of change [142], [143]. Such endocrine-mediated
changes likely encompass important exogenous (e.g., daily
temperature, stressful life events) factors and endogenous
oscillations in biological function (uterine cycle) that were
not directly measured in this study [144]. Taken together, the
session effects in the present study are at oddswith prior lon-
gitudinal studies that emphasize the test-retest reliability of
cardiovascular measures [98], [99]. Unlike these prior stud-
ies, we showed that cardiovascular measures may show sig-
nificant variability across daily testing sessions.

3.4 Hypothesis 4: Direct Associations Between CV
Physiology and Performance

The fact that performance and CV physiology both exhib-
ited statistically significant changes across blocks and ses-
sions implies that there should be direct associations
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between performance and CV measures at these levels.
However, when directly testing relations between CV and
performance metrics, only a few statistically significant
effects emerged at the task and block levels. At the task
level, the task condition with less vagal withdrawal (weaker
RMSSD decreases from rest to the task condition) had rela-
tively better marksmanship and longer mean RT. In other
words, increased vagal outflow during the task was associ-
ated with better performance, which is consistent with other
reports [145]. A similar pattern of relationships were
detected at the block level where blocks with increased
HRV (both SDNN and RMSSD) had increased marksman-
ship and RT as well as decreased RT variability. Although
SDNN is affected by sympathetic activity, it shows relations
with performance that strongly resemble analogous associa-
tions involving RMSSD (pure vagal metric). This suggests
that the aforementioned SDNN and RMSSD effects are
reflective of vagal activity.

The relations between HRV and performance metrics at
both the task and block are consistent with theorized links
between intra-individual increases in vagal activity and aug-
mentations in PFC activity to support the context-appropriate,
top-down control of behavior, cognition, and emotion [84].
Consistently, higher levels of vagal activity (i.e., vagally medi-
ated HRV) have been linked to the superior control over both
exogenous and endogenous emotions and cognitive processes
(e.g., worrisome thoughts) thatwould otherwise impair perfor-
mance [84], [146]. Through similar mechanisms, increases in
vagal activity (higher HRV) on some blocks may have sup-
ported an adaptive increase in RT to improve marksmanship
(i.e., speed-accuracy tradeoff favoring accuracy) on the same
blocks. Blockswith higherHRV could seemingly reflect the on-
phase of the dorsal attention network (and concomitant off-
phase for default mode) of the < 0.1 Hz oscillation described
above. Some prior work has certainly tied the neural hubs of
these networks to HRV, but additional research is required to
directly test the latter inferences [147], [148]. At the task level,
relatively greater vagal outflow (less vagal withdrawal) likely
reflects similar top-down control mechanisms underlying
adaptive control of behavior, thereby leading to a cautious
strategy that promoted highermarksmanship [84], [106].

Positive block-to-block associations between HRV and
mean RT were paralleled by an unsurprising positive asso-
ciation between IBI and mean RT. The latter effect appears
to index a vagally mediated lengthening of IBI that supports
a cautious strategy. Indeed, vagal slowing of the heart, man-
ifested as longer IBIs, is a well-documented and incredibly
important for inhibiting motor action in accord with task
goals [149]. IBI findings at the task level may implicate simi-
lar motor inhibitory processes, as they were in the same
direction but not statistically significant.

The findings above underscore the importance of measur-
ing HRV to estimate shifts in performance during a stressful,
real-world task. Our findings here thus extend on a rich
body of applied work using HRV to track performance
within operational settings [129], [150]. More specifically, we
add to thiswork by showing that, even under a constant level
of difficulty, within-task (block-to-block) shifts in HRV can
help index endogenous shifts in performance.

In sum, the complexity of the present response patterns
are consistent with the similarly complex interactions

between autonomic, skeletal, brain, and endocrine systems
that support adaptive behavior. In light of the present
results and our theoretical model, it is unlikely that a given
CVmetric such as HRV indexes the same psychological con-
struct (e.g., workload) at all levels of variability (task, block,
session). The latter notion is important for researchers who
use CV physiology to estimate specific performance-rele-
vant states in VR training and similar computing applica-
tions. That is, simply adding a heart rate measurement to
index stress of fatigue across training sessions may be a
more nuanced affair than some researchers believe.

3.5 Limitations and Future Directions

The present study has a number of limitations. First, there
were missing session data that may have affected the statis-
tical conclusions presented here. We attempted to alleviate
this issue with multilevel modeling which is less sensitive
to unbalanced data compared to traditional regression
approaches. Second, we did not control for a number of var-
iables such as sleep, stressful life events, or uterine cycle
phase that may have driven the observed patterns of intra-
individual variability. Although future research should
examine these explanatory factors more closely, the goal of
the present study was to depict the rich variability in behav-
ior and physiology that are driven by diverse stimuli. We
thought this initial wide scope was necessary to depict the
amount of variability that researchers in affective comput-
ing spaces could eventually leverage. This is in contrast to
artificially constraining such variability through stringent
experimental and statistical controls. That said, future work
should more systematically examine how different endoge-
nous and exogenous stimuli interact to affect CV response
across both short and long timescales. Third, all results
come from a sample that also completed a neurofeedback
training, which may limit the generalizability of our results
to other samples. However, we believe that this is unlikely
since many of the current patterns of performance and CV
responding were consistent with prior work and with pre-
dictions. Fourth, we did not ask participants about prior
experience with VR, which could have affected the results.
Yet, our sample size was too low to statistically test whether
observed intra-individual effects differed by individual
attributes such as VR history, gender, age. Future research
should examine if these individual differences impact pat-
terns of multilevel variability in physiology and perfor-
mance within VR environments. Fifth, the nature of the VR
shooting task was fairly low in stress such that the present
results may not generalize to more emotional tasks or VR
shooting tasks with more a realistic scenario. Additional
work is needed to replicate the present results in different
VR tasks and affective computing systems. Sixth, it should
also be noted that the direct relations between CV physiol-
ogy and performance are low in effect size magnitude, call-
ing into question their practical significance. Seventh, we
did not have formal recovery periods in the present study,
thus preventing us from establishing whether CV activity
returned to baseline before additional blocks and tasks were
administered. Furthermore, CV recovery might also reveal
neurobiological dynamics relevant to stress, adaptation,
and performance which are putatively distinct from the
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reactivity and habituation effects emphasized in the current
paper [151], [152]. Future work should apply our multilevel
theory in diverse experimental contexts beyond VR and
alongside data-driven methods such as machine learning.
Such work would refine our theoretical model based on
complex physiology-behavior associations that are hard to
detect solely with hypothetico-deductive approaches.

3.6 Implications and Conclusion

Taken together, the present findings suggest that intra-individ-
ual changes in performance are accompanied by dynamic and,
at times uncorrelated, intra-individual changes in CV activity.
These findings highlight the need for VR training systems and
perhaps other computing paradigms to measure physiology
and performance across multiple timescales. We hope, more
broadly, that the present paper can provide a roadmap for
affective computing researchers to approach CV measures
beyond simplistic mappings between a single CV metric (e.g.,
heart rate) and single psychological construct (e.g., load). We
provided amultilevelmodel that researchers can use to gener-
ate much more complicated hypotheses and neurophysiologi-
cally tractable inferences pertaining to how CV measures
relate to human performance. Since our model synthesizes
perspectives across disparate fields in neuroscience, psychol-
ogy, and psychophysiology, its use to motivate research in
affective computing could broaden the impact of such work. It
could also help build a richer andmore interconnected base of
research that informs how physiology can be utilized in com-
puting applications and other applied domains.
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