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Crowdsourcing Affective Annotations via
fNIRS-BCI

Tuukka Ruotsalo, Kalle Mäkelä, and Michiel Spapé

Abstract—Affective annotation refers to the process of labeling media content based on the emotions they evoke. Since such
experiences are inherently subjective and depend on individual differences, the central challenge is associating digital content with its
affective, interindividual experience. Here, we present a first-of-its-kind methodology for affective annotation directly from brain signals
by monitoring the affective experience of a crowd of individuals via functional near-infrared spectroscopy (fNIRS). An experiment is
reported in which fNIRS was recorded from 31 participants to develop a brain-computer interface (BCI) for affective annotation. Brain
signals evoked by images were used to draw predictions about the affective dimensions that characterize the stimuli. By combining
annotations, the results show that monitoring crowd responses can draw accurate affective annotations, with performance improving
significantly with increases in crowd size. Our methodology demonstrates a proof-of-concept to source affective annotations from a
crowd of BCI users without requiring any auxiliary mental or physical interaction.

Index Terms—Emotion classification, Functional near-infrared spectroscopy, fNIRS, Pattern classification, Affective computing.

✦

1 INTRODUCTION

Human-computer interaction with digital content has long
focused on information value and presentation. However, in
recent years, affective dimensions have become increasingly
recognized as integral to the user experience.

[2], [25], [50]. A key aspect of understanding model-
ing, and personalizing such experiences is the ability of
computing systems to infer the affective states that digital
information is likely to evoke and associate that with the
content via affective annotation. Affective annotation can then
be used in downstream tasks to adjust and personalize
content, avoid exposure to harmful information, and un-
derstand how people consume and react to information that
provokes strong emotions [35].

A trivial solution to affective annotation is to rely on
manual annotation, where users markup their affective
experiences [31]. Manual annotation may be practical for
limited scenarios in which users are willing to take the
effort, such as marking up content in personalized social
media feeds or videos in streaming services. However, the
requirement for manual annotation is not likely to scale to
a broader set of applications. For instance, it is unlikely that
users would be willing to manually annotate their affective
reactions for every video clip they watch, song they listen
to, or image they view on the Web.

Another approach is to make predictions by analyzing
the content itself. For example, using natural language
processing to extract affective descriptions from text [68]
or computer vision techniques for images and video [33].
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However, these methods rely solely on features present
within the content itself and do not consider the affective
reactions evoked in humans experiencing that content [24].
For example, affective differences may arise from changes in
how stimuli are interpreted, such as viewing a scene from a
football game. The scene may evoke a variety of responses,
depending on whether the person observing it is a fan of the
team or not.

Here, as a viable alternative to manual and content-
based annotation, we present a method for obtaining the
emotional responses implicitly by monitoring human af-
fect at the time of experience. We achieve this by directly
measuring passively evoked affective states toward content
via fNIRS brain-computer interfacing (fNIRS-BCI). As the
brain responses can be noisy, prone to artifacts, and diverg-
ing across individuals in different contexts, we approach
affective annotation as a crowdsourcing problem. This is
based on a simple but powerful idea: multiple participants
contribute a noisy signal that can be used to draw consensus
estimates [55], [62]. Consequently, crowdsourcing allows
learning affective annotations from brain responses of many
individuals and can mitigate noise and artifacts.

To this end, we ask the following research questions:

RQ1: Can fNIRS-BCI monitoring be effectively employed
in crowdsourcing settings to predict the affective content
of stimuli?
RQ2: To what extent does fNIRS-based affective crowd-
sourcing improve performance of predictive models com-
pared to individual classification?

To answer the research questions, we report on a neu-
roimaging data acquisition experiment in which 31 par-
ticipants viewed visual affective stimuli while their brain
responses were monitored via fNIRS.

The participants were not required to perform any arti-
ficial physical or mental activities; instead, the experiment
relied solely on their natural affective reactions, as indicated
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by ground truth valence and arousal labels from a well-
established data source. Next, we report an affective anno-
tation experiment in which we calibrated machine learning
models for participants to distinguish between high/low
valence and high/low arousal classes, using consensus la-
bels derived from the signals of multiple participants.

In summary, our contributions are as follows:

1) We present the first-of-its-kind affective annotation
from crowdsourced fNIRS-BCI to decode valence
and arousal directly from natural affective reactions
as they are experienced by a crowd of individuals in
response to stimuli.

2) We demonstrate that affective states can be decoded
with relatively high accuracy. A crowd of eight
participants achieved average accuracies from 0.48
(4-class valence arousal classification) to 0.78 (two-
class valence classification of high-arousal stimuli)
with consistently increasing performance as a func-
tion of the crowd size.

2 BACKGROUND

Our work is based on several distinct areas of study:
emotion research, affective annotation, affective decoding,
and crowdsourcing annotations. These are shortly reviewed
below.

2.1 Models of emotion and affect
From a psychological perspective, emotion encompasses a
wide range of phenomena, including the perception, expe-
rience, and expression of emotions, their neural correlates,
and social contexts. Research has typically used models to
reduce this complexity for empirical studies. In this man-
ner, studies of emotional perception have investigated how
stimuli with emotional content affect the body, brain, and
behaviour [43], [61] Another research tradition focuses on
the experience of emotion itself – the mental representation
of physiological changes occurring during an emotion [17] –
and the consequences thereof, for example by investigating
emotional sensitivity [38], or by determining how cognition
is affected by mood experience [64]. Furthermore, studies
of emotional expression have explored how emotions alter
facial expressions, body postures, and communication, with
a long-standing debate continuing as to whether these are
mostly universal [30], or primarily defined by culture and
norms [57]. In reality, the boundaries between these different
focuses are often blurred: seeing a gaping depth opening
before you, your emotional perception will prompt fear, and
a corresponding, fearful expression would probably follow.
However, over a century of research on emotion has not
seen a clear consensus being reached as to the exact causal
relationship between perception, action, and mental states
[13], [29], [49].

In addition to a model of emotion’s specific focus, an-
other critical factor for affective computing is the model’s
taxonomy of emotional identities. Two broad families of
emotion theories are commonly found. On the one hand,
discrete theories of emotions typically identify a limited
number of qualitatively different emotions that give rise
to the range of experiences named in most languages. For

example, universal emotion theory tends to understand
emotions by their evolutionary value for communication,
with facial expressions signifying critical messages that can
be understood even across different cultures [30]. On the
other hand, dimensional theories identify a smaller num-
ber of continuous variables as latent factors that provide
an internal representation of emotions. For instance, the
primary dimension of arousal is traditionally thought to be
caused by autonomic nervous activity, resulting in outward
expressions of excitement [32]. The hedonic dimension of
valence, whether affective state is experienced as pleasant
or unpleasant, is often viewed as involving more cerebral
cognitive processes such as attribution [58]. Dimensional
theories thus account for emotions by combining the di-
mensions, for example explaining ”joy” as caused by high
arousal and high valence.

2.2 Affective annotation
Annotation refers to adding descriptive metadata to digital
content, which has traditionally been an essential compo-
nent of many digital media services. By labeling media
content with their evoked emotional experience, affective
annotation provides particularly useful information. The
methodological aim of affective annotation is to build meth-
ods to estimate how humans would experience content. For
example, whether they find it pleasant, offensive, relaxing,
or frightening. Traditionally, affective annotation has been
approached via manual interaction [1] and content-based
analysis of text or visual media content [4], [26]. The manual
annotation process relies on explicit interaction enabled by
interface designs that allow users to manually indicate their
affective reactions when they are experiencing the content.
Well-known examples of manual annotation are markup
that allows expressing emotional responses or affective ex-
periences [60].

While manual annotation can produce rich descriptions,
the process is typically labor-intensive and limited by how
much conscious access annotators have to affective states.
For example, users might thoroughly enjoy digital media
during the experience but forget the initial impact or con-
structively reinterpret their experience later. By not focusing
on explicit, manual processes, implicit methods of affective
annotation may avoid such constraints, presenting affective
decoding techniques for detecting how content is perceived
emotionally without relying on explicit interaction from
users [10].

2.3 Affective decoding
Affective decoding aims to estimate the affective experience
of an individual by mapping the relationship between emo-
tions and measurable signals. Neuroimaging provides infor-
mation directly from the presumed origin of affective states:
the brain [50]. Measures can be obtained with various non-
invasive imaging techniques, such as electroencephalogra-
phy (EEG) and functional magnetic neuroimaging (fMRI).
In studies using EEG, alpha power asymmetry between
frontal sites has been used to detect the motivational di-
rection and valence [39]. However, the limits of localizing
scalp-recorded EEG have led to controversy over the use
of this biomarker [3], [18]. Previous fMRI studies have
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shown that valence and arousal affect both the prefrontal
cortex and deeper brain structures such as the amygdala
and insula [52]. Activity in the amygdala, in particular,
has been associated with the highly salient emotion of fear
(high arousal/negative). In contrast, prefrontal areas have
been associated with affective processing of the pleasantness
of images [36]. Despite their power to study the underly-
ing structural and spatiotemporal correlates of emotions,
neither electroencephalography (EEG) nor fMRI has seen
strong uptake in the field of affective computing in practical
human-machine interfacing settings, owing to their high
cost and unwieldiness.

Functional near-infrared spectroscopy (fNIRS) presents
an alternative method for quantifying cortical activity for
inferring emotional processing. Since neural activity causes
changes in blood oxygenation (BOLD) and since the light-
absorption is affected at different wavelengths for oxy-
genated and deoxygenated hemoglobin [6], [12], fNIRS al-
lows neural activity to be quantified, especially in cortical ar-
eas near the surface that are unimpeded by light-interfering
tissues (e.g. hair). Thus, anterior-frontal and frontal-polar
areas underneath the forehead tend to provide stronger
signal-to-noise than deeper areas that reside below regions
of the scalp that are typically covered by hair, such as the
inferior parietal lobule.

Recent studies show fNIRS holds clear promise for affec-
tive decoding of both discrete emotions [40] and emotional
dimensions [7]. In particular, fNIRS may be more successful
than more ubiquitous forms of biosensing that measure
activation of the autonomic nervous system, such as elec-
trodermal activity (EDA) or heartrate, by potentially de-
tecting valence from cortical activity in the central nervous
system. Previous studies, for example, showed that view-
ing unpleasant (negatively valenced) images was found to
particularly affect the BOLD response in the right prefrontal
cortex [7]. Such findings have seen strong application within
the field of human-computer interaction, in which the use of
fNIRS has become increasingly common [67]. Studies in HCI
have, for example, applied fNIRS during implicit interfacing
between users and computing [69], enhancing real-time
interfaces with additional input modality [66], evaluating
visualizations [51], and determining the user experience in
virtual reality [72]. Thus, although the usefulness of fNIRS
as a general tool for HCI and user experience studies de-
pends on the type of task [47], a clear consensus is forming
that fNIRS can be a viable alternative to existing biological
sensors and physiological measures, showing strong poten-
tial for complementing human-computer interaction studies
with tools for quantifying affective experiences of users.

2.4 Crowdsourcing annotations

Crowdsourcing has emerged as a powerful approach to ob-
taining annotations for large media databases, such as label-
ing objects appearing in images, labeling text, and affective
features of stimuli [14], [48], [74]. In this process, users
undertake microtasks and human cognition is exploited
jointly with computing systems to obtain information about
stimuli. Conventionally, these tasks require simple manual
input, such as selecting images that match a description [11],
[73]. The majority of applications of crowdsourcing have

focused on such explicit human input. However, another
line of crowdsourcing research and practice relies on im-
plicit feedback, where task-relevant information is collected
implicitly as a side product of people’s natural interactions.
For example, search engines obtain annotations for query-
document pairs by observing documents clicked in response
to a query [15].

Recently, researchers have also explored physiological
signals for crowdsourcing. In [20], researchers presented a
methodology called brainsourcing, in which EEG responses
toward facial images were decoded for relevance and con-
sensus annotations were inferred through a crowd model.
In [63], researchers approached a similar problem and pre-
sented results for predicting stimuli classes in a multi-user
setting. In [28], the emotional experience of multimedia con-
tents was detected from EEG in real-time when users were
watching video clips. These responses were then used for
emotion tagging. Similarly to our work, inter-brain features
from a group of participants were used to find a consensus
label.

EEG and fNIRS data have also been used in studying
both within-subject [8] and cross-subject [9] classification
scenarios. The authors have identified neural correlates of
emotions using fNIRS data across subjects. However, al-
though the models were built across subjects, which pro-
vided the capacity to generalize and predictively classify
emotions in new participants, the task of predicting crowd-
sourced consensus estimates was not explored.

In summary, brain-computer interfacing demonstrates
the potential for implicit crowdsourcing, where hu-
man opinions about stimuli are inferred from subject-
independent models or collective models are trained using
physiological data [22]. Our approach follows this line of
research but is the first to employ fNIRS neuroimaging and
adopt affective annotation that relies on natural responses to
stimuli, rather than pre-assigned recognition tasks. Further-
more, we demonstrate that decoding affective states from
these reactions through crowdsourcing leads to significant
improvements in performance.

3 NEUROIMAGING DATA ACQUISITION

The study was performed in compliance with the pro-
tocols laid out by the Declaration of Helsinki and was
approved by the Ethical review board in humanities and
social and behavioral sciences of the University of Helsinki.
Participant recruitment concentrated on the undergraduate
and postgraduate student population, with no requirements
other than having a normal or correct-to-normal vision and
having no psychiatric disorder (operationalized as having
no current diagnosis and not currently taking any psy-
chopharmaceuticals.). Thirty-one participants volunteered
and took part in the study after being fully informed of
the study and their rights, including the right to withdraw
at any point without fear of negative consequences and
signing their informed consent. Following pre-processing
of data (see below), four participants were found to have
fluctuations in the data recordings and were removed from
the conventional statistical analysis that were conducted
to study neurophysiological effects. All participants were,
however, included in the machine learning experiments.
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Death, peaceful
27%

Undetermined
1%

Relax, nature, animal
66%

Threat of violence, gun, to face
76%

Fig. 1: Distribution and examples of stimuli samples in the
four classes positioned on valence and arousal scales. Low-
valence high-arousal (LVHA) in blue, high-valence low-
arousal (HVLA) in green, low-valence low-arousal (LVLA)
in orange, and high-valence low-arousal (LVLA) in red.
Below the example images are their tags and crowdsourced
image-specific classification accuracies with N = 8.

The average age of the participants was 31.4 (minimum 21,
maximum 52, SD = 7.76) years. Regarding gender, fifteen
participants reported being male, eleven female, and the
rest non-binary. They were compensated for their time and
efforts with local movie vouchers.

3.1 Stimuli

Stimuli were sampled from the international affective pic-
ture system (IAPS) [44] for use in the present study. The
IAPS is a database of images previously rated by a large
sample on their emotional reactiveness across three dimen-
sions: arousal, valence, and dominance. Like most studies in
affective computing and neuroscience, we focussed on the
first two dimensions, being traditionally understood as the
two main dimensions of emotion [59]. Arousal refers to the
degree of nervous excitation provoked by the stimuli. The
pleasantness or hedonic value of such stimulation is referred
to as valence. By orthogonally crossing the dimensions, i.e.
combining the classes of low and high valence with those
of low and high arousal, four quadrants were defined: low
valence / low arousal (LVLA), low valence / high arousal
(LVHA), high valence / low arousal (HVLA), and high
valence / high arousal (HVHA). Since high arousal images
tend to have higher variance in valence [56], we selected
the 60 images with the lowest valence (2.71 +- 0l.81 on a
scale of 1 to 9), and 60 with the highest valence (6.94 +-
0.53), then divided these each to form the low and high
arousal samples (i.e. creating four quadrants of 30 images
each). Examples and the distribution of stimuli samples
are shown in Figure 1. From each quadrant, a participant
viewed a random selection of 10 individual images. To
increase standardization of perceptual factors, images were
scaled vertically to 1024 px.

3.2 Apparatus

E-Prime 3 (Psychology Software Tools, Inc., Sharpsburg
PA), running on a Windows 10 PC, was used for stimulus

presentation, behavioral data recording, and device syn-
chronization. The presentation used a 22-inch LCD monitor
running at 1920 x 1080 px, explicit feedback were obtained
from the keyboard, and synchronization between the dis-
play and data recording was done via the DCOM interface
to send triggers to the fNIRS device. Optical density data
were recorded using an Artinis Brite-24 fNIRS device. The
Brite uses 10 LED transmitters and 8 receiving photodiodes
placed on an elastic cap to standardize localization between
users. Here, a frontal configuration was used, with each
receiver obtaining light from three transmitters placed at
a distance of ca. 3 cm. By combining 5 transmitters and
4 receivers for each hemisphere, we were able to record
optical densities from 12 left and 12 right frontal areas. These
were digitized and recorded using Artinis OxySoft software
at a sample rate of 50 Hz.

3.3 Procedure

The experiments took place in a designated laboratory
space. After reading the instructions and signing informed
consent, the participants were seated and fitted with an
fNIRS device. This involved putting on the elastic cap and
fitting the diodes in the holders, then adjusting hair and
diode orientation so as to reduce interference and artifacts.
Following this, a 1-minute resting-state measurement was
obtained while participants focussed on a centrally dis-
played crosshair against a grey background. The recording
session itself involved two blocks of 20 trials each. Each
trial commenced by instructing users to carefully view the
subsequently presented image and freely associate with
its content. After taking the necessary time to read these
instructions and pressing a key, a fixation cross was shown
for 4 seconds to provide a neutral baseline for data analysis,
before the experimental stimulus was presented, which was
shown for 14 seconds. Finally, during a blank inter-trial
interval of at least 0.1 s, trial-specific information was syn-
chronised with the biosignal data. Note that the influence
of the preceding image on the evoked response of the
present was assumed to be limited for two reasons. First,
the interval between two emotional images was substantial
(4s + 14s + time to press, total M = 21.1s, SD = 1.9s). Second,
stimuli of each quadrant were presented with their order
randomised for every four trials (restricted only against
emotion repetition). Thus, any carryover effect would be
equal across averages. As all analysis and machine learning
experiments were also averaged either by analyzing all data
or through cross-validation, there should be no effect on
the results. The entire experiment took about 45 minutes to
complete.

4 AFFECTIVE ANNOTATION EXPERIMENT

The affective annotation experiment aimed to evaluate the
predictive performance of the crowdsourcing approach to
decode affective categories of stimuli from their evoked
fNIRS responses. The methodology, from producing indi-
vidual classifications for each epoch to combining them to
create crowdsourced predictions, is described below.
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Fig. 2: fNIRS channel and diode placement. The analysis
used only the channels highlighted with grey circles, with a
montage separating the regions into anterior (A) and poste-
rior (P) frontal regions and each of the hemispheres divided
across lateral (L), central (C), and medial (M) channels.

4.1 Tasks

We experiment with five affective classification tasks based
on the well-known dimensionality theory of affect. The
dimensionality of emotion or affect is most commonly
represented in a two-dimensional space spanning valence
and arousal. Valence accounts for the extent to which an
emotion is positive or negative, and arousal accounts for the
intensity of the associated emotional state. The main task,
referred to as 4-class, aims to classify each image into one of
four affective classes, high-valence-high-arousal (HVHA), high-
valence-low-arousal (HVLA), low-valence-high-arousal (LVHA),
and low-valence-low-arousal (LVLA). The following two tasks,
Valence and Arousal, only try to predict the high or low
valence (negativity or positivity) or high or low arousal
(intensity level) of the stimuli, ignoring the other affective
dimension. In tasks high-arousal valence (HA Valence) and
low-arousal valence (LA Valence), images are also classified
by valence, but the classification considers only either high-
arousal or low-arousal stimuli. Studying these separately
is motivated by an assumption that affective states with
stronger intensity (high arousal) are more important for
many downstream tasks and may be easier to decode.

4.2 Data preprocessing

The Optical Density (OD) data and stimuli are processed
using MNE python [37]. We apply a 3x3 grid layout for both
left and right hemispheres, closely resembling the original
sensor layout. Since raw fNIRS recordings are susceptible to
various noise sources, standard preprocessing is conducted.
First, to detect poorly connected sensors, the scalp coupling
index (SCI) [54] is applied to each channel. SCI measures
whether the channels measuring activity at different wave-
lengths in the same location are negatively correlated at the
heartbeat’s frequency range (0.7 - 1.5Hz). Low SCI indicates
poor coupling; hence channels with SCI below the thresh-
old of 0.8 are interpolated by taking the average of their
neighboring channels. As the final OD preprocessing step,
artifacts due to, e.g., motion, are corrected with temporal
derivative distribution repair [34].

After processing the OD data, it is converted to oxy-
genated hemoglobin (HbO) and deoxygenated hemoglobin
(HbR) concentrations with the modified Beer-Lambert law
[23]. Finally, to remove physiological noise, such as the
heartbeat, from the hemoglobin concentrations, a 0.1 Hz
low-pass filter is used, while a 0.01 Hz high-pass filter
is applied to eliminate slow drifts in the signal. After
preprocessing, the data is divided into 17-second epochs,
consisting of 12 seconds of recording after the stimulus and
a 5-second baseline period before.

4.3 Neuroimaging analysis

To infer the effect of affect on perceiving emotional images
on frontal brain activity, we performed a statistical analysis
at the population level. Baseline activity was subtracted
from the averaged 12 seconds of post-stimulus HbO and
HbR levels. A brain-wide analysis was conducted with
channels arranged along a montage using solely the trans-
mitter/receiver diode pairs along the sagittal plane (i.e.,
up/down arranged on the forehead), as shown in Figure 2.
For the areas, we then compared these between the left
and the right hemisphere; between three relative levels of
lateral region from the furthest to the side (lateral), via the
central/medial, to the medial; and between the relatively
anterior and the posterior frontal region. Thus, for every
participant and each combination of low and high valence,
and of low and high arousal, 12 averages were analysed
for two hemispheres, three lateral regions, and two frontal
regions. To determine if valence, arousal, and their inter-
action affected fNIRS responses across participants, two
5-way repeated measures ANOVAs were conducted, one
with HbR as the measure, and the other with HbO as the
measure. To reduce the chance of type-I errors, only p-
values below 0.025 (i.e. with Bonferroni correction applied
to the alpha criterion) were reported. To maintain brevity,
we do not report non-significant effects or effects without
the involvement of emotional factors.

4.4 Feature extraction

The high-dimensional epoch data was converted to lower-
dimensional feature space. In fNIRS, a typical response to
stimuli occurs approximately 4 to 12 seconds after stimula-
tion, which is used here as the size of an epoch. To capture
this effect with simple features, the windowed mean from
three equally sized non-overlapping windows was extracted
for each channel. To further reduce the dimensionality of the
feature space, the HbR channels were eliminated, as HbO
and HbR channel pairs are strongly dependent [16]. Finally,
the features are concatenated, resulting in feature space with
72 features per epoch.

4.5 Prediction model

Linear discriminant analysis classifier with shrinkage regu-
larization (SLDA) was used as the predictive model. SLDA
offers many attributes that make it an attractive choice
for fNIRS modeling, such as good performance in high-
dimensional low-sample settings, fast training and infer-
ence, and output of prediction probabilities for each class,
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Fig. 3: Affective fNIRS oxygenated hemoglobine (HbO)
response. Contrasts are shown to highlight the effect of
arousal (high arousal vs. low arousal, HA-LA); valence (high
valence vs. low valence, HV-LV); valence given high arousal
(high valence high arousal vs. low valence high arousal,
HVHA-LVHA); and valence given low arousal (high valence
low arousal vs. low valence low arousal, HVLA-LVLA).

which are essential for crowdsourced predictions. The clas-
sifier does not require hyperparameters, and the regulariza-
tion parameter of the SLDA model is determined by the
Ledoit and Wolf lemma [46], which provides an analytical
estimate for the optimal shrinkage constant.

4.6 Prediction setup
The prediction model’s target is to predict each class’s
probability for each epoch using the feature representation.
The data are split into training and testing sets with the
stratified k-fold cross-validation scheme, where k is the
number of samples in the least common class for that
participant. Selecting k in this manner ensures that each test
set has at least one sample from each class. For 29 out of 31
participants, the cross-validation is equivalent to stratified
10-fold, but for participants with missing epochs, a smaller
k is required. Since each sample belongs to exactly one test
set, this process yields one test set prediction for each epoch,
which are used in the latter steps.

4.7 Crowdsourced prediction setup
The crowdsourcing experiment follows a scenario where
groups of N ∈ {1, ..., 8} participants produce crowdsourced
predictions for images in a way that allows comparison
between different group sizes.

Before producing the crowdsourced predictions, 22 im-
ages were eliminated because there was data from less than
8 participants available for them. The varying amount of

predictions for different images is due to the sampling in the
stimuli selection process; each subject is shown 10 randomly
sampled images from each class. Eliminating images with
less than eight predictions allowed the use of the same set
of images for all group sizes. The remaining 98 images had
8 to 17 unique predictions, 11 on average, and the class dis-
tribution was as follows: LVLA=27, LVHA=26, HVLA=24,
and HVHA=21.

The crowdsourced predictions were produced iteratively
for each image individually. On each iteration, a new par-
ticipant is sampled with replacement from the participants
to whom the image was shown and added to the image’s
participant pool. Then, the predictions from the image’s
updated participant pool are combined via soft voting, i.e.,
by taking the average of class probabilities over each partic-
ipant’s predictions, and choosing the class with the largest
mean probability, which forms the new crowdsourced pre-
diction. Soft voting was chosen as it was found to perform
the best among several voting schemes (See Appendix A).
The iteration is stopped when crowdsourced predictions for
N ∈ {1, ..., 8} are created. Adding one participant to the
previous iteration’s participant pool minimizes noise factors
due to, e.g., entirely different participants, and the difference
in results between N can be attributed to the change in
group size. This process was repeated 100 times for each of
the 98 images with the aim of simulating crowdsourcing’s
effectiveness across different, varying groups. Each repeti-
tion produced eight predictions for different group sizes,
resulting in 98× 100× 8 crowdsourced predictions.

4.8 Control model and statistical testing

A random model was trained for a control model to find
an empirical random performance. The training followed
the same procedure as the model with real data, but the
labels were permutated. The mean accuracy scores for each
N were then evaluated with permutation tests with 100
permutations. All tasks achieved the minimum p-value,
p = 0.01, with all N .

5 RESULTS

5.1 Neuroimaging effects

To determine whether emotion generally affected the Oxy-
genated hemoglobin (HbO) and deoxygenated hemoglobin
(HbR) responses to viewing images, repeated measures
ANOVAs were conducted with valence (low, high), arousal
(low, high), hemisphere (left, right), lateral region (lateral,
central, medial), and frontal region (anterior, posterior) as
factors, and HbO and HbR as measures. In HbO, this
showed significant effects of valence, F(1,26) = 8.88, p =
0.006, with more negative responses in low (-1.95 +- 0.36)
than high (-1.14 +- 0.40) valence conditions. Valence further-
more interacted with the hemisphere and frontal region, F(1,
26) = 7.15, p = 0.01, and entered a three-way interaction
with the frontal region and arousal, f(1, 26) = 16.46, p <
0.001. This effect could be characterized in reference to the
general negative effect of low valence being especially large
in the more anterior area in the high arousal condition (D =
1.44) compared to low arousal (0.47) or the more posterior
region (0.89). With HbR, only one significant effect was
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Task
N=1

Acc F1

N=2

Acc F1

N=4

Acc F1

N=8

Acc F1

4 class 0.40 0.39 0.40 0.40 0.45 0.45 0.48 0.48
Valence 0.59 0.58 0.62 0.62 0.64 0.64 0.67 0.66
Arousal 0.56 0.56 0.60 0.60 0.61 0.61 0.63 0.63
HA Valence 0.67 0.67 0.70 0.70 0.74 0.74 0.78 0.78
LA Valence 0.57 0.57 0.59 0.58 0.61 0.61 0.63 0.63

TABLE 1: Accuracy and F1 scores for different N for each task. The datasets are nearly balanced for all prediction tasks.

Fig. 4: Per-participant model accuracies in the 4-class pre-
diction task.

observed, the interaction between valence, hemisphere, and
frontal region. This suggested a more positive effect of low
valence in left posterior areas than left frontal areas (-0.002)
or right hemisphere areas (0.04). A more comprehensive,
exploratory analysis is presented in Figure 3 with all diode-
pairs included, showing effects for HbO, particularly in
left medial-posterior and right frontolateral areas. Valence
generally shows a stronger response than arousal, although
the two lower rows in the figure suggest this effect occurs
mainly in conditions of high arousal.

5.2 Classification performance

Participant-specific models. The participants’ individual
classification performance was evaluated before the crowd-
sourcing task. Each participant’s individual classification
accuracy was calculated from all predictions made by that
participant. The participant-specific 4 class accuracies are
shown in Figure 4. In the 4-class task, the average overall
accuracy for a participant was 0.40 ± 0.02 (± standard error).
For other tasks, the mean accuracies were Valence 0.59 ±
0.01, Arousal 0.56 ± 0.02, HA Valence 0.67 ± 0.02, and LA
Valence 0.57 ± 0.02. All mean accuracies were significantly
different from the accuracies of the random model using
permutation tests with 100 permutations (p = 0.01).

Crowdsourced models. Table 1 and Figure 5 show the
classification accuracies for different group sizes. First, 100
combination scores were calculated for each N by, for
i ∈ {1, .., 100}, taking the prediction from the ith partic-
ipant group of each image and calculating their classifi-
cation accuracy. For example, the first combination score
is calculated by taking the classification accuracy over the

crowdsourced predictions from the first participant combi-
nation of each image. This is conducted for each participant
combination, resulting in 100 combination scores per N .
Figure 5 visualizes the mean and standard deviation of
the accuracies for different group sizes, and Table 1 shows
the numerical values of the mean accuracies and F1 scores.
The classification performance consistently improves as the
crowd gets larger in all tasks. This is also visible in classifier
decision probabilities in Figure 6. The distribution converges
as crowd size increases.

Task βN p

4 class 0.012 < 0.001
Valence 0.010 < 0.001
Arousal 0.009 < 0.01
HA Valence 0.017 < 0.001
LA Valence 0.008 < 0.001

TABLE 2: The effect of group size on the accuracy, measured
by coefficients βN and their corresponding p-values.

Significance of crowd size. The improvement in per-
formance relative to group size was evaluated by testing
for linear dependence between N and mean accuracy. This
test was conducted by first fitting an OLS simple linear
regression model to {(Ni, Acci)}8i=1 for each task. The fits
of these models are visualized in Figure 5 as purple lines.
Then, testing if the coefficient of N , βN , is significantly
different from 0 with a Student’s t-test. The coefficients βN

and their corresponding p-values are shown in Table 2.
Differences in the performance of crowdsourced predic-

tions with respect to group sizes were also compared at the
image level to outrule the possibility that different stimuli
would account for the performance differences. The accu-
racies were calculated by taking the classification accuracy
over all combinations for each image. This results in 98
image scores for each N . The image scores of different N
were compared with each other using the Wilcoxon signed-
rank test, with the alternative hypothesis that the larger
group outperforms the smaller one. The image-specific accu-
racies of larger groups are predominantly greater than those
of smaller groups, especially when the difference in size
is substantial. The Benjamini-Hochberg adjusted pairwise
statistically significant differences across different crowd
sizes are visualized in the top-right corner of Figure 5.

Significance of affective class and stimulus content.
There were substantial differences between crowdsourced
classification accuracies of different images in the 4 class
task with 8 participants. Figure 1 illustrates the image-
specific accuracies by the relative size of the dot markers.
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Fig. 5: Top left: Classification accuracy for the full 4-class (low/high valence, low/high arousal) as a function of crowd size.
Top right: Statistical significance for differences between models with different crowd size (Benjamini-Hochberg adjusted).
Middle: Classification accuracy for high/low valence (left) and high/low arousal (right). Bottom: Classification accuracy
for low-arousal valence (left) and high-arousal valence (right). All results show accuracy as a function of crowd size.
The orange lines show control model performances trained with randomly permutated labels. The error bars denote the
standard deviation of the accuracy scores.

Noticeably, LVHA images have higher average classifica-
tion accuracy (0.62) than HVHA, LVLA, and HVLA, with
accuracies of 0.45, 0.45, and 0.38, respectively. It is evi-
dent that the image class, and therefore the valence and
arousal, affects the classification accuracy. Most notably,
high-arousal images achieved significantly higher accura-
cies (Mann-Whitney U = 1515.5, p < 0.05 two-tailed) than
low-arousal images, suggesting that images that evoke more

intense emotional responses are easier to recognize.

To further investigate the distinguishability of types of
images, we assigned images to smaller groups with de-
scriptive tags (e.g., Figure 1) and examined differences in
prediction accuracy for each tag. Tags with less than three
representative images were not considered. In line with our
previous finding, the highest scoring tags were associated
with the LVHA class, more specifically with grisly images
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Fig. 6: Distribution of crowdsourced predictions for the
target label in valence classification for increasing crowd
size (upper left N=1, upper right N=2, lower left N=4, lower
right N=8). The prediction probabilities converge as crowd
size increases.

(grisly 0.72, injury 0.68). In addition, the LVHA class had
another tag type that scored high, threats of violence (knife
0.56, threat of violence 0.55). The highest scoring tags from
other classes were couple (HVHA) 0.66, dirty (LVLA) 0.49,
and sociability (HVLA) 0.45. Lower scoring tags were usu-
ally ambiguous, such as peaceful (LVLA) 0.22, which was
most commonly predicted as HVLA, or associated with
multiple classes, such as animals (HVLA, HVHA, LVHA)
0.33. This result further supports the finding that high-
arousal images are easier to classify.

Prediction accuracy is dependent on the content of the
stimulus image. Images that evoke strong responses are
easier to classify, while it is more difficult to distinguish
between milder emotional responses. This suggests that
greater performance could be achieved in downstream tasks
that deal with distinctive content evoking strong responses.

6 DISCUSSION AND CONCLUSIONS

Existing approaches to affective annotation typically rely
upon manual annotation, which is labor-intensive and ne-
cessitates explicit interactions from users. On the other
hand, automatic methods that analyze only content to es-
timate users’ affective responses may be unreliable and
produce affective state estimations that diverge from users’
actual experiences. Here, we explored an intriguing alterna-
tive to affective annotation: learning affective annotations
directly from brain signals by passively monitoring the
affective experiences of a crowd of participants. The present
work, to the best of our knowledge, is the first-of-its-kind
to employ fNIRS brain-computer interfaces in a crowdsourcing
setting for affective annotation. Our approach is based on a
simple but powerful idea: The affective states decoded from
the brain responses of many participants toward stimuli
can be used to infer a consensus estimate of the affective

response that the stimuli are likely to evoke. Since our
approach relies on implicit affective responses as they are
naturally experienced by users, without requiring any ar-
tificial physical or mental activity, we envision that they
could be monitored implicitly as part of everyday human-
computer interaction.

6.1 Answers to research questions

To study whether crowdsourced brain-computer interfacing
can be used for affective annotation we asked two research
questions, which we answer below.

RQ1: Can fNIRS-BCI monitoring be effectively employed
in crowdsourcing settings to predict the affective content of
stimuli? Yes, we show that fNIRS measured from the frontal
lobe carries information about affective states experienced
by humans (Figure 3). Valence, in particular, was associated
with activity in the medial left and lateral right frontal
cortex. We demonstrate that from such patterns of activity,
affective annotations can be decoded via machine learning
with relatively high accuracy and significantly increasing
performance with respect to crowd size (Figure 5). The pre-
diction accuracy varies between 0.48 (against 0.25 random)
for a four-class valence-arousal classification to 0.78 (against
random 0.5) valence classification for high-arousal stimuli
(see Table 2 for details). High-arousal stimuli, in general, are
more likely to evoke stronger affective responses [58]. They
can also be more important for downstream applications:
The stronger the affective response, the higher the impor-
tance for affect detection and annotation. The accuracy of
the latter result is particularly encouraging as it suggests
that performance in real-world downstream tasks, such as
detecting harmful content or content that evokes particu-
larly positive responses, may perform at a similar level of
quality as manual annotation. It is noteworthy that these
results are achieved entirely implicitly, meaning they are
based solely on perception without requiring any explicit
mental or physical activity from the participants.

RQ2: To what extent does fNIRS-based affective crowd-
sourcing improve performance of predictive models com-
pared to individual classification? The results show a
significant increase in accuracy with respect to crowd size,
exhibiting a consistently increasing performance. This sug-
gests that relatively small crowds can be used to source af-
fective annotations effectively, and less than 10 participants
are enough to obtain high accuracy (Figure 5). The classifier
analysis further supports this finding, which shows the
distribution of average class probabilities stabilizing as a
function of crowd size (Figure 6).

6.2 Limitations

The reported performance may overestimate or underes-
timate future replications or applications, depending on
differences in sampling procedures and apparatus. How-
ever, the standardized acquisition setup and data processing
protocols make it unlikely that the reported differences
between conditions were due to confounding factors. That
is, noise in the LED-diode-based fNIRS may have adversely
affected accuracy compared to laser-based fNIRS, which has
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been shown to reduce crosstalk and improve spatial accu-
racy [41]. Conversely, our recruitment of healthy, relatively
young participants may have improved overall accuracy
due to their engagement with the task being likely stronger
than would be observed in the general population. How-
ever, since the neuroimaging data acquisition employed a
fully randomized experimental protocol, such effects cannot
account for the observed differences between the conditions.
Moreover, these effects were robust across variations in neu-
roimaging analysis, decoding models, and crowd-analyses.
We, therefore, expect the results to generalize towards future
studies and application settings.

The experimental design further places limitations on
the ecological validity. For example, while the randomised
order balanced interference from preceding emotional im-
ages, such that the reported averages were unlikely to have
been due to carry-over effects from preceding trials, such
balancing is unlikely to occur in the real world. Indeed, in
common interaction, emotions may follow one another in
rapid succession and repeat more frequently than alternate.
Furthermore, the visual stimuli we used were selected from
a standard and widely used affective image database. This
allows for excluding many contextual factors that might
be present in real-world content, such as news articles
and associated images. It also allows for comparing and
reproducing our results. On the other hand, the images are
old and may not always be comparable to images that users
would encounter when browsing the Web, for example.
Such differences in studies of emotions within and outside
the laboratory are now more frequently recognized within
psychology and affective computing [45], [70], [71], and
future research must determine whether the reported results
will replicate towards emotions captured during real-life
interaction.

Another factor in our experiment is the specific decoding
model that is used to classify affective states. The model is a
fairly standard classification model, and we used standard
grid search to optimize pre-processing and feature extrac-
tion. All procedures were conducted in a repeated k-fold
cross-validation setting, with any model tuning performed
exclusively using the training data. We also experimented
with other standard models and did not find performance
differences that would be significant. Our consensus label-
ing followed a simple strategy of aggregating individual
predictions that were also found successful in earlier studies
with manual labels [62]. Therefore, we can be confident that
the model or the learning setup does not account for the
significance of the results. Nevertheless, it is possible that
experimentation with a larger amount of participants, more
advanced representation learning, or more sophisticated
label aggregation could lead to further improvement of the
results.

6.3 Ethics

Brain-computer interfacing, and physiological computing
more generally, provide new opportunities for computing
systems that learn directly from the human cognitive sys-
tem. This is enabled by active monitoring of humans while
they are interacting with their digital environments. This
technology has advanced with unprecedented speed during

the past decade and is transforming from laboratory exper-
imentation in a research setting to consumer-grade devices
that measure human brain activity and physiology in the
wild.

These new opportunities provide novel signals from hu-
mans to be used in a variety of human-facing applications,
but the technology may also raise concerns about the abuse
and misuse of these susceptible signals.

For instance, fNIRS data should be considered personal
medical data; protecting it becomes particularly important
as it can be used as a cognitive biomarker [53], detecting
cognitive load [67], detecting cognitive (dis)ability [5], and
other sensitive biomarkers, such as deception [27]. On the
other hand, it is clear that the current stage of technology
is not such that one might unobtrusively detect emotions.
That is, unlike signals such as EDA or heartrate, fNIRS is far
from a ubiquitous form of biosensing, making it at present
unlikely to be used without a user’s explicit consent.

Data captured via BCI could also be used together with
other individuals’ signals. For example, combining the affec-
tive data with browsing behavior and comparing that to the
data of other individuals’ behavior and affective responses.
Moreover, subliminal probing could be used beyond the
annotation task for predicting unwanted user characteristics
[21] and compared to other individuals’ data to reveal even
social or political views. Preventing unintended use of these
signals requires future research for protecting the privacy of
data.

6.4 Future work

Although ergonomics, cost, and comfort may impede the
adoption of consumer-grade BCI, our methodology demon-
strates a proof-of-concept approach to source affective an-
notations from a crowd of BCI users without requiring
additional mental or physical interaction effort. Future work
could experimentally investigate affective decoding with
novel sensors and fewer transmitter-receiver pairs to study
whether a reduced hardware setup could yield similar re-
sults.

The present machine learning models are well-suited
for the scenario where a relatively small amount of data is
available from each participant. Although classical machine
learning methods have proven challenging to outperform
in affective classification settings for various downstream
tasks [19], [42], [65], conducting experiments with repre-
sentation learning and contrastive learning models, along
with data augmentation, should be considered. These could
learn to better separate nuanced signals associated with each
affective state. Furthermore, by extending the models to
account for participant-independent data, a single model
could be trained across participants rather than requiring
per-participant models that are then fused in the crowd-
sourcing stage.

Our approach and study fall under implicit crowdsourc-
ing: participants were not instructed to perform any specific
tasks, and they only naturally reacted to the presented stim-
uli, which were successfully decoded from both individual
and crowd responses. This mitigates the need for setting up
specific experiments for utilizing our methodology in real-
world settings. To this end, future research should explore
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sourcing affective annotations with accessible hardware and
data outside of a pre-recorded stimuli database to capture
affective annotations as they occur in our everyday interac-
tion with digital information.
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APPENDIX A
CROWDSOURCING DECISION STRATEGIES

In addition to combining subjects’ predictions via soft vot-
ing, the crowdsourced models were evaluated with two
other decision strategies, hard voting and average response
classification.

In hard voting, each individual classifier votes for one
class, and the class assigned with the majority of the votes
is considered the crowdsourced prediction. In case of a tie,
the first class is selected (the classes are ordered: LANV,
HANV, LAPV, HAPV). The mean accuracies and F1 scores
with hard voting are shown in Table 3.

Average response classification works by averaging the
fNIRS responses from N subjects for each image before
feature extraction and classification. Then, each image’s
average response is classified with the same cross-validation
scheme as in Section 4.2. The mean accuracies and F1 scores
of average response classification are shown in Table 4.

Task
N=1

Acc F1

N=2

Acc F1

N=4

Acc F1

N=8

Acc F1

4 class 0.40 0.39 0.41 0.39 0.45 0.44 0.48 0.48
Valence 0.59 0.58 0.60 0.57 0.62 0.60 0.64 0.63
Arousal 0.56 0.56 0.57 0.55 0.59 0.58 0.59 0.59
HA Valence 0.67 0.67 0.69 0.67 0.74 0.73 0.78 0.78
LA Valence 0.57 0.57 0.59 0.57 0.61 0.59 0.64 0.63

TABLE 3: Accuracy and F1 scores for different N for each task with hard voting. The datasets are nearly balanced for all
prediction tasks.

Task
N=1

Acc F1

N=2

Acc F1

N=4

Acc F1

N=8

Acc F1

4 class 0.26 0.26 0.27 0.27 0.28 0.28 0.30 0.29
Valence 0.52 0.52 0.55 0.55 0.57 0.57 0.59 0.58
Arousal 0.50 0.50 0.50 0.49 0.50 0.50 0.51 0.51
HA Valence 0.54 0.54 0.57 0.56 0.60 0.60 0.63 0.63
LA Valence 0.53 0.53 0.53 0.53 0.53 0.53 0.55 0.55

TABLE 4: Accuracy and F1 scores for different N for each task with average response classification. The datasets are nearly
balanced for all prediction tasks.
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