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Abstract—Aspect-based sentiment triplet extraction (ASTE) aims to extract triplets consisting of aspect terms and their associated
opinion terms and sentiment polarities from sentences, a relatively new and challenging subtask of aspect-based sentiment analysis
(ABSA). Previous studies have used either pipeline models or unified tagging schema models. These models ignore the syntactic
relationships between the aspect and its corresponding opinion words, which leads them to mistakenly focus on syntactically unrelated
words. One feasible option is to use a graph convolution network (GCN) to exploit syntactic information by propagating the
representation from the opinion words to the aspect. However, such a method considers all syntactic dependencies to be of the same
type and thus may still incorrectly associate unrelated words to the target aspect through the iterations of graph convolutional
propagation. Herein, a syntax-aware transformer (SA-Transformer) is proposed to extend the GCN strategy by fully exploiting the
dependency types of edges to block inappropriate propagation. The proposed approach can obtain different representations and
weights even for edges with the same dependency type according to their adjacent dependency type of edges. Instead of using a GCN
layer, we used an L-layer SA transformer to encode syntactic information in the word-pair representation to improve performance.
Experimental results on four benchmark datasets show that the proposed model outperforms various previous models for ASTE.

Index Terms—Aspect Sentiment Triplet Extraction, Sentiment Analysis, Syntactic Information, Transformers
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1 INTRODUCTION

A SPECT-based sentiment analysis (ABSA) [1] aims to
recognize the sentiment polarity and opinion of tar-

geted aspects in a given sentence [1], [2], [3], which is a
useful technique for various sentiment applications [4], [5],
[6], [7], [8]. ABSA is composed of several related subtasks,
such as aspect term extraction (ATE), opinion term extrac-
tion (OTE), and aspect sentiment classification (ASC). Here,
ATE indicates what aspect is being discussed, ASC shows
how the sentiment polarity impacts the aspect, and OTE
explains why the polarity is associated [9].

Previous works have attempted to either solve the above
subtasks individually or solve two of the subtasks jointly,
such as ATE and ASC [10], [11], [12], [13], [14], [15] or ATE
and OTE [16], [17]. To further integrate the tree subtasks,
Peng et al. [9] pioneered a unified task, namely, aspect-based
sentiment triplet extraction (ASTE), which aims to provide
a complete analysis of a user-generated text by producing
all triplets (aspect term, opinion term, and corresponding
sentiment polarity) from sentences. Fig. 1 shows an example
review. The ASTE task requires a model to generate three
triplets: (staff, very courteous, Pos), (staff, great, Pos), and (food,
terrible, Neg), where staff and food are aspect terms; very
courteous, great, and terrible are corresponding opinion terms;
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and Pos and Neg denote their sentiment polarity.
Previous studies have typically accomplished ASTE

tasks by using a two-stage pipeline approach with sequence
labeling models [9]. This approach first identifies the aspect
terms with their sentiment, as well as the opinion terms.
The extracted aspect terms are then matched with each
opinion term to determine their consistency. Unfortunately,
the pipeline approach ignores the relationships between
elements and is prone to error propagation. Alternatively,
another viable option is to apply a multitask strategy to
integrate both stages into a joint framework [18], [19], [20],
[21], [22]. The main limitation of the joint approach is that
it cannot efficiently handle scenarios in which a review
contains multiple relational triplets that overlap with each
other; e.g., in the previous example sentence, both opinion
terms very courteous and great should be associated with the
same aspect term, staff.

Several recent works have studied the overlapping
triplet problem by applying a grid tagging scheme (GTS)
[23], [24]. Therefore, the ASTE task is converted to predict
the relation tags of word pairs, as shown in the lower part of
Fig. 1. The tags A and O denote that the word pair represents
the same aspect term and opinion term, the tag N denotes
no relation between the word pair, and Pos, Neg and Neu
are the sentiment labels. For example, the polarities between
word pairs (staff, courteous) and (staff, great) are both posi-
tive. However, the equivalence classification between word
pairs may lead to an inappropriate association between the
aspect terms and opinion terms. For example, great could be
simultaneously associated with both aspects terms staff and
food.

To address the limitations of the above models, graph-
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Fig. 1. : Dependency parsing and grid tagging of a given sentence. N, A, O, Pos, Neg, and Neu respectively denote the word-pair tags of none,
aspect opinion, positive, negative, and neutral.

based methods have been proposed to introduce syntactic
dependencies to model the relationship between words [25],
[26]. By parsing the text into a dependency tree, a special
type of graph is constructed based on the adjacency matrix.
Graph convolution networks (GCNs) can then propagate
the representations through the edges from opinion words
to the corresponding aspects. However, these models con-
sider all syntactic dependencies to be of the same type and
assign an equal weight to each edge. The inappropriate
association of less important words may still occur through
multiple iterations of graph convolution propagation. In the
example shown in Fig. 1, the representation of courteous can
be correctly propagated to staff through the path of edges
courteous-acomp-was-nsubj-staff, but it can also be incorrectly
propagated to food through courteous-acomp-was-conj-was-
nsubj-food.

Dependency types are useful features to model word
relationships from the syntactic aspect, and different de-
pendency types should be assigned different weights. For
instance, the dependency types nusbj and acomp indicate
a subject-object relation, and increasing their weights can
help accomplish correct propagation (e.g., from courteous
to staff and terrible to food). On the other hand, even the
same dependency type may necessitate different weights.
For instance, the example sentence in Fig. 1 contains two
edges with conj. The conj between was and was should be
assigned a lower weight to block inappropriate propagation
(e.g., from courteous to food and terrible to staff ), but the conj
between courteous and great should be assigned a higher
weight to help propagation from great to staff.

Based on this notion, this study proposes a syntax-aware
transformer (SA-Transformer) to incorporate the knowledge
of dependency types into graph neural networks for triplet
extraction. The proposed method extends graph neural
networks in three aspects. First, it can distinguish not only
between edges with different dependency types but also
those with the same dependency type to achieve more
accurate graph propagation. This is accomplished by de-
veloping an adjacent edge attention (AEA) mechanism to
learn the edge representation for each edge according to the

dependency types of its adjacent edges. That is, the edges
that have adjacent edges with different dependency types
may have different representations and weights. Second,
the edge representations are encoded into contextual word
representations to learn the syntactic and positional relation-
ships between the words to enhance word pair representa-
tions. Third, given that a multiword aspect/opinion term
(e.g., very courteous) is divided by multiple consecutive word
pairs for prediction, this study devises an adjacency infer-
ence strategy to improve triplet extraction for multiword
aspect/opinion terms. This strategy can iteratively predict
the tag of each word pair according to the predicted results
of its adjacent word pairs instead of predicting each word
pair independently. The proposed SA-Transformer model is
evaluated with respect to four benchmark datasets. Experi-
mental results show that the proposed method outperforms
various previous models for ASTE.

The main contributions of this study are summarized as
follows.

• We propose the SA-Transformer, which incorporates
the knowledge of dependency types to extend graph
neural networks for the ASTE task.

• We design the AEA mechanism that can learn differ-
ent representations and weights for different edges,
even for those with the same dependency type, thus
achieving more accurate graph propagation.

• Experiments conducted on four benchmark datasets
show that the proposed method outperforms existing
methods for ASTE.

The rest of this paper is organized as follows. Sec-
tion 2 briefly reviews existing methods for ASTE. Sec-
tion 3 presents a detailed description of the proposed SA-
Transformer model. Section 4 summarizes the implementa-
tion details and experimental results. Conclusions are finally
drawn in Section 5.

2 RELATED WORKS

Previous ABSA works can be broadly divided into three
independent extraction subtasks (ATE, OTE and ASC), the
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TABLE 1
Different subtasks and corresponding methods for ABSA.

Tasks Methods Example Outputs

Independent Extraction
ATE Attention [27], [28], [29]; Seq2Seq [30] Staff; Food
OTE LSTM [31]; Attention [32] Courteous; Great; Terrible

ASC
Machine learning [33], [34], [35];

LSTM [36], [37], [38], [39];
Graph-based [40], [41], [42], [43], [44]

Positive; Negative

Joint Pair Extraction
ATE+ASC Unified Tagging [11], [12], [13], [14], [15] (Staff, Positive); (Food, Negative)
ATE+OTE Attention [16]; Graph-based [17] (Staff, Courteous); (Staff, Great); (Food, Terrible)

Triplet Extraction ASTE
Pipeline [9];

Multitask [18], [19], [20], [21], [22];
Word-Pair [23], [24], [25], [26]

(Staff, Courteous, Positive);
(Staff, Great, Positive);

(Food, Terrible, Negative)

joint pair extraction subtask, and ASTE subtask. This section
briefly reviews different methods for these subtasks, which
are summarized in Table 1.

2.1 Independent Extraction

ATE [27], [28], [29], [30] and OTE [31], [32] tasks are usually
addressed by using a named entity recognition (NER) model
to extract the target terms. In contrast to ATE and OTE
tasks, ASC tasks aim to predict the sentiment polarity for a
given aspect [33]. Most prior methods for ASC tasks employ
statistical machine learning models [33], [34], [35]. However,
obtaining features through these models is time- and labor-
intensive. Later, after the rapid development of NLP tasks,
various methods based on neural networks were proposed
for ASC [36], [37], [38], [39].

Recent methods for ASC tasks mostly use graph-based
models [40], [41], [42], [43], [44], which encode syntactic
information to block the inappropriate propagation of un-
related contextual information to the aspect. For example,
Tian et al. [41] proposed a type-aware graph convolutional
network to capture the syntactic relation between context
and target aspect. Xiao et al. [44] presented a syntactic
edge-enhanced network with interactive attention, which
leverages the edge information of a dependency parsing
tree to interactively learn the representations of aspect terms
with context.

2.2 Joint Pair Extraction

Recently, many researchers have focused on designing ef-
fective models to jointly extract aspect terms and sentiment
polarity [10], [11], [12], [13], [14], [15], [16], [17]. For example,
Li et al. [11] designed a multigranularity alignment network
to decrease the false alignment of features in ASC and ATE
tasks. Li et al. [12] designed a two-layer stacked LSTM
model in which the lower-layer network guides the upper-
layer network to improve performance on ATE and ASC
tasks. Hu et al. [13] proposed a span-based model that
outperforms joint and collapsed models.

To efficiently align the features of aspect granularity and
domains, Wang et al. [16] and Dai et al. [17] attempted
to coextract both aspect and opinion terms. Wang et al.
[16] proposed a coupled multilayer attention network that
uses a couple of attentions in each layer to extract aspect
and opinion terms. The multilayer structure can capture
both direct and indirect relations between words to achieve

more precise extraction. Dai et al. [17] developed a weakly
supervised method to extract aspect and opinion terms. It
first mined the extraction rules based on the dependencies
between words and then used the mined rules to expand
the training data for neural model training.

2.3 Triplet Extraction
Aspect sentiment triplet extraction aims to jointly extract
aspect terms, opinion terms, and their corresponding sen-
timent polarity, presenting a greater challenge than the
independent subtasks. Previous works can be separated into
the pipeline, multitask, and word-pair methods

Peng et al. [9] proposed a pipeline model for ASTE. It
first extracted aspect terms, opinion terms, and sentiment
polarities using the mutual influence between aspect and
opinion terms and then employed a classifier to pair the
extracted terms to obtain the final triplets. Peng et al. [9]
also extended several joint pair extraction models [12], [16],
[17] as a pipeline model.

Several studies have proposed multitask frameworks to
jointly extract triplets [18], [19], [20], [21], [22]. Zhang et al.
[18] used a sequence tagging strategy to extract aspect and
opinion terms and predicted sentiment polarities using a
table filling method. Chen et al. [19] converted the ASTE
task into a machine reading comprehension (MRC) task and
proposed a bidirectional MRC framework to gather infor-
mation useful for triplet extraction from both the aspect-to-
opinion and opinion-to-aspect directions. Xu et al. [20] de-
signed a span-level model that can capture the span-to-span
interactions instead of word-to-word interactions between
the aspects and opinions for ASTE. Dai et al. [21] presented
a bidirectional sentiment-dependence detector with double
embeddings to obtain better sentence representations and
gather information from both the aspect-to-opinion and
opinion-to-aspect directions. Zhang et al. [22] proposed a
dual decoder with a span copy mechanism that can extract
multiple and overlapped triplets based on multitype infor-
mation.

Wu et al. [23] designed a grid tagging schema to formal-
ize the ASTE task into a word-pair task where classifications
are applied between word pairs. Moreover, Xu et al. [24]
used a model with a position-aware tagging scheme to
jointly extract triplets. However, these methods may asso-
ciate unrelated opinion terms with the target aspect, even if
they are syntactically irrelevant. To address this limitation,
Chen et al. [25] proposed the S3E2 model based on a GCN
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Fig. 2. The overall framework of the proposed SA-Transformer.

to learn dependency information. However, this model only
considers the semantic information of syntactic adjacent
contexts and ignores edge attributes. Zhao et al. [26] also
developed a pointer-specific tagging method to integrate
dependency information into GCN for ASTE. A triplet
alignment scheme was then proposed to extract triplets
by aligning the corresponding positions of the aspect and
opinion terms.

3 SYNTAX-AWARE TRAMSFORER NETWORK

Given an input sentence X = {x1, x2, · · · , xn} with n
tokens, the goal is to extract a set of opinion triplets
{(a, o, s)ω}Ωω=1, where (a, o, s)ω is the ω-th opinion triplet,
which consists of an aspect term of length aω = {xla , an
opinion term oω = {xlo , · · · , xro} of length ro − lo + 1, and
the corresponding sentiment polarity s ∈ {Pos,Neg,Neu}.
Table 2 lists the notations used throughout the paper.

Fig. 2(a) shows the overall architecture of the proposed
method, which is composed of four parts: a context encoder,
SA-Transformer, syntactic relative distance, and adjacent
inference strategy. The context encoder is used to produce
the contextual word representations for an input sentence.
SA-Transformer then uses dependency parsing to obtain
the dependency structure of the sentence and represents it
using an adjacency matrix and relationship matrix to record
whether an edge exists between two words and the kind of
dependency type, as shown in Fig. 2(b). Both matrices are
used by the AEA to learn the edge representations (E) for
each edge based on the dependency types of its adjacent
edges, as shown in Fig. 2(c). The edge representations (E)

TABLE 2
Notations used in the paper and their descriptions.

Notations Descriptions
W The trainable weight matrix.
b The trainable biases.
xi The input of the ith word.
wi The embedding of the ith word.
hi The hidden state of the ith word.
A The adjacency matrix of the input sentence.
R The relationship matrix of the input sentence.
ri,j The dependency type between the words xi and xj .
zi,j The initial edge embedding of words i to j.
ei,j The final edge representation of the words xi and xj .
Dg

i The ith word representation in the gth attention head

ẽii,j
The edge representation of ei,j learned from its
adjacent of the ei.

U i,m
i,j The edge representation of the mth attention head in AEA.

S
(l)
i The ith word representation in the lth SA-Transformer layer.

fd(i, j)
The representation of the syntactic relative distance
between words i and j.

oi,j The final representation of the word pair xi to xj .

pTi,j
The final tag probability distribution of the word pair
xi to xj .

are then added into the key (K) and value (V) of a scaled
dot-product attention to be integrated into the contextual
word representations. The syntax-enhanced representations
of any two words can then be used to constitute a word-
pair representation. In addition, the distance between the
two words is calculated by their syntactic relative distance

This article has been accepted for publication in IEEE Transactions on Affective Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2023.3291730

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Scaled Dot-Product

Attention

very courteous and great food was terrible

nsubjdet
acomp
amod

conj
cc nsubj acomp

staff was but

cc

The

3V3,10
Q

self acompnsubj cc conj

3K

+

conj self acomp

Scaled Dot-Product

Attention

10V

10

3,10e

10K

+

3

3,10e [:]

. .
+

3,10e

3,10z

conj nsubj

1 −

conj

3 3,2 3,3 3,5 3,8 3,10{ ,  ,  ,  ,  }e e e e e e=

3 1 4 7 5[0, , ,0, ,0,0, ,0, ,0]r r r r r 5 3 1 4[0,0, ,0,0,0,0,0, , , ]r r r r

[0,0, ,0,0,0 ]1 1,0,0, 1,1,[0, , ,0, ,0,0, ,0, ,0]1 1 1 1 1

3R =

3A = 10A =

10R =

3 3,2 3,3 3,5 3,8 3,10{ ,  ,  ,  ,  }z z z z z z=

3,10 conje

10 3,10 9,10 10,10 11,10{ ,  ,  ,  }z z z z z=

10 3,10 9,10 10,10 11,10{ ,  ,  ,  }e e e e e=3,10z

3,10
Q

Fig. 3. Illustrative example of AEA to learn edge representations with de-
pendency types. The dependency type “self” denotes the edge between
a word itself.

in a dependency tree and encoded into the word-pair repre-
sentation as an extra feature. Finally, the adjacent inference
strategy is used to iteratively predict the tag of each word
pair from those of its adjacent word pairs. The details of
each component are described as follows.

3.1 Context Encoder
To obtain the contextual word representations for each
sentence, 300-dimensional GloVe [45] vectors are used as
the initial word embeddings {w1, w2, · · · , wN}, where wi
denotes the word vector of word xi. A bidirectional LSTM
(BiLSTM) model [46] is then used as a context encoder to
produce the hidden representations of the word vectors,
defined as

(
⇀

hi,
⇀
c i) = LSTM(wi,

⇀

hi−1,
⇀
c i−1)

(
↼

hi,
↼
c i) = LSTM(wi,

↼

hi+1,
↼
c i+1) (1)

where
⇀

hi ∈ Rdh/2 and
↼

hi ∈ Rdh/2 respectively denote
the forward and backward hidden representations of wi,
⇀
c i and ↼

c i respectively denote the forward and backward
LSTM unit states, and dh denotes the dimensionality of the
hidden representations. The forward and backward hidden
representations are then concatenated to comprise the final
hidden representations, defined as

hi = [
⇀

hi :
↼

hi] (2)

where hi ∈ Rdh denotes the final hidden representations of
wi, and [:] denotes a concatenation operation.

3.2 SA-Transformer
Once we obtain the contextual hidden representations of
each word, SA-Transformer encodes syntactic dependency

information into them in three steps: representation of the
dependency structure, learning of edge representations with
dependency types using AEA, and injection of edge rep-
resentations into contextual representations. The details of
each step are described as follows.
Dependency Structure Representation. A given sentence
is first parsed as a dependency tree. Each dependency is
represented as a tuple (xi, xj , ri,j), where ri,j denotes the
dependency type between the words xi and xj . The de-
pendency structure can then be represented as an adjacency
matrix A and relationship matrix R, where A = {ai,j ∈
{0, 1}} ∈ Rn×n records whether an edge exists between
two words, and R = {ri,j} ∈ Rn×n records the dependency
type of each edge. Both A and R are symmetric matrices.
Adjacent Edge Attention (AEA). Both adjacency matrix
A = {ai,j} ∈ Rn×n and relationship matrix R = {ri,j} ∈
Rn×n are taken as input to learn the edge representations
E = {ei,j} ∈ Rn×n×d, where ei,j ∈ Rd denotes the
representation of the edge between words xi and xj , and
d is the dimensionality of the edge representations. To
accomplish this goal, an embedding layer is first applied
to map R = {ri,j} ∈ Rn×n to obtain the initial edge
embeddings Z = {zi,j} ∈ Rn×n×dz , where zi,j ∈ Rdz
denotes the initial edge embedding of ei,j ∈ Rd, and dz
is the dimensionality of the initial edge representations.
Each edge representation ei,j is determined based on the
dependency types of the edges adjacent to xi and xj . In the
example shown in Fig. 3, to learn the edge representation
e3,10 = conj, the AEA first looks up the matrices A = {ai,j}
and R = {ri,j} to identify the edge representations adjacent
to x3 = was, i.e., e3 = {e3,2, e3,3, e3,5, e3,8, e3,10} with
dependency types {nsubj, self, acomp, cc, conj}, and those
adjacent to x10 = was, i.e., e10 = {e3,10, e9,10, e10,10, e11,10}
with dependency types {conj, nsubj, self, acomp}. AEA then
takes the initial edge embeddings z3,10, z3 and z10 as inputs,
uses scaled dot-product attention to learn the hidden edge
representation ẽ3

3,10 based on e3 and ẽ10
3,10 based on e10, and

finally uses a gate function to combine ẽ3
3,10 and ẽ10

3,10 as the
final representation of e3,10. By considering the dependency
types of the adjacent edges, even two edges with the same
dependency type can have different representations and
weights.

The formal description of AEA is presented as follows.
Let zi,j and zi be the initial edge embeddings of ei,j and ei,
respectively (i.e., the adjacent edge representations of xi);
thus, the AEA learns the hidden representation ẽii,j as

ẽii,j = AEA(zi,j , zi) = [U i,1i,j , U
i,2
i,j , · · · , U

i,M
i,j ]Wz (3)

where ẽii,j ∈ Rdz denotes the hidden representation of ei,j
learned from its adjacent edge representations ei, Wz ∈
Rdz×dz is a trainable weight matrix, and U i,mi,j ∈ R1×de

in [U i,1i,j , U
i,2
i,j , · · · , U

i,M
i,j ] denotes the edge representation

learned by the m-th attention head of scaled dot-product
attention, defined as

Umi,j = softmax(Ai ·
Q̃mi,j(K̃

m
i )

T

√
de

)Ṽ mi (4)
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Q̃m
i,j

= WQ̃zi,j

K̃m
i = WK̃zi (5)

Ṽ mi = WṼ zi

where Q̃mi,j ∈ R1×de denotes a query regarding the current
edge representation zi,j , K̃m

i ∈ Rn×de and Ṽ mi ∈ Rn×de
respectively denote the key and value both regarding the
adjacent edge representations zi of zi,j , WQ̃ ∈ Rde×dz ,
WK̃ ∈ Rde×dz , and WṼ ∈ Rde×dz are trainable weight
matrices, de = dz/M is the dimensionality of the edge
representations in each head, Ai ∈ Rn×1 denotes a mask
vector used to help Q̃mi,j query the key K̃m

i to identify the
edges connected to xi in the value Ṽ mi , and softmax( · )
denotes the attention weights for these adjacent edges of
xi, which can be obtained in the training process according
to their contribution to learning the current edge represen-
tation. The attention weight is then used to aggregate the
adjacent edge representations of xi in Ṽ mi to generate the
edge representation of the m-th attention head U i,mi,j . By
concatenating the edge representations of all attention heads
using Eq. (3), the hidden representation ẽii,j can be obtained.

Similarly, the hidden representation ẽji,j can be learned
from ej (i.e., the adjacent edge representations of xj) using
Eqs. (3)-(5) with zi,j and zj as inputs. Once ẽii,j and ẽji,j are
obtained, the AEA uses a gate function to combine the two
hidden edge representations as the final representation of
ei,j . That is,

ei,j = αẽii,j + (1− α)ẽji,j (6)

α = σ(Wr([ẽ
i
i,j : ẽji,j ]) + br) (7)

where α is a combination coefficient, σ is the sigmoid
activation function, [:] is a concatenation operation, and
Wr ∈ R1×2d and br ∈ R1 are the trainable weight and bias,
respectively.
SA-Transformer. Once the edge representations E =
{ei,j} are learned according to the dependency types,
SA-Transformer adds them into contextual word repre-
sentations. SA-Transformer is composed of L similar lay-
ers, i.e., S = [S

(1)

, S
(2)

, · · · , S(L)

]. Each layer S(l) =

[S
(l)

1 , S
(l)

2 , · · · , S(l)

n ] represents the contextual representa-
tions of the words in the sentence, which are computed by
combining the hidden representations of the current layer
S̃(l) and the output of the previous layer S(l−1) using layer
normalization. That is,

S(l) = LayerNorm(S̃(l) + S(l−1)) (8)

Note that S0 = h is the hidden word representation output
by the context encoder. The hidden representations of each
layer S̃(l) are generated by injecting the edge representa-
tionsE = {ei,j} into the output of the previous layer S(l−1),
defined as

S̃(l) = SA− Transformer(S(l−1), E)
= [D1, · · · , DG]Ws

(9)

where Dg = [Dg
1 , D

g
2 , · · · , Dg

n] ∈ Rn×ds denotes the word
representations of all words learned by the g-th attention

head, and Ws ∈ R(G·ds)×dh denotes the output linear pro-
jection. Each word representation Dg

i in Dg is injected with
the edge representations by a scaled dot-product attention,
defined as

Dg
i = softmax(Ai ·

Qgi (K
g
i )
T

√
ds

)V gi (10)

Qgi = WQS
(l−1)
i (11)

Kg
i = WKS

(l−1) + βWe,kei (12)

V gi = WV S
(l−1) + βWe,vei (13)

where Qgi ∈ R1×ds denotes a query regarding S(l−1)
i , which

represents the current word representation of xi in the (l-1)-
th layer; Kg

i ∈ Rn×ds and V gi ∈ Rn×ds denote the key and
value, respectively, regarding S(l−1) and ei, which represent
the word representations of all words in the (l-1)-th layer
and adjacent edge representations of xi, respectively; β
is a balance coefficient; WQ ∈ Rds×dh , WK ∈ Rds×dh ,
WV ∈ Rds×dh , We,k ∈ Rds×d, and We,v ∈ Rds×d are
trainable weight matrices; ds = dh/G is the dimensionality
of the word representations in each head; and Ai ∈ Rn×1

denotes a mask vector used to help Qgi query Kg
i identify

both the words and edges connected to xi in V gi . For
each word connected to xi, the contextual representation
in S(l−1) is enhanced by combining its corresponding edge
representation in ei using β. These syntax-enhanced word
representations are then aggregated using the attention
weight softmax( · ) to generate the word representation of
xi in the g-th attention head Dg

i .

3.3 Syntactic Relative Distance
Once the dependency types are incorporated into the con-
textual word representations, the syntactic relative distance
between words [47] is further introduced as an extra feature
to enhance word pair representations. The syntactic relative
distance between two words, denoted as dist(xi, xj), is
calculated by the number of hops in the path from word
xi to xj in a dependency tree. As the example shows
in Fig. 2, there are 4 hops between great to food, i.e.,
dist(great, food) = 4.

The representation of the syntactic relative distance be-
tween words, denoted as fd(i, j) ∈ Rdd , is generated using
an embedding layer with dist(xi, xj) as input, where dd is
the dimensionality of the syntactic relative distance repre-
sentation. The representation of a word pair (xi, xj) is gen-
erated based on the representations of the two words output
by SA-Transformer, i.e., S

(L)

i and S
(L)

j . The syntactic relative
distance representation is then concatenated with the word
pair representation to generate the final representation of the
word pair, denoted as S

(L)

i and S
(L)

j . The syntactic relative
distance representation is then concatenated with the word
pair representation to generate the final representation of
the word pair, denoted as

oi,j = [S
(L)
i : S

(L)
j : fd(i, j)] (14)

where oi,j ∈ R2dh+dd denotes the final representation of
the word pair (xi, xj), and [:] denotes a concatenation
operation.
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Fig. 4. Illustrative example of the adjacency inference strategy.

3.4 Adjacency Inference

The last step is to predict the relation tag of each word pair
in the sentence as one of the six classes: aspect term (A),
opinion term (O), positive (Pos), negative (Neg), neutral
(Neu), and no relation (N). Generally, each word pair is
predicted independently without considering other word
pairs. In fact, other word pairs, such as adjacent word pairs,
also contribute to tag prediction, especially for multiword
aspect/opinion terms. Considering the example sentence in
Fig. 4, both the aspect term vegetable salad and opinion term
well done consist of two words. Each element in the matrix
denotes a word pair representation, and the red rectangle
contains the word pair representations for the two-word as-
pect and opinion terms, i.e., (vegetable, well), (vegetable, done),
(salad, well), and (salad, done). Any of the four word pairs
can be predicted using the information provided by the
other three. For instance, suppose that the model correctly
predicts the first three word pairs as (vegetable, well, Pos),
(vegetable, done, Pos), and (salad, well, Pos) but incorrectly
predicts the last one as no relation (salad, done, N). The three
correctly predicted adjacent word pairs provide useful in-
formation that done is highly likely to be an opinion term of
salad with a positive sentiment. The model can thus correct
the prediction of (salad, done, N) as (salad, done, Pos) in the
next prediction iteration.

Based on this notion, we devise an adjacency inference
strategy that can predict the tag of each word pair by
leveraging the predicted results of its adjacent word pairs to
effectively extract the triplets for multiword aspect/opinion
terms. Given a word pair (xi, xj), the adjacency inference
calculates its tag probability distribution of the six classes
{A, O, Pos, Neg, Neu, N} using an iterative process, defined
as

pti,j = γtcti,j + (1− γt)(c̃ti,j)
γt=σ(Wp[c

t
i,j : c̃ti,j ])

(15)

where pti,j denotes the final tag probability distribution of
(xi, xj) in the t-th iteration, which is calculated by combin-
ing its current tag probability distribution cti,j and that of
its adjacent word pairs c̃ti,j using a balance coefficient γt, σ
denotes a sigmod function,Wp ∈ R1×2dy denotes a trainable

TABLE 3
Statistics of datasets (#S, #T, #Pos, #Neu, #Neg, Mean, and Max

respectively denote the numbers of sentences, triplets, positive triplets,
neutral triplets, negative triplets, mean length and max length.)

Datasets #S #T #Pos #Neu #Neg Mean Max

Res14
Train 1259 2356 1693 172 491 17 79
Dev 315 580 427 46 107 17 66
Test 493 1008 784 68 156 16 70

Lap14
Train 899 1452 808 111 533 19 78
Dev 225 383 199 48 136 19 83
Test 332 547 364 67 336 16 71

Res15
Train 603 1038 799 29 210 15 68
Dev 151 239 181 9 49 15 39
Test 325 493 324 25 144 16 63

Res16
Train 863 1421 1036 55 330 15 68
Dev 216 348 263 8 77 15 56
Test 328 525 416 30 79 15 78

weight matrix, and [:] denotes a concatenation operation.
The adjacent tag probability distribution c̃ti,j is calculated as

c̃ti,j = Wo[c
t−1
i−1,j

: ct−1
i−1,j

: ct−1
i−1,j−1

] (16)

where ct−1
i−1,j

, ct−1
i−1,j

, ct−1
i−1,j−1

denotes the three adjacent tag
probability distributions of (xi, xj) in the (t-1)-th iteration,
Wo ∈ Rdy×3dy is a trainable weight matrix and dy = 6 is the
number of tags. The current tag probability distribution cti,j
is calculated as

cti,j = softmax(Wcõ
t
i,j + bc)

õti,j = Wõ[õ
t−1
i,j : pt−1

i,j
] + bõ (17)

where õti,j denotes the hidden representation of (xi, xj)
which is initialized by its word pair representation oi,j , i.e.,
õ0
i,j = oi,j , Wc ∈ Rdy×dh , and Wõ ∈ R(2dh+dd)×(2dh+dd+dy)

are trainable weight matrices, and bc ∈ Rdy and bõ ∈
R2dh+dd are trainable biases. After T iterations, the final
tag probability distribution of all word pairs is denoted as
pT = [pT1,1, p

T
1,2, · · · , pTn,1, · · · , pTn,n].

3.5 Training
The training objective is to minimize the cross-entropy error
of the ground-truth distribution Yi,j ∈ Y and the predicted
tag distribution pTi,j of all word pairs:

L(θ) =
Φ∑
φ=1

n∑
i=1

n∑
j=1

Y(φ)
i,j log(p

(φ),T
i,j |θ) (18)

where Φ and θ respectively denote the number of training
samples and all trainable parameters.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
To evaluate the proposed SA-Transformer, four ASTE bench-
mark datasets were used, including Rest14, Lap14, Rest15,
and Rest16, which mainly contain consumer reviews of
laptop computers and restaurants. These datasets have
been used for SemEval-2014 [48], SemEval-2015 [49] and
SemEval-2016 [50]. The statistics of the datasets are pre-
sented in Table 3.

The precision (P), recall (R), and micro F1-score (F1) are
used as evaluation metrics for triplet extraction. Compared
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TABLE 4
Hyperparameter settings.

Parameter Name Value
Maximum sequence Length 100

Batch Size 16
Initial Learning Rate 1e-3

Dimension of hidden state dh 200
Dimension of dd 100

Dimension of syntactic features dz 200
The keep dropout rate 0.2

with precision and recall, F1 is a more appropriate metric
because it considers both precision and recall. A triplet
is regarded as correctly predicted only if the predicted
aspect term, opinion term, and sentiment polarity match the
ground-truth aspect term, opinion term, and corresponding
polarity, respectively.

4.2 Baselines

The baseline models used for comparison include the
pipeline, multitask, and word-pair methods. The implemen-
tation details of each method are described as follows.
Pipeline Methods

• CLMA+ is the extended version of CLMA [16],
which proposes a coupled multilayer attention net-
work that can capture both direct and indirect rela-
tions between words to coextract aspect and opin-
ion terms. Peng et al. [9] modified this method
as CLMA+ by using CLMA in the first stage, fol-
lowed by pairing the extracted aspect and opinion
terms and identifying sentiment polarities to gener-
ate triplets.

• RINATE+ is an extended version of RINATE [17]
that uses a weakly supervised method to extract
aspect and opinion terms. It uses a set of extraction
rules mined based on the dependencies between
words to expand the training data for neural model
training. Peng et al. [9] modified this method as
RINATE+ using the same method as CLMA+.

• Li-unified-R+ is the extended version of Li-unified
[12], a unified method that implements a two-layer
stacked LSTM model to extract the aspect terms and
their sentiment polarities. Peng et al. [9] modified
this method as Li-unified-R+ by additionally extract-
ing the opinion terms in the first stage and pairing
the extracted terms to generate triplets in the second
stage.

• TSF [9] is a two-stage pipeline model for ASTE. In
the first stage, it extracts aspect terms, opinion terms
and sentiment polarities using the mutual influence
between aspect and opinion terms. A classifier is then
used to pair the extracted terms to generate triplets
in the second stage.

Multitask Methods

• OTE-MTL [18] uses a multitask learning framework
to jointly extract aspect terms, opinion terms and
sentiment polarities. It first uses a sequence tagging
strategy to extract aspect and opinion terms, then

predicts the sentiment polarities using a table filling
method, and finally applies a decoding process to
generate triplets based on heuristic rules.

• BMRC [19] proposes a bidirectional machine reading
comprehension framework with multiturn queries
that are designed to gather information useful for
extracting the aspect terms, opinion terms and sen-
timent polarities. The bidirectional structure can fur-
ther ensure that information can be gathered from
both the aspect-to-opinion and opinion-to-aspect di-
rections.

• Span-ASTE [20] proposes a span-level model that
can capture the span-to-span interactions instead of
word-to-word interactions between the aspects and
opinions for ASTE. It first enumerates all possible
aspect and opinion spans, then uses a dual-channel
span pruning strategy to filter out the invalid spans,
and finally determines the sentiment relations be-
tween each valid aspect span and opinion span.

• DE-OTE-BISDD [21] presents a method based on
double embeddings and bidirectional sentiment-
dependence detection. The double embeddings fuse
character- and word-level embeddings to obtain sen-
tence representations. Multitask learning is then ap-
plied to extract aspect and opinion terms, using
the bidirectional sentiment-dependence detector to
determine the sentiment polarities by leveraging in-
formation gathering from both aspect-to-opinion and
opinion-to-aspect directions.

• CopyMTL [22] presents a method to extract multiple
and overlapped triplets using a span copy mecha-
nism and a dual decoder. The span copy mechanism
can capture the multitoken aspect and opinion words
through multihead attention. The dual decoder is
used to generate aspect and opinion words sepa-
rately based on multitype information.

Word-Pair Methods

• GTS [23] pioneered the use of a grid tagging scheme
for ASTE. It first enumerates all possible word pairs
in a sentence and represents them as a grid. A clas-
sifier is then used to classify the relation tags of the
word pairs to generate the triplets.

• JET [24] converts the ASET task into a structured
prediction problem with a position-aware tagging
scheme to jointly extract triplets. It develops a joint
extraction model based on conditional random field
(CRF) and semi-Markov CRF, which can effectively
capture the interactions among aspect terms, opinion
terms and sentiment polarities based on factorized
features.

• S3E2 [25] proposes a graph neural network to
exploit the semantic and syntactic information for
ASTE. It first uses BiLSTM to learn the contextual se-
mantics of sentences and then encodes the syntactic
dependencies between words into graph representa-
tions to jointly extract the triplets.

• MAS [26] integrates syntactic dependencies into
graph neural networks for ASTE. It proposes a
pointer-specific tagging method to identify the rela-
tionships between the aspect and opinion terms. A
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TABLE 5
Experimental results for triplet extraction. Each model was run five times to report the average result. The best scores are in bold and the second

best are underlined.

Model Rest14 Lap14 Rest15 Rest16
P R F1 P R F1 P R F1 P R F1

Pipline Models

RINANTE+ 31.07 37.63 34.03 23.10 17.60 20.00 29.40 26.90 28.00 27.10 20.50 23.30
CMLA+ 40.11 46.63 43.12 31.40 34.60 32.90 34.40 37.60 35.90 43.60 39.80 41.60

Li-unified-R+ 41.44 68.79 51.68 42.25 42.78 42.47 43.34 50.73 46.69 38.19 53.47 44.51
TSF 44.18 62.99 51.89 40.40 47.24 43.50 49.97 54.68 46.79 46.76 62.97 53.62

Multitask Methods

OTE-MTL 64.54 55.57 59.67 54.18 45.20 48.97 58.16 54.02 55.83 48.17 42.43 45.05
BMRC - - 63.32 - - 48.15 - - 53.77 - - 63.16

Span-ASTE 72.52 62.43 67.08 59.85 45.67 51.80 64.29 52.12 57.56 67.25 61.75 64.37
DE-OTE-BISDD 68.57 59.17 63.53 56.17 46.20 50.70 61.54 48.43 54.21 65.20 61.34 63.21

CopyMTL 64.25 63.85 64.05 48.55 47.72 48.13 54.81 55.49 55.14 64.33 65.61 64.96

Word-Pair Methods

GTS 67.28 61.91 64.48 59.42 45.13 51.30 63.26 50.71 56.29 66.07 65.05 65.56
JET 61.50 55.13 58.14 53.03 33.89 41.35 64.37 44.33 52.50 70.94 57.00 63.21

MAS 70.70 64.20 67.30 60.50 47.10 53.00 64.70 53.70 58.70 67.40 63.30 65.30
S3E2 69.08 64.55 66.74 59.43 46.23 52.01 61.06 56.44 58.66 71.08 63.13 66.87

SA-Transformer 70.76 65.85 68.22 61.28 48.98 54.44 62.82 58.31 60.48 72.01 62.87 67.13

TABLE 6
Ablation study results of the proposed method. Each model was run five times to report its average result.

Model
Rest14 Lap14 Rest15 Rest16 Training

Time(s)
Test

Time(s)P R F1 P R F1 P R F1 P R F1
Proposed Model 70.76 65.85 68.22 61.28 48.98 54.44 62.82 58.31 60.48 72.01 62.87 67.13 4.28 0.85

GTS 67.28 61.91 64.48 59.42 45.13 51.30 63.26 50.71 56.29 66.07 65.05 65.56 2.58 0.51
Proposed Model w/o SA-Trans 68.01 62.32 65.03 59.32 45.77 51.67 63.01 50.59 56.12 66.33 64.74 65.53 2.79 0.54

Proposed Model w/o SA 68.56 62.78 65.54 59.18 46.14 51.85 62.35 53.13 57.37 67.81 64.21 65.96 3.62 0.71
Proposed Model w/o AEA 69.72 64.03 66.75 60.12 46.97 52.74 61.79 56.13 58.82 70.52 62.78 66.42 3.82 0.78
Proposed Model w/o SRD 70.12 64.58 67.23 60.77 47.69 53.44 62.05 57.96 59.94 71.01 62.32 66.38 4.12 0.83
Proposed Model w/o AF 70.25 65.12 67.59 60.29 48.19 53.57 60.79 58.21 59.47 71.29 62.32 66.48 3.74 0.75

triplet alignment scheme is then designed to extract
triplets by aligning the corresponding positions of
the aspect and opinion terms.

4.3 Implementation Details
The 300-dimensional GloVe [45] vectors were used as the
initial word embedding, and the uniform distribution of U
(-0.25, 0.25) was initialized to words that do not appear
in the GloVe vectors. The dimension dh of the hidden
state was set to 200. The spaCy1 with the en core web trf
version was used to parse each given sentence into a de-
pendency tree and then build both a relationship matrix
and an adjacency matrix from the dependency tree. Adam
[51] was used as the optimizer with a maximum learning
rate of 1e-3 and a decay factor of 0.5. The dimensions of
the syntactic relative distance embedding dd and syntactic
dependency features dz in AEA were 100 and 200, respec-
tively, which were initialized by the uniform distribution
of U(-0.5, 0.5). The grid search strategy was implemented
to select the optimal values for the model hyperparameters.
We ran each model five times and report the average results.
Table 4 summarizes the hyperparameter settings of the
proposed method. The code of this paper is available at:
https://github.com/YuanLi95/SA-Transformer-for-ASTE.

4.4 Comparative Results
Table 5 summarizes the comparative results of the proposed
model and previous methods in terms of P, R, and F1. For

1. https://spacy.io/models

F1, both the multitask (OTE-MTL, BMRC, Span-ASTE, DE-
OTE-BISDD, and CopyMTL) and word-pair models (GTS,
JET, S3E2, and MAS) notably outperformed the pipeline
models (RINANTE+, CMLA+, Li-unified-R+, and TSF) for
all datasets since the joint prediction of subtasks can signifi-
cantly address the error propagation in the pipeline models.
In addition, the word-pair models outperformed the mul-
titask models for most datasets, indicating that word-pair
classification can effectively extract the relationships for the
nested labels.

The proposed SA-Transformer outperformed the previ-
ous methods with respect to F1 for all datasets. There are
three possible reasons to explain this. First, SA-Transformer
incorporates the knowledge of dependency types into con-
textual word representations and thus can effectively reduce
the number of syntactically irrelevant word pairs. Second,
AEA enables the model to learn an appropriate representa-
tion for the dependency type of each edge, and the syntactic
relative distance further learns the syntactic and positional
information between words. Third, the adjacent inference
can iteratively refine the predicted tag distribution of each
word pair according to those of its adjacent word pairs and
thus can more effectively extract the triplets for multiword
aspect/opinion terms.

4.5 Ablation Studies

Ablation studies were conducted to investigate the effec-
tiveness of each component in the proposed model: SA-
Transformer, adjacent edge attention (AEA), syntactic rel-
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(a) Layer number L of SA-Transformer. (b) Number of inferences T . (c) Balance coefficient β.

Fig. 5. The effect of different parameters on different datasets.

TABLE 7
Effects of using different parsing toolkits for triplet extraction.

Parsing Toolkits English PTB F1
Rest14 Lap14 Rest15 Rest16

Random - 57.92 46.06 49.17 55.45
Deep biaffine 95.74 67.75 54.01 60.85 66.57

En core web sm 92.01 66.48 53.49 59.36 66.26
En core web trf 95.1 68.22 54.44 60.48 67.13

ative distance (SRD), and adjacent inference (AF). Table
6 shows the ablation results with the GTS model as the
baseline. The various ablation models produced different
degrees of performance decline, indicating that each com-
ponent makes its own unique contribution to the proposed
model. By removing the entire SA-Transformer (w/o SA-
Trans), i.e., removing both the syntactic dependency module
and transformer architecture, the proposed method was
degraded to become similar to the GTS model, which thus
caused the largest performance decline. Instead of removing
the entire SA-Transformer, we replaced the SA-Transformer
with the vanilla transformer [52] to retain the transformer
architecture while removing the syntactic dependency mod-
ule (w/o SA). This also resulted in a sharp performance
decline, indicating that encoding the dependency type in-
formation into the weight and distribution can improve
the model’s ability to learn the relationships between word
pairs.

In addition, the removal of AEA (w/o AEA) also re-
sulted in a decline in performance because AEA can learn
appropriate edge representations to achieve more accu-
rate graph propagation. Although the model can work
properly without SRD and AF, the performance still de-
creased because SRD can further capture syntactic and
positional information, and AF can better handle multiword
aspect/opinion terms.

To further investigate the computational cost of each
component, the last two columns in Table 6 show the
average training and test times per epoch across all datasets
for each component. For w/o SA-Trans, the computational
cost was reduced by 46% (1.49 seconds) because of removal
of the entire SA-Transformer, which thus required a lower
computational cost similar to that of GTS. For w/o SA,
the computational cost was reduced by 15% (0.66 second)
because of removal of the syntactic dependency module,
namely, both the adjacency matrix and relationship matrix

used for dependency structure representation and their
related operations. For w/o AEA, the computational cost
was reduced by 11% (0.46 second) which is lower than
that of w/o SA because only the adjacency matrix and its
related operations were removed. Once the adjacency matrix
is removed, the weight and representation of each edge
can only be learned using the relationship matrix according
to its contribution to the prediction and cannot be learned
from its adjacent edges. For w/o SRD, it produced the least
reduction in computational cost of 4% (0.16 second) among
all components, indicating that calculating the syntactic
relative distance to enhance the word pair representation
is efficient. For w/o AF, it reduced computational cost by
13% (0.54 second) because it removed the inference strategy
that can predict from the adjacent word pairs.

4.6 Effects of Dependency Parsing
To investigate the effects of using different depen-
dency parsing toolkits for triplet extraction, we se-
lected three dependency parsers including Deep biaffine
[53], En core web sm and En core web trf. Deep bi-
affine uses biaffine attention to predict the dependencies
and their types between words. En core web sm and
En core web trf represent different versions of the Spacy
toolkit, which respectively use the token2vector and a trans-
former such as RoBERTa [54] as the context encoder. A
random parser was also implemented to randomly generate
a dependency tree for each sentence. Since En core web trf
was used in the previous experiments, this experiment
replaced it with the other three parsers to rerun the exper-
iment on triplet extraction. Table 7 shows the comparative
results. The parsing performance on the English Penn Tree-
bank (PTB) is also provided for reference. The results show
that the three parsers Deep biaffine, En core web sm,
and En core web trf achieved comparable results, and
all significantly outperformed Random. This indicates that
randomly generated dependencies and their types contain
many errors that degrade the extraction performance, while
the parsed results of the other three parsers can still main-
tain the extraction performance at a certain level.

4.7 Effects of Parameters
Since we used L layers in SA-Transformer, we investigate
the effect of the number of layers on the performance of the
proposed model, as presented in Fig. 5(a). As indicated, the
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(a) Rest14 (b) Lap14

(c) Rest15 (d) Rest16

Fig. 6. Performance change of removing different dependency types.

best performance was achieved at L=2 on Rest14, Lap14,
and Rest15, and L=3 on Rest16.

Furthermore, we investigate the effect of the number of
inferences T over the range of 0 to 3 for all datasets. As
presented in Fig. 5(b), the best performance was achieved
at T=2 on Rest14, Lap14, and Rest15 and T=3 on Rest16.
T=0 means that AF is not used and the proposed model
will degenerate to SA-Transformer w/o AF, thus performing
worst for all datasets.

In addition, Fig. 5(c) presents the influence of the balance
coefficient β in Eqs.(12) and (13). β = 0 means that none of
the syntactic dependency information is incorporated into
the contextual word representations, thus performing worst
for all datasets. The best performance was achieved at β =
0.5 on Lap14 and Rest16 and β = 1 on Rest14 and Res15.

4.8 Effects of Dependency Types

Different dependency types may yield different contribu-
tions to prediction performance. To investigate their effects,
we removed one dependency type at a time to examine the
performance change. Fig. 6 shows the change in F1-scores
after removing the top 12 most frequently occurring depen-
dency types in the datasets. The results show that most de-
pendency types (e.g., nsubj, acomp, conj etc.) yield a positive
contribution because removing them led to a certain degree
of performance decline. Only selected dependency types
(e.g., cc) caused a negative contribution to performance.
For example, the dependency types nsubj and acomp are

highly useful features because they can capture the subject-
object relation between the aspect and opinion words (e.g.,
(staff, courteous) and (food, terrible) in Fig. 1). Conversely, the
dependency type cc typically captures redundant relations
(e.g., (was, but) and (courteous, and) in Fig. 1).

4.9 Case Study
To further explain the effectiveness of the proposed SA-
Transformer, three test examples were selected from Rest14
and Rest15 for the case study. Table 8 shows the golden
triplets, the predicted triplets of GTS, S3E2 and our model,
and the dependency structure of the three test examples.
In the first example, GTS correctly extracts the aspect term
food with the opinion term cold and the corresponding sen-
timent polarity. However, the word pair (food, soggy) is not
considered a triplet because the distance between soggy and
food is too far. It is difficult for GTS to effectively learn the
potential relationship between them. S3E2 and our model
correctly predict all the triplets because both incorporate
syntactic dependencies and thus can effectively aggregate
syntax-related information during prediction.

In the second example, the irrelevant context word great
is equally close to the aspect term ambiance as it is to the
opinion term good. GTS regards both great and good as
opinion terms for ambiance, thus producing the incorrect
triplet (ambiance, great, Pos). The same situation occurs for
S3E2. After several iterations, GTS associates the aspect
term ambiance with the irrelevant word refined, thus mis-
takenly predicting (ambiance, refined, Pos) as a triplet. The
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TABLE 8
Case study. The aspect and opinion terms are respectively highlighted in orange and blue. The red line and the blue dotted line respectively

indicate the predicted triplets and missed correct triplets.

GTS
The arrived 20minutes after I called cold and soggyfood

Neg
×

Neg
Neg

The arrived 20minutes after I called cold and soggyfood
S3E2

Neg
Neg

The arrived 20minutes after I called cold and soggyfood

SA-Transformer

det nsubj cc
conjadvcl

advcl

The arrived 20 minutes after I called cold and soggyfood

Syntax Dependency

(a): The Golden Triplets of first sentence is [(food, cold, Neg), (food, soggy, Neg)].

GTS
Pos

Pos× Pos

×

service is and the ambiance is goodrefined great for a dateThe

S3E2
Pos

Pos× Pos

Pos

service is and the is goodrefined great for a dateThe ambiance

SA-Transformer
Pos

Pos

Pos

service is and the is goodrefined great for a dateThe ambiance det nsubj

conj

acomp
conj

det nsubj acomp
pobj

service is and the is goodrefined great for a dateThe ambiance

Syntax Dependency

cc prep det

(b): The Golden Triplets of the second sentence is [(service, refined, Pos), (service, great, Pos), (ambiance, good, Pos)].

Neg

Pos

×

is and food is notrotten the greatold

Neg

Decor

GTS

Neg

NegNeg

Neg

×

is and food is notrotten the greatoldDecor

S3E2

Neg

Neg

Neg

Neg
is and food is notrotten the greatoldDecor

SA-Transformer

nsubj

conj

acomp
conj

det nsubj
acomp

neg

is and food is notrotten the greatoldDecor

Syntax Dependency

cc

(c): The Golden Triplets of the third sentence is [(Decor, old, Neg), (Decor, rotten, Neg), (food, not great, Neg)].

Fig. 7. Visualization of the attention of a given sentence.

proposed SA-Transformer model can avoid the generation
of the incorrect triplet (ambiance, refined, Pos) because it
can assign different weights to different edges even if they
have the same dependency type. For instance, it can assign
a lower weight to the conj between is and is to block
inappropriate propagation from refined to ambiance. It can
also assign a higher weight to the conj between is and great
to successfully aggregate information between service and
great.

In the third example, the opinion term not great consists
of multiple words. Both GTS and S3E2 fail to completely
extract the opinion term. SA-Transformer can do this be-
cause it applies adjacent inference to deal with multiword
aspect/opinion terms. For this case, the sentiment polarity
of the word pair (food, great) is correctly predicted as neg-
ative by learning the predicted result of its adjacent word
pair (food, not).

4.10 Visualization
To further demonstrate how SA-Transformer improves the
ASET task, we select the second example in Table 8 to
visualize the attention weights of its words, as shown in
Fig. 7. For the example sentence, SA-Transformer correctly
predicts the tag of (service, refined) as positive because it
assigns a higher weight to nsubj and acomp (black lines)
and thus can effectively align service with refined through
two graph propagation iterations. The above situation also
occurs in the case of (ambiance, good). On the other hand,
although the two edges conj between is and is and conj
between refined and great have the same dependency type,
they are assigned different weights (respectively lower and
higher). This example demonstrates that learning edge rep-
resentations for each edge by querying its adjacency edges
can obtain more appropriate weights and representations
and thereby result in more accurate graph propagation.

5 CONCLUSIONS
This study proposes a syntax-aware transformer that can
encode dependency type information into both edge and
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word representations to improve graph neural networks
for ASTE. By encoding the dependency types into edge
representations, the proposed method can learn different
representations and weights for different edges, even for
those with the same dependency type, thus achieving more
accurate graph propagation. Incorporating edge represen-
tations into contextual word representations can further
learn syntactic and positional relationships between words
to enhance word pair representations. To effectively extract
triplets for multiword aspect/opinion terms, an adjacency
inference strategy is developed to iteratively predict the tag
of each word pair from the predicted results of its adja-
cent word pairs. Experiments on four benchmark datasets
demonstrate the effectiveness of the proposed method. A
series of experiments was also conducted for in-depth anal-
ysis, including an ablation study that showed that each
component contributes to triplet extraction; a dependency
parsing experiment that examined the effects of using differ-
ent dependency parsing toolkits on extraction performance;
a case study that presented several missed and correctly
extracted triplets to discuss the effectiveness and limitations
of different methods; and a visualization experiment that il-
lustrated the attention weights of each dependency type for
an example sentence to explain how the proposed method
can accomplish proper graph propagation through weight
assignment.

Future work will focus on incorporating other useful
external knowledge to improve graph propagation and con-
sider long-range information between word pairs to extend
the adjacent inference strategy. Another direction is to in-
vestigate recent advancements in ABSA tasks such as large
language models (LLMs) [55], prompt-based methods [56]
and neurosymbolic AI frameworks [57] to improve ASTE.
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