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Abstract—Depressive episode is key symptom collection of mood disorders. Early intervention can prevent it from happening 

or reduce its impact, and close monitoring can greatly improve medical management. However, most current monitoring 

methods are ex post facto, coarse in time granularity and resource consuming. In this study, we aimed to develop a cost-friendly 

and high usability depressive episode detection framework. In Phase I, we fitted instantaneous affective state models by using 

R-R intervals collected with photoplethysmogram sensors in smartwatches from laboratory experiments of 1107 participants. In 

Phase II we utilized the models from Phase I to record long-term affective experience of 2192 participants. Depressive episode 

models were fitted with affective experience time series. The best instantaneous affective states models achieved overall 

accuracies of 91% with 2 classes (neutral/ aroused) and 82% with 3 classes (joy/ neutral/ sadness), and the depressive episode 

models (less severe/ more severe) achieved an overall accuracy of 76% and a best accuracy of 88%. We investigated and 

discussed the performance differences of the models with multiple settings. We found person-based feature normalization is 

effective in improving model performance for subjective affect experience. We also found identification of diurnal mood variation 

may be critical in depressive episode detection. 

Index Terms—depression detection, depressive symptoms monitoring, wearable device, diurnal mood variation, digital mental 

health.  

——————————   ◆   —————————— 

1 INTRODUCTION

EPRESSIVE episode is widely associated to most 
mood disorders, such as major depressive disorder, 

dysthymic disorder, and bipolar disorders [1, 2]. The 
prevalence of mood disorder is 4.9-6.0% worldwide [3], 
which has become a major disease burdens contributor 
and great challenge to global health. Mood disorders are 
seriously life-threating. Prior studies showed 37.7% and 
15.1% of the depressive disorder patients had suicidal 
ideation and suicide planning [4], and 33.9% of the bipo-
lar disorder type I patients attempted suicide in their life-
time [5]. In total, 5-6% patients with mood disorders 
completed suicide [6]. Study of suicide risk showed the 
depressive episode and severity of depression symptoms 
were strongly associate with suicide ideation and attempt 
among patients with mood disorders [7, 8]. As a result, 
close depressive symptom monitoring on a regular basis 
could substantially improve suicide prevention. Depres-
sive episode is preventable [9, 10]. Also, in mood disorder 
prevention, detection of early symptoms could facilitate 
early intervention to prevent or reduce the impact of re-

lapse on the individual [11]. A forward-looking depres-
sive state monitoring has good potential in improving 
related mental disorder prevention. In medical manage-
ment, systematical treatment response monitoring is a 
critical part, and nonresponse to medication requires a 
treatment change [12]. Obviously, timely treatment 
change is helpful in disease control and recovery.  

In clinical practice, assessment for depressive episode 
is done via rating scales and diagnostic interviews. Sever-
al shortcomings in depressive episode management are 
unavoidable with rating scales and clinical interviews. 
First, the nature of rating scales and diagnostic interviews 
determines that these measures are resource consuming 
and cannot be carried out very often. Treatment manage-
ment, especially for patients with illness relapse or taking 
unsuitable medication, is therefore limited in response 
efficiency. Second, current methods are ex post facto, 
which are of no help in disease prevention or suicide pre-
vention. In addition, current assessment methods rely on 
the memory about experience of patients and can have 
subjective bias. There is a clear need for fine time granu-
larity, high usability and objective monitoring methods 
for depressive episode and related symptoms. 

In the fifth edition of diagnostic and statistical manual 
of mental disorders (DSM-5), a positive depressive epi-
sode diagnostic decision requires 5 out of 9 symptoms in 
the diagnostic criteria to have been present on a visitor for 
at least 2 weeks. The 9 symptoms in DSM-5, in brief, are 
depressed mood, insomnia or hypersomnia, poor concen-
tration, fatigue or loss of energy, loss of interest or pleas-
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ure, appetite or weight disturbance, psychomotor agita-
tion or retardation, feelings of worthlessness or excessive 
guilt and suicidality [13]. Among these symptoms, 5 are 
associated with daily emotional status (depressed mood, 
fatigue or loss of energy, loss of interest or pleasure, feel-
ings of worthlessness or excessive guilt and suicidality). 
Assessment methods with capability of constantly per-
ceiving daily mood status are very likely to be useful in 
depressive episode detection. In fact, the great utility val-
ue of affective computing in clinical scenario has been 
recognized, and a good number of related studies have 
been conducted by researchers[14]. 

In the past few years, a number of studies of mood sta-
tus classification using smartwatch friendly sensors were 
conducted. Awais et al. reported a study using video clips 
as emotion eliciting materials and data from 8 physiologi-
cal sources collected by purpose-built smartwatches, their 
long short-term memory model (LSTM) showed an over-
all accuracy of 95.1% in discriminating 4 emotional sta-
tuses from 30 participants [15]. Tizzano et al. used music 
and movies as emotion evoking conditions and 3 data 
sources (accelerometer, gyroscope, heart rate), and built 
models for each of 44 participants with LSTM and Gauss-
ian mixture models. Their models achieved an overall 
accuracy of 92%-94% in discriminating statuses of happy, 
neutral and sad [16]. Kenjo et al. carried out a study by 
using data collected by 20 sensors (providing physiologi-
cal, environmental and locational data) from smartwatch-
es during walking time of 40 participants. With convolu-
tional neural network (CNN) and LSTM, they distin-
guished 5-level emotional valence with an overall accura-
cy of 94.7% [17]. Though the generalizability of the mod-
els reported in these studies was not well verified due to 
limited sample sizes or field test, and they have employed 
too many data sources that common smartwatches do not 
support (due to both the high cost of manufacturing and 
power consumption), the results still gave confidence to 
further research and extensive use of smartwatch-based 
emotion status perception. Existed study has shown low-
cost wearable device can perform well in affective compu-
ting [18]. 

In this study, we aimed to develop a depressive epi-
sode detection framework that can be applied to most of 
the launched smartwatches to overcome the shortcomings 
in current assessment tools. To achieve this goal, we em-
ployed only R-R interval (RRI) collected from photople-
thysmography (PPG) sensor. With the knowledge gave by 
prior emotion perception studies, we fitted models for 
instantaneous emotional arousal and specified affective 
states with RRI data collected from laboratory experi-
ments, and used these models as feature abstractors to 
pursuit a greater goal of depressive episode detection. 
The predictions of the instantaneous models were used as 
time series features to describe long-term emotional sta-
tus in a follow-up field study. Finally, depressive episode 
models were fitted with the time series features. We com-
pared the performance between models fitted with differ-
ent settings, and discussed the causes for performance 
differences. With findings of this study and empirical 
evidence from clinical psychiatry, we searched and dis-

cussed the critical factor for depressive episode detection 
in raw features of the models with variance analysis for a 
generalized linear model.  

2 METHODS 

2.1 Study Design 

There are 2 phases in this study. The objective of Phase I 
was to build models for short-term (based on RRI data of 
2-5 minutes) emotional arousal and affective states, and 
its assessment results were to be applied as the input of 
depressive episode prediction model fitted in Phase II. 
Montreal Image Stress Task (MIST) [19] was adopted as 
the arousal eliciting task, and in models for affective 
states, video clips were used to eliciting positive and neg-
ative emotional status. The goal of Phase II was to build a 
depressive episode prediction model using long-term 
(about 3 days) affective states time series as the input. 
Participants were required to wear smartwatches 
throughout a 35-day data collection period and report 
their depressive symptoms at the end of the study with 
Patient Health Questionnaire-9 (PHQ-9) [20]. Data of the 
latest 7 days before the PHQ-9 rating was employed to 
investigate the association between RRI and depressive 
episode. The results of PHQ-9 were used to make labels 
for the depressive episode models. 

2.2 Participants 

Participants of arousal experiment were recruited from 
Beijing and Nanjing City, China, and participants of affec-
tive states experiment and depressive episode detection 
were recruited in Nanjing and Chongqing City, China. 
Recruitment advertisement was disseminated in commu-
nity Wechat groups. Subjects of 13-40 years old was our 
target age range. Subjects who had history of brain injury, 
heart disease or hypertension, substance dependency, 
taking psychotropic medication, diagnosed positive of, 
psychotic disorders, anxiety disorders or eating disorders 
within recent 1 year were excluded. A total of 1021 resi-
dents, with 49.0% female and aged 26.14±12.76, were re-
cruited to participate arousal experiment; 121 residents, 
with 53.0% female and aged 21.20±3.65, were recruited for 
affective states experiment, and 3443 participants, with 
54.4% female and aged 20.07±5.82, were recruited for de-
pressive episode detection field study. The recruitment of 
the 3 experiments were independent, and the participants 
of these experiments were non-overlapped. 

2.3 Arousal and Valence 

Many affective category theories were proposed by prior 

researchers, such as Plutchik’s Wheel [21], basic emotion 

[22], 2-dimension measurement [23, 24], 4-dimension 

measurement [25] etc. The 2-dimension (arousal-valence) 

measurement had been commonly used in affective com-

puting studies [26]. The 2-dimension measurement is 

characterized by the simplicity of mood categorization 

and mood continuity within the space. The measure as-

sumes typical emotions located in a 2-dimentsion emotion 

space split by the axis of emotion arousal level and emo-
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tion valence level (Fig. 1). In this study, this measurement 

was employed as a starting point of our design. We hy-

pothesized that the daily emotion states, or the pattern of 

daily emotion states, expressed by the 2-dimension meas-

urement can be used in identifying individuals with de-

pressive symptoms.  

 

Fig.1. The 2-dimension affective state theory.  

 

Because stress and emotional arousal shares similar 

mechanism in hormones level and amygdaloid [27], we 

fitted arousal models with RRI data from a stress eliciting 

paradigm, namely MIST. For valence, it is unlikely to ex-

haust all known kinds of mood by using a single model. 

To simplify the problem, we chose sadness as the target 

affective state, and joy was adopted as the opposite affec-

tive state to sadness. In addition, state of no mood (or 

feeling ease) was included to represent a neutral state 

between joy and sadness. The reason we used sadness 

was because the goal of this study was to develop a de-

pressive episode detection tool and sadness is the most 

distinctive affect state of depressive status. Valence mod-

els that discriminate among 3 typical affective states of joy, 

sadness and neutral were fitted.  

2.4 Montreal Image Stress Test 

MIST is one of the most frequently used stress induction 
paradigms in neuroscience research [28]. It consists of 3 
conditions, which are blank, controlled arithmetic and 
arithmetic. There are 2 stress sources to induce a mental 
stress: time limit in resolving each arithmetic item, pseu-
do performance comparison between current participant 
and population average level which always shows partic-
ipants have lower performance than the average. The dif-
ficulty and time limit adapt with the performance of par-
ticipants to ensure the correct rate always stay between 
20%-45%. In arithmetic condition, both stressors are pre-
sented, while in the controlled condition, no time limit is 
shown (Fig. 2). In this study, we used a simplified version 
of this paradigm. We canceled the controlled condition 
and replaced the performance comparison with monetary 
reward. The reward number was shown at the center of 
the screen, which would reduce every time when the par-
ticipants make a mistake. For every participant, every 
condition lasted for 5 minutes. Conditions appeared in 

random order, and before and after each condition, there 
was a 2-minute breath exercise stage with sound of a met-
ronome at the tempo of 1 beat per sec. to help participants 
to restore their mental states. 

 

 

Fig. 2. Interface of MIST. Left: control condition with only perfor-

mance indicator stressor. Right: arithmetic condition with both per-

formance indicator and time limit bar stressors.  

2.5 Affective States Induction Videos 

Researchers collected hilarious and sad videos from relat-
ed topics (contents with tags begins with “#”) and catego-
ry in Dou Yin (TikTokTM) and BilibiliTM. Videos liked by 
over 50,000 users and duration between 1-2 minutes were 
downloaded as candidate clips. Since adolescents were 
included in the sample, we used Youth Mode provided by 
the platforms to ruled out unsuitable contents. Candidate 
clips were randomly concatenated into 40 videos for joy 
and 20 videos for sadness eliciting with duration of about 
15 minutes each. To determine the videos to be applied in 
experiment, we gathered a rating group with 10 psy-
chologists. All the group members watched all 60 videos 
in random order and evaluated the effect in joy and sad-
ness elicitation. Finally, 1 video with the top score for joy 
and 1 video with the top score for sadness were selected, 
they both got full scores from every rater. 
 

2.6 PHQ-9 

PHQ-9 is an extensively used self-rating depression 
screen tool and was proved having good validity and 
credibility in Chinese [29]. There are 9 items of 4-point 
Likert scale. The 9 items have a one-to-one correspond-
ence with the 9 symptoms in DSM-5, and rater are re-
quired to answer how often have they been bothered by 
each of the symptom over the past 2 weeks. The selections 
for each item were “Not at all”, “Several days”, “More 
than half of the days”, and “Nearly every day”. The 
scores of the selections are 0, 1, 2 and 3 respectively. The 
total score is used to classify depression severity. Specifi-
cally, scored 0-4 corresponds to “none-minimal”, 5-9 is 
“mild”, 10-14 is “moderate”, 15-19 is “moderately severe” 
and 20-27 is “severe”. In this study, we used the total 
score of PHQ-9 to make labels for the fittings of depres-
sion episode models. 
 

2.7 Heart Rate Variability and Sympathetic and 
Parasympathetic Activity Index 

Heart rate variability (HRV) indices have been originally 
used in clinical cardiology [30], and they can be extracted 
from RRI series. Prior studies revealed HRV can reflex the 
activity of autonomous nervous system (ANS) [31], which 
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is controlled by hypothalamic pituitary adrenal axis [32]. 
ANS is closely related to mental activity, especially stress 
level [33]. As a result, HRV has been widely employed in 
stress detection [34-36] as well as emotional valence clas-
sification [37, 38]. There are, in general, 2 components 
within ANS, which are sympathetic nervous and para-
sympathetic nervous system. The former one is responsi-
ble for activating one’s body and mentality, while the lat-
ter one works in the opposite way, which sets individual 
into “rest and digest” status [39]. From the perspective of 
affective computing, HRV indices can be utilized as a 
good feature set in sympathetic and parasympathetic 
nervous activities observation. Sympathetic and Para-
sympathetic Activity Index (SAI-PAI) is a newly pro-
pounded ANS activity measure [40-42]. The difference 
between HRV and SAI-PAI in outcomes is HRV provides 
indices which describe ANS activity within an RRI series, 
while SAI-PAI decomposes an RRI series into two series, 
which are SAI and PAI, and each series has the same 
length as the input RRI series. The decomposed SAI and 
PAI series represent activities of sympathetic and para-
sympathetic nervous system respectively. In this study, 
we utilized both HRV and SAI-PAI as feature sources in 
fitting the models. 

2.8 Wearable Device 

Customized smartwatches were used in this study. To 
maximizing applicability of the models to the smart-
watches on the market, we adopt two most frequently 
used PPG sensors (GOODiXTM and Tian Yi He XinTM) and 
set the sampling frequency of PPG at 25 Hz, which is also 
the choice of several major budget-friendly smartwatches, 
and this sampling frequency is over the lower frequency 
limit confirmed by prior study[43]. There were two data 
collection modes. In the field study mode, the smart-
watches collected RRIs from 90 seconds every 5 minutes, 
and with this collecting scheme, each of them can keep 
RRIs records from 5 days maximum. When the data size 
exceeded the capacity limit, earliest records would be 
overwritten by late ones. In the laboratory mode, the 
wearable devices collect continuous data and send it out 
as soon as possible to the cloud server. Participants of the 
field study were required to synchronize their data in the 
smartwatches every 3 days, so as to make sure all the data 
can be retrieved before overwritten. We disabled func-
tions provided by sensors other than accelerometer and 
PPG to reduce power consumption, and on average, the 
smartwatches can continuously work for 5 days. A 
smartphone application was installed for every partici-
pant to upload the data stored in smartwatches to our 
cloud servers (Fig. 3).  
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. Architecture of the data collection system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.9 Data Collection Procedure 

Participants went through a screening process by filling 
out a questionnaire. Only those who met the inclusion-
exclusion criteria were accepted by the study. A consensus 
form was signed by everyone before experiment opera-
tion. In Phase I, participants came to the laboratory to 
attend experiments. In the experiment for the arousal 
model, subjects were instructed how to use the MIST per-
sonal computer software. Subjects were required to prac-
tice with an exercise block until they report they have 
managed all the actions. All the participants reported 
their arousal states by using a visual analog scale named 
the self-assessment manikin (SAM) [44, 45](Fig. 4) before 
and after each block of MIST (Fig. 5). In the experiment of 
the affective states, participants went through a sitting 
block, which was to sit for 10 minutes and adjust their 
breathe while listening to the sound of metronome, and 2 
affect eliciting video watching blocks. The sitting and vid-
eo blocks were shown in random order to balance se-
quence effect. Video blocks were used to induce joy or 
sadness, and sitting block was used to collect the affective 
state of neutral. Before and after each video, there were 
also breaks of 5 minutes with sound of metronome to let 
participants to recover their mood from the prior materi-
als (Fig. 5). The operation of the sitting block and 5-
minute break was the same, but data for neutral state was 
collected only from the sitting block. Participants reported 
their affective states by using SAM. RRI data was collect-
ed by the smartwatch wearing on the non-dominant hand 
side. After watching the videos, participants were asked if 

 
Fig. 4. The Self-Assessment Manikin (SAM) scale for valence 

(the upper line) and arousal (the lower line). 
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they have watched any part of the videos before the ex-
periment, and data of those who watched more than 10% 
of the videos were removed from the dataset. In Phase II, 
participants were given a smartwatch, and were required 
to wear the smartwatch during their non-sleeping time 
and upload data collected by smartwatches at least once 
in every 3 days. At the end of the experiment, they were 
required to fill the PHQ-9 scale. 

2.10 Data Preprocessing 

In Phase I, an experience-based feature engineering pro-
cess was carried out for arousal and affective states mod-
els. The process is shown in Fig. 6. The arousal and va-
lence models were fitted based on the data collected from 
laboratory experiments. To reduce the effects of con-
founding variation from previous elicitation process or 
emotional adaptive regulatory in the on-going blocks, RRI 
of the 3 minutes in the very middle of each block in MIST 
and 5 minutes in the very middle of each affect eliciting 
video block were selected for further process. RRI and the 
derived SAI and PAI series were standardized with indi-
vidual and population norms (mean and standard devia-
tion). The individual norms were made from data of each 
individual, and the population norm was made from the 
data of all the individuals. As a result, for each RRI record 
there were 2 types of basic series (Fig. 6) sets — individu-
al-norm-based (INB, feature values standardized with 

individual norm) and population-norm-based (PNB, fea-
ture values standardized with population norm), and the 
INB and PNB feature sets were made for further model 
fitting. With the basic series sets, time domain HRV indi-
ces and SAI-PAI derived series (Table 1) were generated. 
To the derived series, we applied a universal series profil-
er to summarize statistical characteristics of the series. 
The characteristics extracted by series profiler are mean, 
minimum, maximum, absolute range, standard deviation 
and median of the series. Characteristics of raw SAI and 
PAI series were also computed by series profiler. The time 
domain HRV indices include pnn10 (number of succes-
sive RRIs differ more than 10ms divided by the total 
number of RRIs), pnn50 (number of successive RRIs differ 
more than 50ms divided by the total number of RRIs), 
CVNNI (coefficient of variation of RRIs), CVSD (root 
mean square of successive differences divided by the 
mean of RRI), SDNN (standard deviation of RRIs), SDSD 
(standard deviation of difference of adjacent RRIs), medi-
an of RRI, range of RRI, maximum heart rate, minimum 
heart rate, standard deviation of heart rate [46]. The final 
feature set was the aggregation of characteristics of all 
series, time domain HRV indices and characteristics of 
raw SAI and PAI (see the supplementary material). The 
arousal and valence models used the same features. 

 

  

Fig. 5. Experimental procedures in Phase I.  

 

 

 

 

 

 

 

Fig. 6. Feature production process. Dotted frames: basic series. Abbreviations: SAI: sympathetic nervous activity index; PAI: parasym-
pathetic nervous activity index; SSS: standardized SAI series; SPS: standardized PAI series, HRV: heart rate variability. 
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In Phase II, the depressive status model was fitted with 
the RRI dataset collected from the field affect tracking. 
RRIs of 90 seconds were collected every 5 minutes. Data 
collected during sleeping time or intensive activity (e.g., 
running, playing ball games, dancing), which was detect-
ed by the accelerometer, were discarded. In this study, we 
used hour as the timestep unit in the later time series de-
pressive episode prediction model. To produce hour-
based features, we used every single RRI series collected 
in every 5 minutes as the input of arousal and affect mod-
els, and the output of affect and arousal models were then 
congregated by hour. Typically, there are 12 sets of results 
for every hour. The average values of arousal and affect 
indices within every hour was used as the feature of every 
timestep. If more than 50% of the data within one hour 
was discarded, the entire hour would be marked as inva-
lid and a linear regression imputation was performed to 
fill the invalid hour. We adopted data from the latest 3 
days prior to the PHQ-9 assessment. Time span of 08:00-
24:00 in each chosen day were included, and all partici-
pants had less than 4 invalid hours in each adopted day. 
Thus, every case has a feature set with 48 timesteps (i.e., 
48 hours). (Fig. 7). To further explore how the length of 
included days could influence the prediction performance, 
models with data of the latest 1, 5 and 7 days were also 
fitted. To build a model that could discriminate partici-
pants who were free from and who were suffered from 
severe depressive episode symptoms, subjects with PHQ-
9 scores under 5 were selected to join less severe group, 
and those who scored over 15 were selected to join more 
severe group [47]. To better inspect the potential associa-
tion between grouping scores and classification perfor-
mance, models with groupings of 0-4 vs. 5-27, 0-4 vs. 10-
27, 0-4 vs. 15-27, 0-9 vs. 10-27, 0-9 vs. 15-27 and 0-14 vs. 
15-27 were also fitted. There were two types of outputs 
for each model fitted in Phase I, they are predicted class 
and probabilities of candidate classes. In phase II, the 
probalities of candidate classes were utilized as input fea-
tures of the depressive episode prediction models: the 
probabilities of aroused (P-ARS) and the probabilities of 
sadness (P-SAD), neutral (P-NEU) and joy (P-JOY). These 
4 features were prediction results of the arousal and affect 
states models fitted in Phase I. Since the 4 types of fea-
tures can be computed in ways of INB and PNB, models 
with each of these methods alone and together were fitted.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Table 1. SAI and PAI derived series. 

Series Name Description Note 
Sum of standardized 

SAI and PAI. 
𝑆𝑖 + 𝑃𝑖  

Where 𝑆𝑖  and 𝑃𝑖  are 

element of standard-

ized SAI series 

{𝑆1, 𝑆2, … 𝑆𝑛}  and PAI 

series {𝑃1, 𝑃2, … 𝑃𝑛}. 

Difference of standard-

ized SAI and PAI 
𝑆𝑖 − 𝑃𝑖  

Autocorrelation series of 

difference of standard-

ized SAI and PAI. 

1

𝑛𝜎2
∑(𝑋𝑡 −  𝜇)2

𝑛

𝑡=1

 

Where 𝑋𝑡 is the differ-

ence of standardized 

SAI and PAI series at 

the moment of t; μ 

and σ  are the mean 

and standard devia-

tion of {𝑋1, 𝑋2, … 𝑋𝑛}. 

 

Successive difference in 

difference of standard-

ized SAI and PAI. 

𝑋𝑡+1 − 𝑋𝑡  

Where 𝑋𝑡+1  and 𝑋𝑡  is 

the difference of 

standardized SAI and 

PAI series at the mo-

ment of t+1 and t 

Standardized RRI series. 
𝑋𝑖 − 𝜇

𝜎
 

Where 𝑋𝑖  is the i th. 

element of RRI series 

{𝑋1, 𝑋2, … 𝑋𝑛} , and μ 

and σ  are the mean 

and standard devia-

tion of the series. 

 

2.11 Models Training 

The size ratio of training and test sets were 7:3 in all fit-
tings of models. In Phase I, we selected supportive vector 
machine (SVM) and random forest (RF) for both arousal 
and affective states models. The number of output classes 
for arousal and affective states were 2 (neutral, aroused) 
and 3 (sadness, neutral, joy). We set all of the hyperpa-
rameters with default values. All conditions in the exper-
iments were applied to all subjects, as a result, models in 
Phase I were all fitted with label-balanced samples. We 
fitted arousal and affective states models with INB and 
PNB feature sets respectively and their performance were 
compared. Outputs of predicted class and probabilities of 
each candidate class can be acquired simultaneously in 
every prediction, and the results of predicted class were 
used in performance analysis, the results of candidate 
class probabilities were used as model performance indi-
cators in Phase I and input features of models in Phase II. 
Scikit-learn package (version 1.1.2) was employed in fit-
ting SVM and RF.  

 

Fig. 7. The composite structure of the time series features. DAY t0 
refers to the day of PHQ-9 assessment was performed.  
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In Phase II, LSTM was selected for depressive episode 
model. Randomized under sampling and train-test-split 
was performed before every fitting, and samples in bal-
anced case numbers of positive and negative were ap-
plied in the fitting procedure. A network with 2 LSTM 
layers with 1024 nodes each was constructed. Learning 
rate was set as 0.001, and dropout rate was 0.5. The pre-
diction results were either less severe or more severe. 
Firstly, we tested the model performance by exhausting 
the setting combinations of (1) included days, (2) group-
ing schemes and (3) feature types. In every setting, we ran 
the fitting procedure for 25 times and collected the best 
accuracies. Then we used a typical setting of data of 3 
latest days, label scheme of 0-4 vs. 15-27 and INB features 
tested model performance with 3 subgroups of features: 
P-ARS only (Model ARS, M-ARS), P-SAD, P-NEU and P-
JOY (Model Affective States, M-AFS) and features of all of 
them (Model All, M-ALL). We also fitted a model with 
applying a sliding window to all 4 features series (Model 
with Sliding Window, M-SW). The length of the window 
was 24 timesteps (i.e., 24 hours) of the original series and 
the window step was 1 timestep (i.e., 1 hour). Fitting of 
each type of model was performed 500 times. In each time, 
the maximum number of epochs was 80,000. The overall 
performance of these 4 models were compared. To further 
inspect if affective states pattern in time of the day is a 
significant factor in depressive episode identification, a 
binomial regression was performed. PyTorch 1.12.0 was 
utilized as the deep learning framework. Statistics analy-
sis was carried out with the R language version 4.1.1. 

3 RESULTS 

In Phase I, data of 14 participants were excluded in the 
experiment for arousal model due to poor signal quality 
or loss of data. In total, data from 1007 participants were 
used in the arousal model fitting. Data from 21 partici-
pants were excluded from the affective states model da-
taset because of either over 10% of the videos were 
watched before the experiment by the participants or 
poor signal quality. Finally, there were 100 participants 
contributed their data to the affective states model dataset. 
In Phase II, 846 participants quit or were excluded due to 
failed to meet the inclusion-exclusion criteria at the 
screening. Two thousand and five hundred ninety-seven 
participants were included. Among the 2597 participants, 
405 had discontinuous RRI records and were excluded 
from our dataset. Finally, 2192 participants contributed 
their data to the dataset.  

 

In Phase I, Fitting and verification with randomized 
train-test-split was performed 500 times for models of 
arousal and affective states with RF and SVM using INB 
and PNB features respectively. Table 2 shows the overall 
accuracy, precision and recall of arousal models. Meas-
urements for RF and SVM arousal models fitted with INB 
features were all above 0.9, and models with PNB features 
were between 0.82 and 0.85. Fig. 8 depicts the receiver 
operator characteristics (ROC) curve of each arousal 
model. Table 3 and Fig. 9 show the overall accuracy, pre-

cision, recall and ROC curve of affective states models in 
discriminating sadness/non-sadness affective states. The 
ROCs were plotted based on classification probability of 
the models. Among the models, RF with INB features had 
the best performance, followed by RF with PNB, SVM 
with INB features, and SVM with PNB features. Fig.10 
shows the confusion matrices of affective states models. 
Among the confusion matrices, RF with INB features 
showed the best performance. The models also exhibited 
better accuracy in neutral state over the joy and sadness 
classes. 

 
 
 

Fig. 8. ROC curves of arousal models plotted with classification 
probability. Figure a: random forest with INB features; b: SVM with 
INB features; c: random forest with PNB features; d: SVM with PNB 
features. Horizontal axis: false positive rate; vertical axis: true posi-
tive rate. 

 

Fig. 9. ROC curves of affective states models in discriminating sad-
ness/non-sadness. The curves were plotted with classification prob-
ability. Figure a: random forest with INB features; b: SVM with INB 
features; c: random forest with PNB features; d: SVM with PNB fea-
tures. Horizontal axis: false positive rate; vertical axis: true positive 
rate.  

 

 

 

 

 

 

Table 2. Performance of models for arousal. 

Model Accuracy Precision Recall 

Random Forest INB 90.70% 90.21% 91.31% 

SVM INB 91.11% 90.34% 92.22% 

Random Forest PNB 82.57% 80.80% 85.28% 

SVM PNB 83.22% 84.01% 82.36% 
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The PHQ-9 score distribution is shown in Fig.11. Re-
sults for the exhaustive setting combinations in phase II 
are shown in Table 4. The table shows the “less severe” 
groups with upper limit scores of 4 had generally better 
accuracies than groups with larger upper limit scores. 
And among all the groups with upper limit scores of 4, 
models with input data length of 3 days had an overall 
better performance (all of their accuracies were over 0.70). 
Increased accuracies can be observed in INB+PNB fea-

tures than using INB or PNB alone in label groupings of 
≤4 vs. ≥10 and ≤4 vs. ≥15 with input data of 3 days. 

Among the 2192 subjects, 117 were found moderately 
or more severe in depressive symptoms with PHQ-9 
scores over 15, and 789 subjects were found free from 
symptomatic status with PHQ-9 scores less than 5. Data 
from the moderately or more severe subjects were labeled 
with “more severe”, and data from the depression-free 
subjects were labeled with “less severe” (Fig. 12). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. confusion matrices of affective states models. Figure a: 

random forest with INB features; b: SVM with INB features; c: 

random forest with PNB features; d: SVM with PNB features. 

Horizontal axis: predicted label; vertical axis: true label. Abbre-

viation: SAD: sadness, NEU: neutral, JOY: joy. 

 

Table 4: results for the exhaustive setting combinations. The first row from the left to the right marks the segmentations for different length 

of input data (from 1 day to 7 days). The first column of 15, 10 and 5 indicates the lower limit scores for “more severe group”, and the 

second row marked “14, 9, 4, 14, 9, 4…” indicates the upper limit score for “less severe” group. There are subsections within the lower 

limit scores for “more severe group”, indication the type of the feature (INB, PNB or INB+PNB). The values in the data field show the av-

erage validation accuracies under each of the settings. 

 

    Data From 1 day Data From 3 days Data From 5 days Data From 7 Days 

above/below   14 9 4 14 9 4 14 9 4 14 9 4 

15 

INB+PNB 0.58  0.58  0.65  0.57  0.60  0.77  0.57  0.63  0.69  0.58  0.61  0.68  

INB 0.56  0.57  0.64  0.56  0.59  0.76  0.57  0.63  0.69  0.57  0.62  0.73  

PNB 0.58  0.58  0.64  0.57  0.59  0.77  0.57  0.61  0.68  0.57  0.60  0.69  

10 

INB+PNB NA 0.58  0.65  NA 0.60  0.76  NA 0.63  0.67  NA 0.61  0.70  

INB NA 0.59  0.64  NA 0.60  0.70  NA 0.62  0.67  NA 0.60  0.70  

PNB NA 0.57  0.68  NA 0.60  0.73  NA 0.61  0.67  NA 0.60  0.67  

5 

INB+PNB NA NA 0.66  NA NA 0.75  NA NA 0.67  NA NA 0.70  

INB NA NA 0.63  NA NA 0.72  NA NA 0.67  NA NA 0.70  

PNB NA NA 0.64 NA NA 0.71 NA NA 0.67 NA NA 0.69 

 
 
 
 
 
 
 

Table 3. 

Affective states classification results in discriminating sadness 

and non-sadness.  

Model Accuracy Precision Recall 

Random Forest INB 82.56% 76.31% 73.85% 

SVM INB 74.16% 67.38% 67.75% 

Random Forest PNB 77.29% 67.62% 65.55% 

SVM PNB 67.08% 59.75% 61.34% 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 12. Subject flow diagram of Phase II. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Distribution of participants in PHQ-9 score spans. 
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Since the results of Phase I showed INB models over-

performed PNB models, we chose INB RF models for 
arousal and affective states to produce the series feature 
sets for depressive episode LSTM models. All M-ARSs, 
M-AFSs and M-ALLs converged before reaching the max-
imum epoch number of 80,000. The M-SWs did not con-
verge, and the accuracy were at chance prediction level, 
which was 50%. All of M-ARSs, M-AFSs and M-ALLs 
achieved their best accuracy before convergences, and at 
the point of convergence, overfittings were observed. An 
overwhelming majority of the best accuracies were found 
at the point of the crosses of fitting loss and validation 
loss (Fig. 13). Table 5 shows the average, standard devia-
tion of the best accuracy values near the crosses, and the 
maximum accuracy of each type of models were also 
listed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The convergence absence in fittings of M-SWs implied 

that the distinguishing factor of more severe group and 
less severe group might lie in the time pattern of the fea-
ture series. Because the most significant difference be-
tween feature series with and without sliding window is 
whether they kept the integrity of the natural day rhythm. 
The original feature series were always 3 consecutive 
days with 16 timesteps in each day from 08:00 to 24:00, 
but with sliding window, the time of the day in the learn-
ing cases became uncertain. To examine if the time pat-
tern is related to the discriminability, we performed a lin-
ear regression analysis.  
 

Table 5. Accuracy information of depressive episode models. Accu-

racies were average validation results of 500 times of fittings. Ran-

domized under-sampling and test-train split were performed before 

every fitting. 

Model Accuracy Best Accuracy 

M-AFS 76.06 ± 4.18% 88.00% 

M-ARS 73.84 ± 4.65% 85.00% 

M-ALL 75.05 ± 4.39% 88.00% 

 

The purpose of the analysis for the regression was to 
find out possible influential factors for the depressive 
episode positive/negative prediction. As a result, the de-
pendent variable of the linear regression model was the 
label using cutoff scores of 0-4 (non-minimal) vs. 15-27 
(moderately severe or severe). To produce independent 
variables, we divided data of a day into 3 spans: morning 
(08:00-12:00), afternoon (12:00-17:00) and evening (17:00-
24:00). Average values of P-SAD and P-ARS in the morn-
ing, afternoon and evening in every single day were com-
puted and included as independent variables. P-NEU and 
P-JOY were excluded was because the sum of P-SAD, P-
NEU and P-JOY are highly correlated in each case (the 
sum is always 1), while sadness was our key focus of this 
study. Variables above were cut into ranks by using their 
medians of the whole dataset in the interaction analysis. 
Age and gender were also included as demographic vari-
ables. There were 697 observations in the final dataset, 
and each observation represented a single day of a partic-
ipant. Generalized linear model with logit link function 
and binomial family was utilized. Interactions within 
same type of variables (P-SAD or P-ARS) were examined. 
After a backward stepwise variable selection, morning P-
SAD, afternoon P-ARS and interactions between morning 
P-SAD and evening P-SAD were kept. The rest variables, 
including demographic variables, were removed by the 
stepwise variable selection due to their insufficient influ-
ence to the regression model. Table 6 shows the analysis 
results. In the results, P-ARS in the afternoon was nega-
tively associated with depressive status, while P-SAD in 
the morning was positively associated with depressive 
status. Statistical significance was observed in the interac-
tion between morning P-SAD and low evening P-SAD. 
The pairwise comparison demonstrates the group of par-
ticipants with lower evening P-SAD who also had lower 
morning P-SAD are more likely to have depressive epi-
sode.  

We plotted a 3-day-data-based averaged arousal and 
valence curve throughout a day of participants grouped 
by 0-4 vs. 15-27 (Fig. 14). The figure shows that INB and 
PNB were similar in trend but differ in values. The more 
severe group was greater in overall P-SAD and less in 
arousal level. P-JOY for both groups in INB and PNB 
showed a roughly drop-rise-drop trend, and an about 1.5 
to 2 hours phase delay can be identified by locating the 
last peaks in the later half part of the figures. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Loss and accuracy during a fitting procedure of C-ALL. 

Horizontal axis: epoch number; vertical axis: loss/accuracy. Best 

accuracy can be observed in the cross section of loss and vali-

dation loss, which located between epoch 2500-3500. 
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4 DISCUSSION 

This study was an attempt in connecting short-term and 
long-term subjective mental status assessments (instanta-
neous emotional experience and the PHQ-9) by using an 
objective assessment method, and supportive evidence 
for the method principal can be found in prior DMV stud-
ies. In this study, we fitted models for arousal level and 
affective states with RRI data from experiment in labora-
tory, and collected the predictions made by the 2 models 
in a field study with a large sample. Models performance 
using exhaustive setting combinations of (1) multiple la-
beling strategies, (2) lengths of input data in terms of days 
and (3) features of INB, PNB and both were collected and 
demonstrated. With features from the latest 3 days before 
the PHQ-9 scores were collected, the depressive episode 
models benchmarking against DSM-5 was fitted. The 
models of arousal and affective states achieved average 
accuracies of 91% and 82%, and the depressive episode 
model using affective states time series predictions 
achieved an average accuracy of 72% and a best accuracy 
of 88%. We also used an ANOVA for logistic regression 
and daily change of arousal level and affect status 
demonstrated the differences between participants who 
barely had depressive symptom and those who suffered 
from severe depressive symptoms. 

The result of this study proved the daily affective ex-

Table 6 Results of generalized linear regression with logit link. Estimated marginal means are shown on the logit scale. Confidence level 

used: 0.95. Abbreviation: SE: standard error; EMM: estimated marginal means; LCL: lower confidence level; UCL: upper confidence level. 

Significance codes: 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

 

Variables Estimate SE z value p    

Intercept -4.09  1.68  -2.44  0.01  *  

Morning P-SAD 9.66  3.80  2.54  0.01  *  

Afternoon P-ARS -2.23  0.87  -2.57  0.01  *  

Evening P-SAD Low : Morning P-SAD Low 1.43  0.52  2.74  0.01  **  

Evening P-SAD High : Morning P-SAD Low 0.94  0.55  1.72  0.09  .  

Evening P-SAD Low : Morning P-SAD High -0.39  0.50  -0.77  0.44    

Evening P-SAD High : Morning P-SAD High NA NA NA NA    

       

 EMM SE df LCL UCL  

Evening P-SAD Low:       

Morning P-SAD Low -1.70  0.27  Inf -2.22  -1.17   

Morning P-SAD High -3.51  0.47  Inf -4.42  -2.60   

Evening P-SAD High:       

Morning P-SAD Low -2.19  0.35  Inf -2.86  -1.51   

Morning P-SAD High -3.13  0.36  Inf -3.83  -2.42   

       

Contrasts Estimate SE df z ratio p   

Evening P-SAD Low:       

Morning P-SAD Low - High 1.81  0.59  Inf 3.08  0.002  ** 

Evening P-SAD High:       

Morning P-SAD Low - High 0.94  0.55  Inf 1.72  0.086    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

Fig. 14: In the figure, the horizontal axes are the ordinal number 
of the hours in a day, and the vertical axes of a and d indicate 
the arousal level of supportive vector regression (SVR, the re-
gression form of SVM). The vertical axes of b and e indicate P-
SAD, and the vertical axes of c and f indicate P-JOY. The solid 
lines indicate the more severe group (scored 15-27), the dashed 
lines inidicate the less severe group (scored 0-4). Subplot a, b 
and c were results of INB-based, subplot d, e and f were results 
of PNB-based. 
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perience in micro-level can be connected with the depres-
sive episode diagnostic criteria, which is in the macro-
level, via machine learning. The innovation and reasona-
bleness of the framework reflected in the design of the 2-
layer prediction structure. Our approach integrated bio-
logical status and transient affective states in the first level, 
and connected transient experience and mental disorder 
in the second level. This design is highly accord with the 
principal of mental disorder diagnostic criteria, which is 
also established by collecting data from daily symptom 
observation (or recall) in the micro-level and then make 
qualitative decisions of diagnosis in the macro-level. The 
framework realized, though not perfect, an equivalent 
process to the traditional diagnosis. As, our attempt in 
this study was successful, we believe this technical route 
has a good potential in generalization in mental health 
area.  

The diagnostic criteria are general, long-term focused 
and ex post facto. Diagnoses were made with memory of 
patients and skill and judgement of doctors, which is 
thinking ability and experience dependent. As a result, 
diagnoses can be biased because of any miss in the links 
of the chain. Instead of making predictions directly, this 
framework provides understandable process and inter-
mediate data which can be helpful in symptom recalling 
and analyzing in both clinical and research scenarios. Al-
so, since the depressive episode prediction is continuous, 
there is a great chance to discover abnormalities in mental 
state and produce early warning to prevent depression 
from happening. 

An important finding of this study is the daily varia-
tion pattern of arousal and affect status. Specifically, un-
like using the models using full-day data, when a sliding 
window was applied to the time-series data and the data 
within the window was utilized as the input features, the 
model (M-CWs) was not predictive anymore. A possible 
explanation for this phenomenon is diurnal mood varia-
tion (DMV) [48], which refers to the moment-to-moment 
variability of mood throughout the day. The DMV differ-
ence between depressed subjects and healthy subjects has 
been frequently reported in prior studies [49, 50]. In the 
prior study, there were several major characteristics of 
depressed subjects, they are (1) elevated negative affect, (2) 
similar in shape with the healthy subjects in positive af-
fect curve, (3) but with a delayed phase of about 107 
minutes compared to the healthy subjects and (4) the 
“morning worse” pattern which means a higher negative 
affect level and lower positive affect level in the morning 
than the rest of the day. In this study, a higher level of P-
SAD throughout the day and similar trends between 
more severe (PHQ-9 scored 15-27) and less severe (PHQ-9 
scored 0-4) group with a phase delay of about 1.5-2 hours 
in the P-JOY curve can also be identified from the result 
of logistic regression (Table 5) and the valence curve fig-
ure (Fig. 13). The highly identical findings in prior study 
and this study, though with different measuring tools, 
implicating that DMV might play an important role in 
differentiating the two groups in the depressive episode 
prediction models. In addition, in our study we found the 
“more severe” group had a general lower arousal level 

than the “less severe” group, this was in accordance with 
the knowledge that depressed individuals have difficulty 
in sustaining a high arousal state [51-53]. Unlike the 
“morning worse” pattern reported in prior studies and 
the typical reversed-U-shaped negative affect curve, re-
sults of this study showed a general higher P-SAD and 
lower P-JOY in the first half than the second half of the 
days, and an additional drop trend in P-JOY curve was 
found in the beginning of the days. This may because we 
used the same time span (08:00-24:00) for everyone and 
ignored the differences in actual schedules of each partic-
ipant, thus, extra part from other period of DMV may 
intrude into the dataset. In future studies, better smart-
watches with sleeping detection function may help to 
position the exact schedule of every participant and im-
prove the quality of the data. No statistical significance 
was observed in variables of age and gender. However, 
researchers reported age was negatively associated with 
almost all the HRV indices in patients with psychiatric 
disorders from adolescence to adulthood[54]. This implies 
that a covariance of age may be useful in feature engi-
neering. 

Another finding is the overall accuracies of arousal and 
affective states models were better in having INB features 
than PNB features applied. This is consistent with prior 
HRV study [55] which reported between-person level 
HRV difference was less associated with positive affective 
states than within-person level HRV. Though the theory 
of neurovisceral integration [56] holds that HRV can re-
flect capability in adapting to environmental demands of 
individuals, affective experience is an internal mental 
process, and the perception of affective states of individu-
als is relative and mental context relied [23, 57]. RRI relat-
ed features (i.e., HRV, SAI-PAI) are a blend of adaptivity 
and affect perception. Since the experiments in Phase I 
were subjective experience orientated, with the outper-
formance of models with INB features in this study, it can 
be inferred that between-person differences in PNB fea-
tures may decrease the consistency between prediction 
results and subjective affect experience. However, this 
does not mean the PNB features and between-person dif-
ferences are useless. The results of the exhaustive model 
setting test showed that in some cases (i.e., group 
schemes of 0-4 vs. 5-27 and 0-4 vs. 10-27 with data from 
latest 3 days) depressive episode models using PNB and 
INB input together overperformed ones using each of 
them alone. This implies that INB and PNB input may be 
complementary to each other in objective mental status 
assessment. 

In this study, we labeled depressive status of subjects 
with PHQ-9 scores. Though PHQ-9 was reported good in 
validity and credibility, there is still a risk for potential 
bias to be introduced to the labels. Firstly, PHQ-9 is a self-
rating tool, bias caused by self-awareness, language un-
derstanding and attitude could be influential to the re-
sults and this is difficult to measure. Evidence showing 
this problem in our result is that models with group of 0-4 
had better performance. This could because that free from 
symptom is easier than status of mild, moderate and se-
vere etc. in assessments. The accuracy could drop while 
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the details for symptoms increase. Secondly, though 
PHQ-9 asked raters to recall the symptoms in the past 2 
weeks, the reliability of memory for emotion may not be 
such reliable. The common sense is, within certain range, 
the longer the input data is, the more accurate a time-
serial model should be. But our results showed that the 
models with the best performance were those utilized 
data of 3 latest days, the accuracies for models with 5 and 
7 days were not so good as the former one. This could be, 
at least in partial, caused by the inaccuracy of emotional 
memory. Other possible causes could be such as the noise 
or more complex patterns that introduced by data of 
longer time. These speculations need more studies to in-
spect. Our experience could be useful to researchers in the 
same field in future. To improve the validity of long-term 
status experiment, we suggest studies use (1) professional 
other-report (i.e., clinical interview or ratings) evaluations; 
(2) shorter field experiment cycle (such as 3-5 days) with 
more participants.  

There are several limitations pertaining to the present 
study that should be acknowledged. One of our major 
findings is the key role of DMV in depressive episode 
sensing with daily RRI. We assumed all the participants 
had same wake-up and sleep pattern and created dataset 
with data from 08:00-24:00. However, the schedule varies 
from person to person in real life. Data from participants 
with irregular schedule could bring heterogeneity, which 
may weaken model performance and lead to confusing 
statistical results. In future studies, daily RRI dataset 
should be created with adjustment of wake-up and sleep-
ing time. Another limitation is the selected affective states 
of sadness, neutral and joy were limited in complementa-
rity to arousal levels. In prior study [23], the mood of 
happy was considered with higher arousal level than sad. 
Similarly, joy, neutral and sadness in this study could be 
in order of descending in arousal levels. Thus, combina-
tion of P-SAD, P-NEU and P-JOY expressed both arousal 
level and specific affective states. The similar performance 
of M-ARS, M-AFS and M-ALL supported this guess. The 
original intension of using 2 models was to let them to 
express arousal and valence states respectively. However, 
it is unavoidable to use specified affective states as va-
lence landmarks in valence model fitting, and the selected 
representative affective states are usually very different in 
arousal level. In future studies, single model with more 
classes of affective states should be applied for daily af-
fective state tracking, instead of using models predicting 
arousal and affective states respectively. The age range of 
the participants in this study was very wide, the intention 
of this setting was to increase the robustness of models. 
However, this may also introduce extra noise to the facto-
rial analysis. Age stratified sampling should be consid-
ered in future studies. Some researchers reported that the 
sampling frequency of 25 Hz may cause a relative error 
exceeds 5% in HRV indices, and a minimum sampling 
frequency of 50Hz was recommended[58]. In this study, 
potential errors could be introduced by the sampling fre-
quency, and the performance of the models may also be 
influenced. In addition, results from newly published 
study [54] suggesting that demographic factors should be 

seriously considered in feature engineering for the HRV 
indices, especially when a sample has a great age range. 

There are three future directions we would like to 
propose. The first one is we believe inclusion of sleeping 
information (sleeping duration, sleeping quality, etc.) can 
be helpful in improving depressive episode detection per-
formance. Existing literature [13] suggested sleeping dis-
turbance and depressed mood are equivalently important 
and tied for the first place in discriminating less severe 
and more severe individuals. The sleeping information is 
not overlapped in neither symptom or time with daily 
affective states, as a result, it has a great potential be 
source of complementary features to the ones used in this 
study. The second is data of randomized clinical trials 
(RCTs) should be applied in future depressive episode 
model fitting. Because RCTs are usually better designed 
in randomization and confounder control and with fre-
quently performed professional assessments. All these 
conditions are helpful in fitting models with better per-
formance. The third one is, inspired by lately published 
study report[54], how demographic information, especial-
ly age, to be applied in the similar approach as this study 
should be further explored. 

5 CONCLUSIONS 

This study proposed a 2-level structured machine-
learning-based depressive episode detection framework. 
RRI derived features were employed to fit daily affective 
experience models. With the time-series output of these 
models, depressive episode deep learning models were 
fitted. The best model achieved an average accuracy of 77% 
and a maximum accuracy of 88%. Minimal number of 
data source and data quality was used to meet the de-
mand of most launched budget-friendly smartwatches. 
We validated the technical route of using micro-level 
symptoms to approach the diagnoses in macro-level in 
depressive episode, and believe this can be generalized to 
greater mental health application. DMV was recognized 
to be a potential critical role in depressed and health par-
ticipants differentiation. Individually normalization for 
RRI derived features can significantly improve daily af-
fective states prediction accuracy. Future study should be 
focused on integrating sleep information with current 
features and employing data from RCTs to promote clas-
sification performance. 
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