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Adversarial Domain Generalized Transformer for
Cross-Corpus Speech Emotion Recognition

Yuan Gao, Longbiao Wang, Jiaxing Liu, Jianwu Dang, and Shogo Okada ,

Abstract—Speech emotion recognition (SER) promotes the development of intelligent devices, which enable natural and friendly
human-computer interactions. However, the recognition performance of existing approaches is significantly reduced on unseen
datasets, and the lack of sufficient training data limits the generalizability of deep learning models. In this work, we analyze the impact
of the domain generalization method on cross-corpus SER and propose an adversarial domain generalized transformer (ADoGT),
which is aimed at learning a shared feature distribution for the source and target domains. Specifically, we investigate the effect of
domain adversarial learning by eliminating nonaffective information. We also combine the center loss with the softmax function as joint
supervision to learn discriminative features. Moreover, we introduce unsupervised transfer learning to extract additional features, and
incorporate a gated fusion model to learn the complementary information of the features learned by the supervised feature extractor
and pretrained model. The proposed transformer based domain generalization method is evaluated using four emotional datasets. We
also provide an ablation study of different domain adversarial model structures and feature fusion models. The results of comparative
experiments demonstrate the effectiveness of the proposed ADoGT.

Index Terms—Speech emotion recognition, cross-corpus, adversarial learning, domain generalization.
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1 INTRODUCTION

HUMAN-computer interactions have become pervasive
in our daily lives, and understanding human emo-

tion is crucial for the development of intelligent devices
[1]. Therefore, research on sentiment analysis and emotion
recognition has attracted increasing attention in both indus-
try and academia [2]. Speech emotion recognition (SER) is
aimed at identifying emotional attributes in human speech,
and a robust SER system can promote the development of
empathetic chatbots and enrich the manual service of call
centers [3]. This research also has other applications, such as
monitoring the attention status of students in online courses,
tracking the emotional state of patients with depression
and providing advice about their diagnoses [4]. Previous
studies designed empirical low-level descriptors (LLDs) for
emotion classification [5]. In recent years, some researchers
have found that deep learning based models such as convo-
lutional neural networks (CNNs) and recurrent neural net-
works (RNNs) show promising results in SER tasks without
expert knowledge [6], [7], [8].

Despite the recent progress in SER research, two bottle-
necks limit the recognition accuracy of existing cross-corpus
approaches. The first bottleneck is the lack of sufficient
labeled training data [9]. Compared with other speech signal
processing tasks such as automatic speech recognition, col-
lecting and annotating speech data with emotional labels in
natural environments is time-consuming. The number of ut-
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terances in most emotional datasets is not sufficient to train
robust deep learning models [10]. The second bottleneck is
how to extract discriminative features from speech signals.
As human emotion is sometimes ambiguous, extracting
optimal features from acoustic signals requires considerable
attention [11]. Moreover, in cross-corpus evaluations, the
emotional information in speech is difficult to learn due to
variations in the domain information [12]. Because of this
domain divergence, common deep learning models show
poor performance on unseen datasets [13]. Most of the
existing approaches are trained and tested with the same
dataset, and the performance is significantly reduced on
unseen datasets [14].

To address the lack of annotated emotional data, we
use two types of feature extractors: 1) CNNs have shown
promising performance in extracting emotional discrimi-
native features for SER. Thus, we use a deep CNN ar-
chitecture as the feature extractor in our baseline system
to learn the spatial information of input utterances. 2)
We pretrain an unsupervised convolutional autoencoder to
transfer prior knowledge and extract bottleneck features as
additional inputs for emotion classification. In this study, to
improve the generalizability of the SER system, we propose
the adversarial domain generalized Transformer (ADoGT),
which effectively reduces the domain divergence between
the training and test data and obtains more effective feature
representations for each input utterance. Previous studies
have identified that emotional information can be lost after
feature compression [15]. Our proposed Transformer based
feature encoder can retain sufficient emotional information
from different feature distributions and achieve dimension
reduction through multihead attention [16]. Furthermore,
we incorporate a gated fusion model with our feature ex-
tractor to learn the complementary information in the two
branches of the feature extractor. To address domain mis-
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match issues, researchers often use the adversarial domain
adaptation method to transfer the domain representation
from the source domain to the target domain [17]. In this
study, we incorporate a domain adversarial neural network
(DANN) to eliminate the speaker, corpus, and other domain
information of the latent representation. Domain adaptation
is achieved by reversing the gradient between the feature
extractor and the domain classifier [18], which enables
our model to maximize the training loss of nonaffective
information. Moreover, in previous works, emotion classi-
fiers commonly used the softmax loss function to identify
decision boundaries and separate different emotions [19],
[20]. We incorporate the center loss [21] with an emotion
classifier to learn more cohesive features for SER. Therefore,
the proposed model can learn a shared feature distribution
for the source and target domains and thus achieve domain
generalization in cross-corpus SER tasks.

The main contributions of this paper can be summa-
rized as follows: (1) We address the domain divergence in
cross-corpus SER by the proposed domain generalization
method, which combines domain adversarial learning and
center loss to generalize the feature distributions of different
domains. (2) Our model incorporates the gated fusion model
with the Transformer encoder to effectively combine the
feature representation of the supervised and unsupervised
feature encoder. (3) We analyze the domain generalization
performance in addressing language mismatch issues and
different elicitation types to meet real-world scenarios. (4)
We explore the impact of different DANN subtasks in
multi-domain SER and compare the domain classifier in
the DANN with multi-task learning classifiers to analyze
the effect of domain adversarial learning. The remainder of
this paper is organized as follows: We provide a literature
review of cross-corpus SER in Section 2. Then, we describe
the details of our proposed algorithm in Section 3. The emo-
tional datasets and experimental settings are presented in
Section 4. In Section 5, we provide comparative experiments
to evaluate the effectiveness of our model. We conclude this
paper and outline our future work in Section 6.

2 RELATED WORKS

2.1 Cross-Corpus Speech Emotion Recognition
In real-world scenarios, several paralingual factors impact
the acoustic features of speech signals, making it difficult
for common machine learning models to learn emotional in-
formation in speech [22]. The mismatches between different
datasets affect the performance of existing SER systems. Do-
main mismatch has various causes, including the language,
recording conditions, and elicitation methods [12]. Another
problem for SER is data sparsity. Since recording and an-
notating emotional speech is time consuming, the training
data are often not sufficient to build robust SER systems.
Compared with other speech signal processing tasks such
as speech recognition, the limited data in SER tasks worsens
the domain divergence problem [23]. Moreover, the ground
truth cannot be objectively defined since the emotional
labels are derived from perceptual evaluations and usually
vary among annotators. To improve the generalizability of
SER, researchers have focused on cross-corpus and multi-
corpus evaluations [24], [25], [26].

In [12], Schuller et al. selected six existing datasets to ex-
plore the impact of the feature selection strategy and address
different emotion annotations in cross-corpus SER tasks. To
address mismatched acoustic conditions between the train-
ing and test data, the authors investigated several normal-
ization methods, including speaker, corpus, and speaker-
corpus normalization. Their experimental results showed
that speaker normalization led to the best performance.
Zhang et al. [27] also investigated normalization methods
and introduced unsupervised learning to handle data spar-
sity. They proposed that when each corpus is individu-
ally normalized, the introduced normalization layers can
effectively mitigate the differences among the two datasets.
Other publications proposed different kinds of support
vector machine (SVM) structures to address the feature
distribution mismatch. Hassan et al. [28] proposed modeling
the mismatches as a covariate shift. They employed three
transfer learning algorithms that apply importance weights
(IWs) within an SVM classifier to reduce the effects of co-
variate shifts. Abdelwahab et al. [29] investigated adaptive
and incremental SVMs to reduce the variability in the fea-
ture distribution. Their proposed approaches improved the
classification performance, even when only a small portion
of labeled data was available for adaptation. To generalize
the model to unseen languages, Albornoz et al. [30] applied
decision-level fusion to improve the recognition accuracy of
the SVM classifier. Their system improved the performance
of the SER system, even when no data in the target language
was available to train the model.

More recently, researchers analyzed deep learning mod-
els in cross-corpus SER. In [31], the authors investigated
the performance of deep belief networks (DBNs) for cross-
corpus SER. They conducted experiments on five emotional
datasets and showed that DBNs can learn from many
training languages, showing promising performance in SER
tasks. Their findings are useful for SER in low-resource
languages. In [32], the authors evaluated CNNs and long
short-term memory (LSTM) networks using six different
speech emotion corpora. Their results indicated that the
CNN based model showed better performance on cross-
corpus data than the LSTM model. However, since no
conclusions can be drawn regarding the extent to which
the SER system can generalize across different languages,
researchers need to focus on cross-language SER.

2.2 Adversarial Domain Adaptation

To address domain divergence in cross-corpus evaluations,
researchers have incorporated domain adaptation methods
to transfer emotional information from the source to the
target domain representation. In [33], Deng et al. proposed
a novel unsupervised domain adaptation method based on
adaptive denoising autoencoders for affective speech signal
analysis. They trained the denoising autoencoder using un-
labeled data from the target domain to learn more robust la-
tent representations. This model effectively and significantly
enhanced the emotion classification accuracy in mismatched
training and test conditions. In [34], the authors combined
a traditional autoencoder with an adversarial autoencoder
(AAE) to learn discriminative features from additional data
and improved the SER performance with only limited la-
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Fig. 1. Flowchart of the proposed Transformer based SER system. For the input utterances, we extract deep representations xc and xa from a CNN
and a pretrained autoencoder, respectively. We combine the features through the proposed adversarial domain generalized Transformer (ADoGT)
and generalize the feature distribution for emotion classification.

beled data. Other researchers proposed eliminating the mis-
match between training and testing samples by learning a
projection matrix [35]. These works aimed to transform the
speech signals in the source and target domains into a simi-
lar feature distribution subspace. Gideon et al. [36] proposed
adversarial discriminative domain generalization (ADDoG)
to learn shared feature representations for the training and
test data. They designed a multi-task learning model, which
train the model with auxiliary tasks and SER simtaneously.
They introduced a critic component as the auxiliary task to
encourage the representations of the different datasets to be
as close as possible. Their approach outperformed state-of-
the-art results in cross-corpus tasks, thus demonstrating the
effectiveness of the domain adaptation method.

To achieve domain adaptation and the main classifi-
cation task simultaneously, Ganin et al. [18] proposed a
domain adversarial neural network (DANN) that can be
trained using standard backpropagation algorithms. Their
proposed structure includes a standard feedforward net-
work and a domain classifier connected to the feature ex-
tractor through a gradient reversal layer. This layer reverses
the sign of the gradient during backpropagation, thus en-
suring that the feature distributions of the two domains are
indistinguishable. To build a robust SER system that can not
only generalize across speaker information but also other
domain information, Abdelwahab et al. [37] proposed ap-
plying domain adversarial learning and extracting common
representations between the training and test domains. They
used domain adversarial learning to extract discriminative
feature representations that leveraged unlabeled data in the
target dataset and reduced the mismatch between the source
and target domains. Their experiments demonstrate that
adversarial learning leads to significant improvements in
the performance of SER classifiers in which the model is
trained with only labeled data from the source domain.
This training strategy is aimed at mitigating the influence
of nonaffective information. In [38], we incorporated adver-
sarial domain adaptation and eliminated the influence of
speaker and corpus information. However, previous works
have mainly focused on acted speech. To investigate the per-
formance of our proposed domain generalization method
on improvised speech, we include spontaneous data in our
model evaluation. In this study, we also present a compre-
hensive ablation study on DANN subtasks in multi-corpus
conditions. Furthermore, we compare the performance of
the domain classifiers in the DANN and multi-task learning
structure to verify whether domain adversarial learning can

make the domain information unlearned to the model.

2.3 Transfer Learning in Affective Computing
Transfer learning is aimed at transferring prior knowledge
from different but related source domains to the target
domain. Previous publications [39] showed that pretraining
representations can effectively improve the robustness and
uncertainty of deep learning models. In previous research
on affective computing, Ng et al. [40] used a large image
dataset to pretrain a CNN based architecture and conducted
experiments with two kinds of fine-tuning schemes. The
experimental results showed that their model obtained sig-
nificant improvements over the baseline in facial emotion
recognition tasks. Kaya et al. [41] combined the pretrained
visual geometry group (VGG) model with a common feature
extractor to learn the visual features and then fused these
features with the audio features at the decision level to
realize multimodal emotion recognition. Their experiments
showed that the pretrained model can extract rich features
and shows significant improvements over the baseline fea-
tures. To mitigate the problem of data sparsity in SER,
researchers have also investigated several unsupervised
transfer learning approaches to transfer prior knowledge
from additional datasets. Various publications have shown
that autoencoders [42] obtain good performance on image
reconstruction tasks and have become widely used in many
fields [43], [44]. To extract latent representations for emis-
sion recognition, previous studies introduced pretrained
autoencoders to extract additional features from unlabeled
speech data. These studies evaluated different kinds of au-
toencoder structures for transferring emotional information
from the data utilized for automatic speech recognition [45].
Their models show consistent improvements over baselines
with the representations generated by different autoencoder
models. In previous works, the features extracted from
the pretrained model and feature extractor were usually
concatenated to improve the SER performance. In this work,
we investigate the impact of a pretrained model in cross-
corpus SER and focus on the complementary information of
these two kinds of features.

3 ADVERSARIAL DOMAIN GENERALIZATION

In this section, we describe the overall structure of our
approach. As shown in Figure 1, the proposed method is
trained in two steps: 1) Representation encoding. We use
two branches of feature extractors for feature encoding: a
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Fig. 2. Our proposed model consists of two parts: (1) Feature fusion. We use a gated fusion model to combine the features learned from the CNN
model and pretrained autoencoder. (2) Domain generalization. We modify the emotion classifier as a multi-task DANN network to reduce the domain
divergence and combine the center loss with the softmax function for joint supervision. In this Figure, xc and xa represent the features learned from
the supervised CNN model and unsupervised autoencoder model, respectively. After the Transformer encoder layers, these features are denoted
as Rc and Ra, respectively. We use LE and LD to represent the emotion and domain classification cross-entropy loss functions, and LC denotes
the center loss function.

supervised CNN architecture and an unsupervised CNN
autoencoder. To improve the performance of cross-corpus
SER, we combine the output features through our proposed
Transformer based gated fusion model. Then, the LSTM
layers are used to learn the temporal information. 2) Domain
generalization. To reduce the domain divergence of different
datasets, we use domain adversarial learning to eliminate
the domain information. Furthermore, we incorporate the
center loss to obtain more compact intraclass variations for
the same emotion. Finally, we use a linear layer with a
feature size of 2 for arousal and valence classification.

3.1 Representation Encoding

Learning discriminative features is essential for recognizing
emotions. We extract the spectrogram of the emotional ut-
terances as the input to our model. The data preprocessing
techniques are described in more detail in Section 4.2.

3.1.1 Supervised Feature Encoder

Previous publications have shown that CNNs can infer
hierarchical representations of input utterances that facili-
tate emotion categorization. As the SER baseline, we use
2D convolutional layers followed by max-pooling layers to
learn the spatial information, and then the output features
are flattened. For the target data u = [u1, u2, ..., un], we
extract the deep representation xc = [xc

1, x
c
2, ..., x

c
n] ∈ Rdc×n

from the CNN, and ye = [y1, y2, ..., yn] ∈ Rc×n represents
the emotion labels. We extract a dc-dimensional feature for
n utterances, where c is the number of emotions.

3.1.2 Unsupervised Feature Encoder

In this work, we use unsupervised transfer learning to
mitigate the problem of data sparsity in SER. Specifically,
we incorporate a convolutional autoencoder (AE), which
is the most optimized structure for feature modeling, as
the pretrained component of the proposed SER system. The

AE model is pretrained using unlabeled data up, and the
objective function is defined as:

Lae = argmin ||up −AE(up)||2 (1)

Then, we fine-tune the AE model using unlabeled tar-
get data u. The output features of the encoder model
are flattened, and we use the latent representation xa =
[xa

1 , x
a
2 , ..., x

a
n] ∈ Rda×n as additional input, where da is the

dimension of xa.

3.2 Feature Fusion
As shown in Figure 2, we propose an transformer based
gated fusion model to learn the complementary information
learned from CNN and autoencoder. Attention mechanism
allows a neural network to capture the emotionally salient
parts of an input sequence. For xc and xa learned from
the CNN and autoencoder, we first use two multihead
attention branches in the Transformer encoder to reduce
the dimension and prevent information loss during feature
compression. The attention score is calculated as follows:

Qi = x(c,a) ∗WQ
i (2)

Ki = x(c,a) ∗WK
i (3)

Vi = x(c,a) ∗WV
i (4)

headi = Softmax(
QKT

√
d

)V (5)

where WQ
i ∈ Rdq×dx , WK

i ∈ Rdq×dx , and WV
i ∈ Rdq×dx are

trainable parameter matrices for the attention projections.
The final output of the attention layer is generated by
concatenating each headi as follows:

x
(c,a)
M = Concat(head1, head2, ..., headn) (6)

The head number is 8. The outputs of the multihead atten-
tion mechanism are xc

M and xa
M . We use a fully connected

layer to ensure that their dimensions are equal to those of
xa and xc. To reduce the redundant information of features
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learned from the same utterance, we propose a gated fusion
model to learn the complementary information of the deep
CNN architecture and pretrained model. Our proposed
fusion model is described as follows:

G = σ(W g[xc
M , xa

M ] + bg) (7)
x = Concat(f(G⊙ xc

M ), f((1−G)⊙ xa
M )) (8)

where W g and bg are the trainable parameters and bias,
respectively. σ is the sigmoid activation function, which
learns the contributions of the input features, and G denotes
the gate vector, which ranges from 0 to 1. In Equation (8),
f is the activation function, and ⊙ represents an elementary
product. The gate vector G controls the contributions of the
inputs xc

M and xa
M by multiplying the corresponding input

features and producing filtered representations. Through
our modified Transformer based fusion model, we can re-
duce the irrelevant information in the SER task and learn
the emotionally salient parts of the input sequence.

3.3 Domain Generalization

The domain divergence among different datasets has a sig-
nificantly effect on the feature learning process in the cross-
corpus SER system. To improve the SER performance on un-
seen datasets, we need to generalize the feature distributions
of the different datasets. In this work, we introduce domain
adversarial learning to eliminate nonaffective information
and combine the center loss with an emotion classifier to
reduce the intraclass distances of features learned from the
same emotion.

3.3.1 Domain Adversarial Learning
In cross-corpus SER, the domain information, including the
speaker information, recording conditions, and elicitation
method, significantly decreases the recognition performance
of deep learning based models. To reduce the domain diver-
gence among different datasets, we incorporate domain ad-
versarial learning to eliminate the nonaffective information.
To achieve domain adaptation and feature representation
learning with one training process, Ganin et al. introduced a
gradient reversal layer (GRL) between the domain classifier
and the feature extractor. The GRL multiplies the gradient
of the domain classification task by a negative constant γ.
In this work, we follow their algorithm and incorporate
the supervised emotion classification (Le) and unsuper-
vised domain classification (Ld) as recognition targets, and
unlabeled data in the target corpus are used to train the
model. During backpropagation, the domain classifier Ld

is trained to make the feature distributions learned from
the source and target domains indistinguishable to our
model. Through the GRL, we can extract domain invariant
representations and thus improve the model generalizability
for cross-corpus SER. The overall objective function of our
proposed classification model is defined as:

L = Le(x, y
e) + γLd(x, y

d) (9)

where Le is the loss function of the emotion classifier, which
combines the center loss and softmax loss. More details on
Le are provided in Section 3.2.2. Our model can reduce the
domain shifts of the feature distributions learned from the

source and target datasets with unsupervised domain adap-
tation for the source and target data. In this specific task,
by incorporating this training strategy with our supervised
feature extraction model, the domain-invariant features can
retain discriminative information for emotion classification.
The loss function of the domain classifier is defined as:

Ld = Ld1(x, y
d1) + Ld2(x, y

d2) + ...+ Ldn(x, y
dn) (10)

where n is the number of domain classifiers and ydi =
[y1, y2, ..., yn] ∈ Rcdi×n represents the corresponding labels.
We explore different DANN subtasks to determine the opti-
mal model structure for SER. By identifying a saddle point
that minimizes Le and maximizes Ld, our proposed feature
extractor can reduce the domain divergence and learn better
convergent features.

3.3.2 Center Loss
The center loss is combined with the emotion classifier to
reduce the intraclass distance, and we incorporate the soft-
max loss and center loss as joint supervision for the emotion
classifier Le. The softmax loss function is commonly used
in SER systems for identifying decision boundaries between
different emotions [46]. In this study, although we define the
same emotion annotations for the training and test samples,
the feature distributions of different datasets are difficult
to separate. This situation makes cross-corpus SER more
challenging than common closed-set identification tasks. To
mitigate this problem, we introduce the center loss to learn
the class center c for each emotion category, thus reducing
the intraclass distances in the feature distribution. This loss
function is calculated as the Euclidean distance between the
input feature and the corresponding class center.

Center(x, c) =
1

M

N∑
i=1

||x(i,yj) − cyj ||2 (11)

∆cyj =

∑Myj

i=1 (cyj − x(i,yj))

1 +m
(12)

where M and Myj are the total number of mini-batches and
the jth emotion category in the batch, respectively. N is the
number of emotion classes. The new class center is updated
by ∆cyj , which is trained for every mini-batch. The overall
objective function of the emotion classifier is defined as:

LE(x, y
e) = λSoftmax(x, ye) + (1− λ)Center(x, c) (13)

We set λ to 0.7 to control the weight of each loss term. By
combining the center loss with the softmax loss to jointly
optimize our model, we can extract more robust feature
representations that generalize across datasets.

4 EXPERIMENTAL SETUP

Four emotional datasets are used to evaluate the general-
izability of our model: IEMOCAP, MSP-IMPROV, EMODB,
and FAU-AIBO. All the datasets are publicly available. The
datasets cover different languages and elicitation methods
and are thus valuable for evaluating our model. We first
present the main attributes of each dataset and the emotion
labels in this study (Table 1). Then, we introduce two well-
known unlabeled datasets, which are used to pretrain the
autoencoder. This section also includes the data preprocess-
ing techniques and model configuration.
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TABLE 1
Overview of the four emotion corpora. For IEMOCAP, the elicitation type contains both acted and natural, and the lexical content contains both

scripted and improvised.

Corpus Language #m #f Rate Type Content Total
Valence Arousal

Negative Positive Low High

IEMOCAP English 5 5 16 kHz Hybrid Hybrid 5531 3344 2187 2792 2739

MSP-Improv English 6 6 44.1 kHz Acted Fixed 8438 4546 3892 3660 4778

Emo-DB German 5 5 16 kHz Acted Fixed 535 385 150 268 267

Fau-aibo German 30 21 16 kHz Natural Spontaneous 18216 5093 13123 15835 2318

TABLE 2
Emotion mapping from discrete labels to binary arousal

Datasets Low High

IEMOCAP Neutral, Sad Angry, Happy

MSP-IMPROV Neutral, Sad Angry, Happy

EMODB Bordorm, Disgust,
Neutral, Sad Angry, Happy, Fear

FAU-AIBO Neutral, Rest,
Emphatic Angry, Joy

4.1 Datasets

The IEMOCAP dataset: The Interactive Emotional Dyadic
Motion Capture database [47] contains 12 hours of audio-
visual data, including audio, video, and facial motion in-
formation, and textual transcriptions from 10 speakers. The
audio was recorded using two high-quality microphones
with a 48 kHz sampling rate and then downsampled to 16
kHz. In each session, one male and one female performed
a series of scripts or improvisational scenarios. For each
speech utterance, three annotators assigned the categorical
labels. We used 5531 utterances from the scripted and im-
provised audio data for our experiments. We implemented
the common practice of merging “happy” and “excited” into
one emotion class “happy” [45], [48], [49]; thus, the emotion
labels in this dataset are happy, sad, angry, and neutral.

The MSP-IMPROV dataset: MSP-IMPROV [50] is a
multimodal emotional database that includes recordings
of actors interacting in dyadic sessions. The actors aim to
control the lexical content of each sentence while displaying
natural emotional expressions. The corpus consists of 8,438
utterances (8.9 hours) of emotional sentences recorded from
12 actors. The audio data of each actor was recorded with
a collar microphone with a 48 kHz sampling rate and then
downsampled to 44.1 kHz. All the audio data were grouped
into six sessions, and each session has one male and one
female actor. The categorical labels were collected using
crowdsourcing on Amazon Mechanical Turk. The emotion
categories in this dataset are happy, sad, angry, and neutral.

The MSP-IMPROV dataset: MSP-IMPROV [50] is a mul-
timodal emotional database recorded from actors interacting
in dyadic sessions. The author aims to control the lexical
content of each sentence while promoting the naturalness of
emotion expression. The corpus consists of 8,438 utterances
(8.9 hours) of emotional sentences recorded from 12 actors.
Each actor used a collar microphone to record speech at

TABLE 3
Emotion mapping from discrete labels to binary valence

Datasets Negative Positive

IEMOCAP Angry,Sad Happy,Neutral

MSP-IMPROV Angry,Sad Happy,Neutral

EMODB Angry,Bordorm,
Disgust,Fear,Sad

Happy,Neutral

FAU-AIBO Angry,Emphatic Neutral,Joy,Rest

48 kHz and then downsampled it to 44.1 kHz. All the
audio data are grouped into six sessions and each session
has one male and one female actor. The categorical labels
are collected using crowdsourcing on Amazon Mechanical
Turk. The emotion categories in this dataset are also happy,
sad, angry, and neutral.

The EMODB dataset: The Berlin Emotional Speech
database [51] includes data from ten professional actors
obtained in a recording environment. The spoken content
includes 10 predefined emotionally neutral sentences in
German, and the actors were asked to express each sen-
tence in seven emotional states (neutral, boredom, disgust,
sadness, anger, happiness, and fear). The categorical labels
were collected according to the intended emotional state.
This corpus contains a total of 535 utterances, which had an
agreement rate higher than 84.3% in a listening experiment
with 20 participants (10 male and 10 female).

The FAU-AIBO dataset: The FAU Aibo Emotion Cor-
pus [52] was recorded to collect spontaneous audio data
with sufficient emotion expression. This dataset contains
spontaneous recordings of 51 children interacting with the
Sony robot Aibo. Thirty female and 21 male pupils were
instructed to talk with Aibo, and then five experts annotated
the recorded speech according to predefined emotion cate-
gories. We choose 18216 utterances used for the Interspeech
Emotion Challenge, including five emotion categories (an-
gry, emphatic, neutral, joyful, and rest).

The annotated labels of these datasets are inconsistent
in this study, and we chose arousal and valence to gen-
erate more interpretable emotion classification categories.
Although IEMOCAP and MSP-IMPROV have continuous
labels for arousal and valence, to maintain consistency with
other datasets, we followed Schuller et al. [12] and mapped
the discrete emotion labels to binary arousal and valence
(Tables 2 and 3). In this work, we choose Librispeech [53]
and MUST-C DE to pretrain the autoencoder [54]. Lib-
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rispeech is commonly used in speaker identification and
automatic speech recognition tasks; it contains 1000 hours of
English speech read from audiobooks. We selected the 360-
hour subset with high-quality recording conditions. MUST-
C consists of audio, transcriptions and translations of En-
glish TED talks. We used the MUST-C DE subset, which
contains 408 hours of German translations from English
TED Talks.

4.2 Model Configuration

During data preprocessing, to match the sampling rate, all
the datasets are downsampled to 16 kHz. We use a 256-
length Hamming window with 128 overlaps to calculate the
audio spectrogram of the input features using MATLAB. For
the variable-length inputs, we define the maximum length
of the time dimension as 700. Spectrograms with shorter
lengths are padded with zeros to the fixed length, and
the redundant parts are masked during training. After a
short Fourier transform, the time × frequency of the input
spectrogram is calculated as 700 × 129. Our experiments
are implemented using PyTorch [55]. To ensure consistency
with the baseline, we use three CNN layers followed by
max-pooling as the supervised feature extractor in all com-
parative experiments. In experiments with the pretrained
model, we use five convolutional layers as the encoder
and the corresponding five deconvolutional layers as the
decoder. Moreover, we use the output of the encoder as the
latent representation. The learned features of the supervised
and unsupervised feature extractors are then flattened and
fed into the Transformer encoder layers and gated fusion
model. Next, we use two bidirectional LSTM layers with
128 units to learn the sequence information, and a dropout
layer with a 0.5 dropout rate is used to prevent overfitting.
The LSTM output is fed into a fully connected layer with a
softmax function for classification. We employed Adadelta
as the optimizer, and the mini-batch size was set to 128.
To ensure that SER was the training objective of the total
loss function, the weight parameter of each domain classifier
ranged from 0 to 0.5. For the pretrained model, we pretrain
the autoencoder model and then fine-tune this model using
unlabeled data from the source domain. During feature
extraction, we maintain a fixed weight and bias and use
the target data to extract the bottleneck features.

For multi-corpus experiments, all four datasets are com-
bined. We split the data into a training set (80%) and a test
set (20%). The models are evaluated using test data from
each corpus. Note that there is no speaker overlap between
the training and testing data. For cross-corpus experiments,
no labeled data from the target corpus are used for training.

5 EXPERIMENTS AND EVALUATIONS

In this study, we design several experiments to evaluate
our proposed approach. First, we investigate the effect of
different domain adaptation subtasks in Section 5.1. Then,
we compare the proposed model with the CNN-LSTM
baseline in Section 5.2. To determine the impact of each
component on the overall system, ablation studies for the
proposed domain generalization method and Transformer
based gated fusion network are presented in Sections 5.3

TABLE 4
Multi-corpus evaluation results for learning the impact of domain

adaptation methods. In DANN, we choose the domain classifier with
best performance. In DG, we combine center loss with softmax loss

function as joint supervision.

Arousal Valence

Model CNN DANN DG CNN DANN DG

IEM 73.28 78.56 78.35 70.38 73.09 75.19
MSP 60.80 64.37 65.71 60.46 62.58 62.70
EMO 90.21 93.74 92.58 62.74 65.73 67.24
FAU 53.77 55.81 55.21 60.31 63.74 61.62

Avg. 69.51 73.12 72.96 63.47 66.29 66.84

and 5.4. Finally, we compare the performance of the domain
classifier in the DANN and multi-task learning model in
Section 5.5. In this study, we use the unweighted accuracy
(UA) as evaluation measure, which can avoid the influence
of data imbalence in each emotion.

5.1 Experiment 1: Multi-corpus Evaluation
As introduced in Section 4.2, all four datasets are used
in this multi-corpus evaluation. In this section, only the
deep CNN model is used as the feature extractor. We also
evaluate the performance of the DANN and proposed do-
main generalization (DG) method, which combines the the
center loss and softmax as joint supervision for SER. The
DANN and CNN are compared in Table 4, and the results
show that the domain adversarial learning method learns
more discriminative features in both arousal and valence
recognition. Thus, incorporating the center loss and DANN
for domain generalization leads to promising performance
with these four datasets, especially in valence recognition.

To better understand the domain adversarial learning
method, we design four types of DANN subtasks. We
hypothesize that different domain recognition targets can
benefit the SER system when the corresponding factors lead
to domain divergence in the feature extraction process. We
conduct a multi-corpus evaluation to explore the effective-
ness of different domain classifiers on specific datasets. As
the training data contain domain information from all four
datasets, the results can intuitively reflect the effect of each
DANN structure in certain testing conditions.

We present seven experiments to explore the impact of
the speaker, gender, language, and elicitation type. There
are two kinds of structures in this experiment: a DANN
with one domain classifier branch (D1) and a DANN with
two domain classifier branches (D2). Previous studies on
SER have demonstrated that the speaker information has
a significant influence on the classification results. If the
speakers in the training and test data overlap, the SER
model shows better performance than a model trained with
a speaker-independent validation strategy. Therefore, the
first subexperiment with D1 uses the speaker as the domain
classifier. Since the gender and language information can
reflect the speaker information, in D1, we also train domain
classifiers for language and gender classification. In addition
to the speaker information, the elicitation strategy (acted
or spontaneous) has a great impact on the performance
of SER. Therefore, an elicitation type classifier (type) is
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TABLE 5
Multi-corpus evaluation results for learning the impact of different domain classifiers. In this table, D1 has one branch of the domain classifier. In

D2 models, we add type as an additional domain learning target to D1.

Test

Arousal Valence

type
gender language speaker

type
gender language speaker

D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 D1 D2

IEM 76.23 78.56 77.85 76.45 76.3 73.62 75.28 73.09 71.63 70.86 71.86 72.76 70.53 71.25
MSP 63.09 61.84 64.37 62.13 63.19 61.54 62.93 61.53 62.58 61.35 61.11 61.97 58.18 60.13
EMO 93.74 91.58 91.35 91.2 92.52 88.77 91.26 64.16 62.41 63.42 63.92 65.73 61.35 62.27
FAU 53.31 53.64 55.81 54.64 55.26 53.8 52.95 62.38 62.07 62.37 62.15 63.74 61.28 60.74

Avg. 71.59 71.66 72.35 71.11 71.82 69.43 70.61 65.29 64.67 64.50 64.76 66.05 62.84 63.60

also included. In D2, we combine the speaker, gender, and
language classifiers with the type classifier.

As shown in Table 5, for both arousal and valence
recognition, the language (D2) classifiers show the highest
average recognition performance. To reflect the advantages
of domain adaptation methods, we use language and type
classifiers in the DANN model in the following experiments.
For each dataset, the best DANN structure includes type,
gender (D2) and language (D2). These results indicate the
effectiveness of domain adversarial learning based on the
elicitation type. In previous studies, speaker and gender
classification were commonly employed in multi-task learn-
ing models. However, these two classifiers cannot realize
the best performance in domain adaptation methods. This
finding may indicate that eliminating the corresponding
information does not benefit SER system.

5.2 Experiment 2: Cross-corpus Evaluation
Then, we utilize the following experiments to investigate
the effectiveness of the proposed approach in cross-corpus
evaluation. CNN-LSTM models have been utilized in many
previous SER publications, and we choose this model as
the baseline. Then, we compare the performance of the
proposed ADoGT approach with that of the baseline system.
Our proposed DG model can generate a common feature
subspace for different domains by combining the DANN
and center loss. Furthermore, we use a pretrained autoen-
coder as an additional branch in our proposed model and
apply the proposed Transformer based model for feature
fusion. For each model, we provide 13 experimental results
for evaluation (training with one dataset and testing with
the other datasets and the average performance).

Table 6 shows the overall cross-corpus evaluation results.
The results suggest that both models realize better per-
formance on arousal recognition tasks, especially in cross-
lingual experiments (IEMOCAP and EMODB). These results
indicate that arousal information is easier to learn for deep
learning models than valence information, which is consis-
tent with [27], [56]. Compared with the baseline system,
the experimental results demonstrate the advantages of the
proposed generalization method and pretrained model in
cross-corpus SER. We observe that for speech recorded in
laboratory environments, the proposed Transformer based
domain generalization model significantly improved recog-
nition performance (e.g. more than 6% for both arousal and
valence recognition when train on IEMOCAP and test on
EMODB). However, due to the poor performance of both

TABLE 6
Cross-corpus evaluation results for analysing the effectiveness of

proposed domain generalization method

train on test on
Arousal Valence

CNN DoGAT CNN DoGAT

IEM

MSP 57.29 61.83 55.73 59.42

EMO 67.3 73.53 52.48 58.73

FAU 52.02 52.06 56.15 60.41

MSP

IEM 61.78 63.75 56.81 57.12

EMO 55.37 59.82 54.52 58.15

FAU 54.88 55.67 52.01 55.87

EMO

IEM 64.35 68.23 53.30 58.07

MSP 52.33 55.49 50.32 50.37

FAU 51.62 51.58 54.04 59.49

FAU

IEM 52.74 55.29 52.77 53.02

MSP 52.61 57.38 50.28 50.00

EMO 54.69 56.75 57.46 59.46

Model Avg. 56.42 59.28 53.82 56.68

approaches in certain experiments (e.g., training on FAU-
AIBO and testing on other datasets, valence recognition
between MSP-IMPROV and EMODB), the improvement in
the average performance is not significant. In the following
experiments, we investigate the impact of each component
in the proposed approach.

5.3 Experiment 3: Impact of Domain Generalization

We hypothesize that the domain generalization method
effectively reduces the domain divergence among differ-
ent datasets. To compare the proposed domain generaliza-
tion model with the baseline system, we conduct cross-
corpus experiments using IEMOCAP with MSP-IMPROV
and EMODB. For both models, we use only a supervised
feature extraction model with no additional feature inputs
and apply consistent CNN and LSTM hyperparameters. We
repeat this experiment five times and report the mean and
standard deviation.

The results of the comparisons are presented in Figure 3.
We use gender and type and language and type as domain
classifiers for monolingual and cross-lingual experiments,
respectively. We observe that for both arousal and valence
classification, our proposed domain generalization method
outperforms the single-task learning baseline. This finding
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(a) IEMOCAP to EMODB (b) EMODB to IEMOCAP (c) IEMOCAP to FAU-AIBO (d) FAU-AIBO to IEMOCAP

Fig. 3. Impact of proposed domain generalization model. We use elicitation type and language as domain classifiers for IEMOCAP and FAU-AIBO
experiments, IEMOCAP and EMODB experiments, respectively.
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Fig. 4. Cross-corpus experimental results of IEMOCAP and EMODB. This experiment includes an increasing number of labelled data from the
target dataset. In (a) and (c), a is the arousal recognition results. In (b) and (d), v is the valence recognition results.

indicates that the domain adaptation task can be adopted
for the SER system. Moreover, introducing the center loss
effectively improves the generalizability of the feature rep-
resentation. Interestingly, we observe that when the model
is trained with IEMOCAP and tested with FAU-AIBO, the
valence recognition performance is better than the arousal
recognition performance. We assume that the main reasons
for this result are that this dataset was recorded in daily
environments and the speakers did not realize that they
were recording emotional speech. Therefore, the activation
states of most utterances are lower than those of the ut-
terances in the other corpora. Furthermore, both models
achieve better recognition performance in the cross-corpus
experiments with IEMOCAP and EMODB than IEMOCAP
and FAU-AIBO. This result potentially indicates the diffi-
culty of SER with improvised (spontaneous) data. In this
experiment, we also incorporate some of the labeled data in
the target dataset to further evaluate our model. As depicted
in Figure 4, our model can use the target data to learn
shared feature representations for different domains and
achieve better performance. This Figure also demonstrates
the effectiveness of our model in multi-corpus evaluation,
where most of the labeled data in the target corpus are used
for training.

5.4 Experiment 4: Impact of Feature Fusion Model
The Transformer based gated fusion model can prevent
information loss during dimension reduction and learn

TABLE 7
The comparasion of different feature fusion methods. The model is

trained on IEMOCAP, we present the within-corpus results (left hand)
and cross-corpus results (right hand).

Model
IEMOCAP MSP

Arousal Valence Arousal Valence

CNN 75.66 70.58 57.29 55.73
Concatenate 77.86 72.43 58.27 56.24

Transformer C 78.35 74.25 59.05 57.83
TGFM 79.60 74.73 60.46 58.81

the complementary information of the input features. In
this experiment, we use IEMOCAP and MSP-IMPROV to
evaluate the effectiveness of the proposed method. We
present both within-corpus experiments (80% of the data
in IEMOCAP for training and 20% for testing) and cross-
corpus experiments (training with IEMOCAP and testing
with MSP-IMPROV). The input model includes a super-
vised CNN/DANN and a pretrained AE for additional
feature extraction. Note that only softmax loss function for
emotion classification is used, and domain generalization
methods is not included in this experiment. We compare the
concatenation method and Transformer based feature fusion
model, and the results are presented in Table 7.

A comparison of the concatenation based model and
CNN baseline results shows that using a large amount of
unlabeled data to pretrain the autoencoder can improve the
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Fig. 5. Comparison of the domain classifier in the multi-task learning model and domain adversarial neural network with the same model structure.
We define the weight parameter of the auxiliary task as 0.01 in (a) and 0.1 in (b).

performance of SER, which is consistent with the conclu-
sions of previous studies [23], [57]. In both the within-corpus
and cross-corpus evaluations, our proposed Transformer
based gated fusion model (TGFM) outperforms the concate-
nation based method by more than 1.74%. Compared with
the CNN baseline, we observe that including the Trans-
former model improves the results of the model with the
concatenation layer for feature fusion (Transformer C). This
finding demonstrates the discriminability of the attention
mechanism for learning emotional information.

5.5 Experiment 5: Comparasion of Domain Classifier
To elucidate the effects of domain adversarial learning,
we focus on the performance of the domain classifier
in the DANN and multi-task learning model to investi-
gate the effect of the gradient reversal layer. In previous
studies, researchers incorporated the recognition of other
speaker attributes to obtain rich transcriptions, and their
experiments demonstrated the effectiveness of this training
scheme. Among all paralinguistic information and emotion
attributes, the impact of gender recognition has been ana-
lyzed most often in the literature [58], [59]. In this experi-
ment, both models are trained with IEMOCAP and tested
with MSP-IMPROV, and we choose gender classification as
the domain classifier. To understand the effect of the GRL,
we record the model accuracy with the training set, and the
weight of the domain classifier is defined as 0.01 and 0.1.

As depicted in Figure 5 (a) and (b), in the multi-task
learning model, the recognition performance of the gender
classifier is significantly higher than that of the DANN
model. This performance gap verifies the effectiveness of
domain adversarial learning in reducing the domain di-
vergence among different datasets. This experiment also
suggests that when the weight parameter of the domain
classifier is greater than 0.1, domain classification maintains
the chance level and thus makes the features from different
domains indistinguishable.

6 CONCLUSION AND FUTURE WORK

This study addresses domain divergence in cross-corpus
SER by incorporating domain adversarial learning to feature

extraction model and jointly training the emotion classifier
with center loss and softmax loss function. This study in-
troduced an novel Transformer based gated fusion model
to retain emotional information during feature compres-
sion and learns the contributions of features learned from
the pretrained model and supervised feature extractor. To
meet the need in real-world scenarios, this study evaluated
the proposed adversarial domain generalized Transformer
(ADoGT) in two languages (English and German) and two
elicitation types (spontaneous and acted). To verify the
impact of domain adversarial learning, this study provide
the comparison of domain classifier in domain adversarial
neural network (DANN) and multi-task learning.

Experimental results demonstrate that our proposed
model improves the average recognition performance by
2.86% in the cross-corpus condition. To learn the influence
of each domain factor on the SER, we present the results of
multi-corpus experiments using the DANN with different
domain recognition targets. Compared with the baseline
model, the proposed domain generalization model obtains
better recognition performance by reducing the influence
of domain divergence. Moreover, ablation studies show the
effectiveness of the Transformer based gated fusion model
in feature-level fusion tasks. Compared with the concatena-
tion based model, our approach utilizes the complementary
information in features learned from the same utterance and
thus prevents information loss.

This study mainly focuses on DANN and the center loss
to reduce the domain divergence and address interdomain
variations. Both training methods aim to learn discrimi-
native features for SER and make the nonaffective infor-
mation indistinguishable to the model. Other publications
have shown thatmulti-task learning can benefit SER tasks
by achieving rich transcriptions. These studies define the
attribute factor as a subtask and share the information across
tasks to promote the SER. Combining DANN and multi-
task learning can potentially provide further insight into
how other information influences the SER performance in
certain scenarios. Given the many learning factors, this topic
requires continuous attention from researchers in affective
computing. In the future, we plan to investigate the optimal
auxiliary recognition target of these two approaches.
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