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Abstract—Emotional speech synthesis aims to synthesize human voices with various emotional effects. The current studies are mostly
focused on imitating an averaged style belonging to a specific emotion type. In this paper, we seek to generate speech with a mixture
of emotions at run-time. We propose a novel formulation that measures the relative difference between the speech samples of different
emotions. We then incorporate our formulation into a sequence-to-sequence emotional text-to-speech framework. During the training,
the framework does not only explicitly characterize emotion styles but also explores the ordinal nature of emotions by quantifying the
differences with other emotions. At run-time, we control the model to produce the desired emotion mixture by manually defining an
emotion attribute vector. The objective and subjective evaluations have validated the effectiveness of the proposed framework. To our
best knowledge, this research is the first study on modelling, synthesizing and evaluating mixed emotions in speech.

Index Terms—Emotional speech synthesis, mixed emotions, sequence-to-sequence, the ordinal nature of emotions, relative
difference, emotion attribute vector
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1 INTRODUCTION

HUMANS can feel multiple emotional states at the same
time [1]. Consider some bittersweet moments such

as remembering a lost love with warmth or the first time
leaving home for college, it is possible to experience the
co-occurrence of different types of emotions - even two
oppositely valenced emotions (e. g., happy and sad) [2], [3].
Emotional speech synthesis aims to add emotional effects
to a synthesized voice [4]. Synthesizing mixed emotions
will mark a milestone for achieving human-like emotions in
speech synthesis, thus enabling a higher level of emotional
intelligence in human-computer interaction [5], [6], [7].

Speech synthesis aims to generate human-like voices
from input text [8], [9], [10]. With the advent of deep
learning, the state-of-the-art speech synthesis systems [11],
[12], [13] are able to produce speech of high naturalness
and intelligibility. However, most of them do not convey
the omnipresent emotional contexts in human-human inter-
action [14], [15], [16]. The lack of expressiveness limits the
emotional intelligence of current speech synthesis systems
[17]. Emotional speech synthesis aims to fill this gap [18],
[19], [20].

Synthesizing a mixed emotional effect is a challenging
task. One of the reasons is the subtle nature of human
emotions [21]. Therefore, it is not straightforward to pre-
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cisely characterize speech emotion. Besides, speech emo-
tion is inherently supra-segmental, complex with multi-
ple acoustic cues such as timbre, pitch and rhythm [22],
[23]. Both spectral and prosodic variants need to be stud-
ied when modelling speech emotion. The early studies
on emotional speech synthesis rely on statistical mod-
elling of different speech parameters with hidden Markov
models (HMM) [24], [25] and Gaussian mixture model
(GMM) [26], [27]. Deep neural networks (DNN) [28], [29]
and deep bi-directional long-short-term memory network
(DBLSTM) [30], [31] represent the recent advances. The
end-to-end neural architecture [32], [33] becomes popular
because of its superior performance. We note that there are
generally two types of methods in the literature to learn
emotion information: one uses auxiliary emotion labels as
the condition of the framework [34], [35], and the other
imitates the emotion style of the reference speech [36], [37].
However, these methods learn the global temporal structure
of speech emotion, resulting in a monotonous expressive-
ness in synthesized speech. In this way, these frameworks
can only synthesize several emotion types exhibited in
the database. These disadvantages limit the flexibility and
controllability of the above frameworks. For example, it is
hard to synthesize mixed emotional effects with existing
emotional speech synthesis frameworks.

For the first time, we study the modelling of mixed
emotions in speech synthesis. In psychology, there have
been studies [38], [39] to understand the paradigms and
measures of mixed emotions. However, the study of mixed
emotions in speech synthesis is not given attention yet,
where there exist two main research problems: (1) how to
characterize and quantify the mixture of speech emotions,
and (2) how to evaluate the synthesized speech. In this
article, we will address these two challenges.

The main contributions of this article are listed as fol-
lows:

• For the first time, we study the modelling of mixed
emotions for speech synthesis, which brings us a step
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closer to achieving emotional intelligence;
• We introduce a novel scheme to measure the relative

difference between emotion categories, with which the
emotional text-to-speech framework learns to quantify
the differences between the emotion styles of speech
samples during the training. At run-time, we control
the model to produce the desired emotion mixture by
manually defining an emotion attribute vector;

• We carefully devise objective and subjective evaluations
to confirm the effectiveness of the proposed framework
and the emotional expressiveness of the speech.

This paper is organized as follows: In Section 2, we
motivate our study by introducing the background and
related work. In Section 3, we present the details of our
proposed framework, and we introduce our experiments in
Section 4. We provide further investigations in Section 5.
The study is concluded in Section 6.

2 BACKGROUND AND RELATED WORK

This work is built on several previous studies on the
characterization of emotions, sequence-to-sequence emotion
modelling for speech synthesis and controllable emotional
speech synthesis. We briefly introduce the related studies to
set the stage for our research and rationalize the novelty of
our contributions.

2.1 Characterization of Emotions

Understanding human emotions (e. g., their nature and
functions) has been gaining lots of attention in psychology
[40], [41], [42]. This study is inspired by several previous
research, including the theory of the emotion wheel and the
ordinal nature of emotions.

2.1.1 Theory of the Emotion Wheel

Studies show that humans can experience around 34, 000
different emotions [43]. While it is hard to understand all
these distinct emotions, Plutchik proposed 8 primary emo-
tions: anger, fear, sadness, disgust, surprise, anticipation,
trust and joy, and arranged them in an emotion wheel [44]
as shown in Figure 1. All other emotions can be regarded as
mixed or derivative states of these primary emotions [44].
According to the theory of the emotion wheel, the changes
in intensity could produce the diverse amount of emotions
we can feel. Besides, the adding up of primary emotions
could produce new emotion types. For example, delight can
be produced by combining joy and surprise [45].

Despite these efforts in psychology, there is almost no
attempt to model the mixed emotions in the literature of
speech synthesis. Inspired by the theory of the emotion
wheel, we believe it is possible to combine different primary
emotions and synthesize mixed emotions in speech. This
technique will also allow us to create new emotion types
that are hard to collect in real life, which could help us
better mimic human emotions and further enhance the
engagement in human-robot interaction.

Joy + Trust
= love

Serenity + Interest
= Optimism

Anticipation + Anger
= Aggressiveness

Joy + Trust
= Love

Trust + Fear
= Submission

Fear + Surprise
= Awe

Surprise + Sadness
= Disappointment

 Sadness + Disgust
= Remorse

Disgust + Anger
= Contempt

Fig. 1: An illustration of the theory of the emotion wheel
[44], where all emotions occur as the mixed or derivative
states of eight primary emotions.

2.1.2 The Ordinal Nature of Emotions

Studies show that emotions are intrinsically relative, and
their annotations and analysis should follow the ordinal
path [46], [47]. Instead of assigning an absolute score or
an emotion category, ordinal methods characterize emo-
tions through comparative assessments (e. g., is sentence
one happier than sentence two?). Ordinal methods have
shown remarkable performance, especially in speech emo-
tion recognition [48], [49], [50].

The key idea of ordinal methods is to learn a ranking
according to the given criterion. An example is preference
learning [51], where the task is to establish preferences be-
tween samples. Once the preferences are established, rank-
ing samples [52], [53], [54] is straightforward. Other rank-
based methods [55], [56], [57] also show the effectiveness
of modelling the affect for speech emotion recognition. As
for emotional speech synthesis, researchers also explore the
ordinal nature of emotions to model the emotion intensity
[58], [59], [60], [61], where the intensity of an emotion
is treated as the relative difference between neutral and
emotional samples. Inspired by the previous studies, we aim
to study rank-based methods to quantify the relative differ-
ences between the speech samples from different emotion
categories, which we discuss later.

2.2 Sequence-to-Sequence Emotion Modelling for
Speech Synthesis

The sequence-to-sequence model with attention mechanism
was first studied in machine translation [62] and later on
found effective in speech synthesis [12], [63]. We consider
that sequence-to-sequence models are suitable for modelling
speech emotion. Sequence-to-sequence models are more ef-
fective in modelling the long-term dependencies at different
temporal levels such as word, phrase and utterance [64]. By
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learning attention alignment, sequence-to-sequence models
can capture the dynamic prosodic variants within an utter-
ance [65]. They also allow for the prediction of the speech
duration at run-time, which is a critical prosodic factor of
the speech emotion [66].

There are generally two types of methods in the litera-
ture to model speech emotions: 1) explicit label-based and 2)
reference-based approaches. Next, we will briefly introduce
these two approaches in sequence-to-sequence modelling.

2.2.1 Learn to Associate with Explicit Labels
It is the most straightforward to characterize emotion by
using explicit emotion labels [34], [35], where the model
learns to associate labels with emotion styles. In [34], an
emotion label vector is taken by the attention-based decoder
to produce the desired emotion. In [35], a low-resourced
emotional text-to-speech is built using model adaptation
with a few emotion labels. In addition to the explicit labels of
discrete emotion categories, there are attempts to condition
the decoder with continuous variables [67].

2.2.2 Learn to Imitate a Reference
Another approach is to use a style encoder to imitate and
transplant the reference style [32]. Global style token (GST)
[36] is an example to learn style embeddings from the
reference audio in an unsupervised manner. Some studies
incorporate additional emotion recognition loss [33], [68],
perceptual loss [60], [69] or adversarial training [70] to
help with the emotion rendering. Other studies [71], [72],
[73], [74] replace the global style embedding with phoneme
or segmental level prosody embedding to capture multi-
scale emotion variants. Similar approaches have also been
applied to emotional voice conversion research. In [75], the
style encoder further acts as the emotion encoder to learn
actual emotion information through a two-stage training. In
[76], a speaker encoder is further introduced to preserve the
speaker information.

These successful attempts motivate us to leverage the
sequence-to-sequence mechanism to enable emotion mod-
elling for speech synthesis.

2.3 Controllable Emotional Speech Synthesis
Speech emotion is often manifested in various prosody
aspects [77]. Emotion styles can be controlled by modifying
different prosodic cues. Current studies [78], [79] mainly fo-
cus on designing the prosody embedding as a control vector
that is derived from a representation learning framework.
For example, style tokens [36] are designed to represent
high-level styles such as speaker style, pitch range and
speaking rate. Emotion styles can be controlled by choosing
specific tokens. Recent attempts [80], [81] study a way to
include a hierarchical, fine-grained prosody representation
into the style token-based diagram [36]. Some other studies
also use variational autoencoders (VAE) [82] to control the
speech style by learning, scaling or combining disentangled
representations [83], [84].

Recently, emotion intensity control has attracted much
attention in emotional speech synthesis. Emotion intensity
is considered to be correlated with all the acoustic cues that
contribute to speech emotion [85], which makes itself even

Proposed 
Relative Scheme

Emotional 
Text-to-Speech

Reference Speech 
(Label: Surprise)

Synthesized  
Speech 

(100% Surprise 
+ 30% Happy)

Text InputManually Controlled
Attribute Vector

Angry:               0%
Sad:                  0%
Neutral:             0%
Happy:            30%
Surprise:       100%

Fig. 2: Block diagram of our proposed relative scheme
applied to emotional text-to-speech at run-time.

more subjective and challenging to model. Some studies use
auxiliary features such as a state of voiced, unvoiced and
silence (VUS) [86], attention weights or a saliency map [87]
to control the emotion intensity. Other studies manipulate
the internal emotion representations through interpolation
[88], scaling [76] or distance-based quantization [89]. In [58],
[59], [60], [61], relative attributes are introduced to learn
a more interpretable representation of emotion intensity.
However, none of these frameworks studied the correlation
and interplay between different emotions. This contribution
aims to fill this research gap.

2.4 Summary of Research Gap

We briefly summarize the gaps in the current literature on
speech synthesis that we aim to address in this study:

• The synthesis of mixed emotions has not been studied
in speech synthesis, which limits the capability of cur-
rent systems to imitate human emotions;

• Despite much progress in psychology, it is still chal-
lenging to characterize and quantify the mixture of
emotions in speech;

• Current evaluation methods are inadequate to assess
mixed emotional effects. The rethinking of the current
evaluation for mixed emotions is needed.

This study is a departure from the current studies on emo-
tional speech synthesis. We seek to display the possibilities
to synthesize mixed emotions that are subtle but do exist in
our real life.

3 MIXED EMOTION MODELLING AND SYNTHESIS

We propose a novel relative scheme to allow for manually
manipulating the synthesized emotion, i.e. mixing multiple
different emotion styles. As shown in Figure 2, the proposed
scheme allows for flexible control of the extent of each con-
tributing emotion in the speech. At run-time, the framework
transfers the reference emotion into a new utterance with the
text input, also known as emotional text-to-speech.

We first describe our method of characterizing mixed
emotions in speech and highlight our contributions to
designing a novel relative scheme. Then, we present the
details of the sequence-to-sequence emotion training with
the proposed relative scheme. Lastly, we show the flexible
control of the proposed framework for synthesizing mixed
emotions.
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Happy

Sad

Angry

Neutral

Surprise

Relative Ranking 
Training

Trained Ranking 
Functions 

Emotional  
Speech 

(Label: Happy)

0.7

0.6

0.8

0.4

0

Emotion  
Attribute Vector 

(a) Training Phase (b) Inference Phase

Fig. 3: The illustration of the proposed relative scheme at (a) training and (b) run-time phase. A relative ranking function is
trained between each emotion pair and automatically predicts an emotion attribute at run-time. A smaller emotion attribute
value represents a similar emotional style between the pairs. All the emotion attributes form an emotion attribute vector.

3.1 Characterization of Mixed Emotions in Speech

Emotion can be characterized with either categorical [90],
[91] or dimensional representations [92], [93]. With desig-
nated emotion labels, the emotion category approach is the
most straightforward way to represent emotions. However,
such representation ignores the subtle variants of emotions.
Another approach seeks to model the physical properties
of speech emotion with dimensional representations. An
example is Russell’s circumplex model [92], where emotions
are distributed in a two-dimensional circular space, contain-
ing arousal and valence dimensions.

One most straightforward ways to characterize mixed
emotions is to inject different emotion styles into a con-
tinuous space. Mixed emotions could be synthesized by
adjusting each dimension carefully. However, only a few
emotional speech databases [94], [95] provide such anno-
tations. These dimensional annotations are subjective and
expensive to collect. Therefore, we only utilize discrete
emotion labels available in most databases. We first make
an assumption based on the theory of the emotion wheel
[44]: Mixed emotions are characterized by combinations,
mixtures or compounds of primary emotions. While it is not
straightforward to add up emotions, we explore the ordinal
nature of emotions instead.

We propose a rank-based relative scheme to quantify the
relative difference between speech recordings with different
emotion types. Mixed emotions can be characterized by
adjusting the relative difference with other emotion types.
The relative difference value can also quantify the level of
engagement of each emotion. We introduce our design of a
novel relative scheme next.

3.2 Design of a Novel Relative Scheme

One of the challenges of synthesizing mixed emotions is
quantifying the association or the interplay between differ-
ent emotions. Inspired by the ordinal nature of emotions, we
propose a novel relative scheme to address this challenge.
We first make two assumptions according to the theory of

Linguistic 
Encoder

Text 
Encoder

Emotion 
Encoder

 Input 
Speech 
(Happy)

Input 
Text

Linguistic  
Embedding  

(Text)
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Embedding  
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Label: Happy

Decoder

Emotion 
Classifier

Pre-trained 
Relative Scheme

Emotion 
Embedding

Label: Happy

Task 
Switch

FC

Concat

Reconstructed 
Speech 
(Happy)

Linguistic Space

Emotion Space

. 

. 

.

Emotion 
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Fig. 4: The training diagram of the proposed framework. The
pre-trained relative scheme learns to generate an emotion
attribute vector that measures the relative difference be-
tween the input emotion style (’Happy’) and other primary
emotion styles (’Angry’, ’Sad’, ’Surprise’ and ’Neutral’).

the emotion wheel: (1) all emotions are related to some
extent; (2) each emotion has stereotypical styles. In our
proposal, we not only characterize the identifiable styles
of each emotion but also seek to quantify the similarity
between different emotion styles.

We study a rank-based method to measure the rela-
tive difference between emotion categories, which can offer
more informative descriptions and thus be closer to human
supervision [96]. In computer vision, relative attribute [96]
represents an effective way to model the relative difference
between two categories of data. Inspired by the success in
various computer vision tasks [97], [98], [99], we believe
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relative attributes bridge between the low-level features and
high-level semantic meanings, which allows us to model
the relative difference between emotions only with discrete
emotion labels. In this way, we regard the identifiable
emotion style as an attribute of speech data, which can
be represented with a rich set of emotion-related acoustic
features. The relative difference of the emotion styles can
be modelled as a relative attribute, which is called ”emotion
attribute” in this article. The emotion attribute can be learnt
through a max-margin optimization problem as explained
below:

Given a training set T = {xn}, where xn is the acoustic
features of the nth training sample, and T = A ∪ B, where
A and B are two different emotion sets, we aim to learn a
ranking function given as below:

f(xn) = Wxn, (1)

where W is a weighting matrix indicating the difference of
emotion styles. According to the hypothesis (1) and (2), we
propose the following constraints:

∀xi ∈ A,∀xj ∈ B : Wxi > Wxj (2)
∀(xi,xj) ∈ A,∀(xi,xj) ∈ B : Wxi = Wxj , (3)

The weighting matrix W is estimated by solving the fol-
lowing problem similar to that of a support vector machine
[100]:

min
W

(
1

2
∥ W ∥22 +C(

∑
ξ2i,j +

∑
γ2
i,j)) (4)

s.t. W(xi − xj) ≥ 1− ξi,j ;∀xi ∈ A,∀xj ∈ B (5)
|W(xi − xj)| ≤ γi,j ;∀(xi,xj) ∈ A,∀(xi,xj) ∈ B (6)

ξi,j ≥ 0; γi,j ≥ 0, (7)

where C is the trade-off between the margin and the size of
slack variables ξi,j and γi,j .

Through Eq. (4) – (7), we learn a wide-margin ranking
function that enforces the ordering on each training point.
As shown in Figure 3(a), we train a relative ranking function
f(x) between each emotion pair. At the inference phase, the
trained function can estimate an emotion attribute of unseen
data as shown in Figure 3(b). In practice, each emotion
attribute value is normalized to [0, 1], where a smaller
value indicates a similar emotional style. All the normal-
ized emotion attributes form an emotion attribute vector.
The emotion attribute vector bridges the discrete primary
emotion labels and is further incorporated in sequence-to-
sequence emotion training.

3.3 Training Strategy

We adopt an emotional text-to-speech framework with the
joint training of voice conversion as in [75]. As both text-
to-speech and voice conversion share a common goal of
generating realistic speech from the internal representa-
tions, the joint training was shown effective [101], [102],
[103], [104]. The text-to-speech task could benefit from the
phone-embedding vectors [105], [106], or the prosody style
introduced by a reference encoder [32]. A shared decoder
between text-to-speech and voice conversion contributes to
a robust decoding process [107], [108], [109].

Text 
Encoder

Input  
Text

Linguistic  
Embedding  

(Text)

Decoder

Emotion 
Encoder

Reference 
Speech 

(Surprise)

Emotion 
Embedding

Manually Controlled
Attribute Vector

Angry:                 0%
Sad:                    0%
Neutral:               0%
Happy:              30%
Surprise:         100%

1
1
1
0.7
0

FC

Emotion 
 Attribute Vector

Concat

Synthesized 
Speech 

(100% Surprise 
+ 30% Happy)

Linguistic Content

Emotion Control

Relative Scheme

Fig. 5: The run-time diagram of the proposed emotional text-
to-speech framework. The emotion rendering can be man-
ually controlled via the relative scheme. By assigning the
appropriate percentage to the attribute vector, we produce a
target emotion mixture.

The overall emotional text-to-speech framework is an
encoder-decoder model that is trained as a sequence-to-
sequence system, as shown in Figure 4, where the text
encoder and linguistic encoder generate an embedding se-
quence for the input, while the emotion encoder gener-
ates one embedding that encapsulates the whole reference
speech sample.

Given the text or speech as input, the text and the
linguistic encoder learn to predict the linguistic embedding
from the text or speech, respectively. The decoder takes the
linguistic embedding from the text or speech in an alter-
native manner, depending on whether the epoch number
is odd or even. Similar to [102], a contrastive loss is used
to ensure the similarity between these two types of lin-
guistic embeddings. The adversarial training strategy with
an emotion classifier is employed on the acoustic linguistic
embedding to eliminate the residual emotion information.

An emotion encoder is used to extract an emotion em-
bedding vector from the input speech under the supervision
of an emotion label. Meanwhile, an emotion attribute vector
is generated by the pre-trained relative scheme described
in Section 3.2, and then produced by a fully connected
(FC) layer, resulting in a relative embedding. The emotion
embedding describes the emotion styles of the input speech,
while the emotion attribute vector indicates the difference
between the input emotion style and other emotion styles.
Finally, the decoder learns to reconstruct the input emotion
style from a combination of emotion and relative embed-
dings.

The whole training procedure can be viewed as a
recognition-synthesis process at the sequence level. Our
proposed framework does not only learn the abundant
emotion variance that is exhibited in a database, but also
the correlation or association across different emotion cate-
gories. It allows us to explicitly adjust the difference level at
run-time and further enables mixed emotion synthesis and
the flexible control of emotion rendering at the same time,
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which will be discussed next.

3.4 Control of Emotion Rendering
We illustrate our proposed emotional text-to-speech frame-
work in Figure 5, which renders controllable emotional
speech at run-time. The framework consists of three main
modules, the content encoder, the emotion controller, and
the decoder.

The text encoder projects the linguistic information from
the input text into an internal representation. The emotion
encoder captures the emotion style in an embedding from
the reference speech, while the relative scheme further in-
troduces the characteristics of other emotion types with a
manually assigned attribute vector. By varying the percent-
age for each primary emotion in the attribute vector, we can
easily synthesize the desired emotional effects and control
the emotion rendering in synthesized speech.

4 EXPERIMENTS AND EVALUATIONS

In this section, we report our experimental settings and
results. As shown in Table 1, for all the experiments, we
synthesize mixed emotional effects by mixing a primary
emotion (Surprise) with three reference emotions (Happy,
Angry and Sad) respectively. We expect to synthesize mixed
emotional effects similar with the secondary emotions such
as Delight, Outrage and Disappointment, respectively. We
choose these three combinations because they are thought to
be easier to perceive for the listeners and have been studied
in psychology [1], [44].

Since this contribution serves as a pioneer in related
fields, there is no literature or reference methods before
this study, to our best knowledge. Therefore, we could not
include any baselines in our experiments. Instead, we adopt
objective and subjective metrics widely used in previous
literature and carefully design evaluation methods to show
the effectiveness of our proposal. We have made the source
codes and speech demos available to the public1. We en-
courage readers to listen to the speech samples on our demo
website to best understand this work.

4.1 Experimental Setup
We use acoustic features and phoneme sequences as the
inputs to the proposed framework during the training.
The acoustic features are 80-dimensional logarithm Mel-
spectrograms extracted every 12.5ms with a frame size of
50ms for short-time Fourier transform (STFT). We convert
text to phoneme with the Festival [110] G2P tool to serve
as the input to the text encoder. At run-time, we synthesize
emotional speech from the text input.

4.1.1 Network Configuration
Our proposed framework can be regarded as a sequence-
level recognition-synthesis structure similar to that of [102],
[111]. Both the linguistic encoder and the decoder have a
sequence-to-sequence encoder-decoder structure. The lin-
guistic encoder consists of an encoder, a 2-layer 256-cell

1. Codes & Speech Demos: https://kunzhou9646.github.io/Mixed
Emotions Demo/

TABLE 1: Our experimental settings of one primary emotion
(A), three reference emotions (B) and the expected mixed
emotional effects (A+B).

Primary Emotion (A) Reference Emotion (B) Mixed Effects (A+B)

Surprise Happy Delight
Surprise Angry Outrage
Surprise Sad Disappointment

BLSTM and a decoder, a 1-layer 512-cell BLSTM with an
attention layer followed by a full-connected (FC) layer with
an output channel of 512. The decoder has the same model
architecture as that of Tacotron [12].

The text encoder is a 3-layer 1D CNN with a kernel
size of 5 and a channel number of 512. The text encoder
is followed by a 1-layer of 256-cell BLSTM and an FC layer
with an output channel number of 512. The style encoder is
a 2-layer 128-cell BLSTM followed by an FC layer with an
output channel number of 64. The classifier is a 4-layer of
FC with channel numbers of {512, 512, 512, 5}.

4.1.2 Training Pipeline
We first pre-train a relative ranking function between each
emotion pair using an emotional speech dataset. We im-
plement the relative ranking function following an open-
source repository2. We use a standardized set of 384 acous-
tic features extracted with openSMILE [112] as the input
features. These features include zero-crossing rate, frame
energy, pitch frequency, and Mel-frequency cepstral coef-
ficient (MFCC) used in the Interspeech Emotion Challenge
[113]. The trained ranking functions reported a classification
accuracy of 97% on the test set.

We then conduct a two-stage training strategy to train
our text-to-speech framework, which consists of (1) Multi-
speaker text-to-speech training with the VCTK Corpus [114]
and (2) Emotion Adaptation for text-to-speech with a single
speaker from the ESD dataset [115], [116]. The proposed
text-to-speech framework learns abundant speaker styles
with a multi-speaker corpus and then learns the actual emo-
tion information with a small amount of emotional speech
data. The training strategy we used is similar to that of
[75]. During the training, we use the Adam optimizer [117]
and set the batch size to 64 and 4 for multi-speaker text-to-
speech training and emotion adaptation, respectively. We set
the learning rate to 0.001 and the weight decay to 0.0001 for
multi-speaker text-to-speech training. We halve the learning
rate every seven epochs during the emotion adaptation.

4.1.3 Data Preparation
We select the VCTK Corpus [114] to perform multi-speaker
text-to-speech training, where we use 99 speakers, and the
total duration of training speech data is about 30 hours.
We select the ESD dataset [115], [116] to perform emotion
adaptation and relative ranking training. We choose one En-
glish male (’0013’) and one English female (’0019’) speaker
from the ESD. We consider five emotions: Neutral, Angry,
Happy, Sad and Surprise, and for each emotion, we follow
the data partition given in the ESD. For each speaker and

2. https://github.com/chaitanya100100/Relative-Attributes-Zero-
Shot-Learning
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Fig. 6: Classification probabilities derived from the pre-trained SER model for a male speaker (’0013’) from the ESD dataset.
Each point represents an averaged probability value of 20 utterances with mixed emotions.
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Fig. 7: Classification probabilities derived from the pre-trained SER model for a female speaker (’0019’) from the ESD
dataset. Each point represents an averaged probability value of 20 utterances with mixed emotions.

each emotion, we use 300, 30 and 20 utterances for training,
testing, and evaluation, respectively. The total duration of
emotional speech training data is around 50 minutes.

4.2 Objective Evaluation

We first perform objective evaluations to validate the pro-
posed mixed emotion synthesis. We demonstrate the effec-
tiveness of our proposals and provide analysis with a pre-
trained speech emotion recognition (SER) model. We calcu-
late Mel-cepstral distortion (MCD) and Pearson correlation
coefficient (PCC) as objective evaluation metrics.

4.2.1 Analysis with Speech Emotion Recognition

We train a speech emotion recognition model on the ESD
dataset [115] with the same data partition described in
Section 4.1.3. To improve the robustness of SER, data aug-
mentation is performed by adding white Gaussian noise
during the SER training [118], [119], [120], [121].

The SER architecture is the same as that in [122], which
includes: 1) a three-dimensional (3-D) CNN layer; 2) a
BLSTM; 3) an attention layer; and 4) a fully connected (FC)
layer. We evaluate our synthesized mixed emotions with
the pre-trained SER. We use the classification probabilities
derived from the softmax layer of the SER to analyze the
effects of mixed emotions. As a high-level feature, the
classification probabilities summarize the useful emotion

information from the previous layers for final decision-
making. The classification probabilities offer us an effective
tool to justify how well each emotional component can
be perceptually recognized by the SER from the emotion
mixture.

We first report the classification probabilities for a male
speaker (’0013’) in Figure 6. We evaluate four different
combinations where we gradually increase the percentage
(0%, 30%, 60%, 90%) of Angry, Happy or Sad while keeping
that of Surprise always being 100%. As shown in Figure 6(a),
we observe that the probability of Angry increases while we
increase the percentage of Angry from 0% to 90%. In the
meanwhile, the probability of Surprise decreases but still
remains to be higher than for others. The probability of
Angry achieves 0.25 when the percentage of Angry reaches
90%. We also note similar observations for Happy and Sad as
shown in Figure 6(b) and (c).

We then report the classification probabilities for a fe-
male speaker (’0019’) in Figure 7. Similar to that of the male
speaker, we report four different percentages (0%, 30%, 60%,
90%) of Angry, Happy or Sad while keeping that of Surprise
being 100%. For Happy, we observe the probability of Happy
considerably increases while we increase the percentage of
Happy in mixed emotions as shown in Figure 7(b). For Angry
and Sad, we find similar observations as in Figure 7(a) and
(c). These observations indicate that the mixed emotions can
be perceptually recognized by a pre-trained SER.
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Fig. 8: Mel-cepstral distortion (MCD) [dB] calculated between the Mel-cepstral coefficients (MCEPs) of mixed emotions
and the reference emotions (Angry, Happy and Sad). Each point represents an averaged MCD value of 20 utterances with
mixed emotions.
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Fig. 9: Pearson Correlation Coefficient (PCC) calculated between the fundamental frequency (F0) of mixed emotions and
the reference emotions (Angry, Happy and Sad). Each point represents an averaged PCC value of 20 utterances with mixed
emotions.

4.2.2 Mel-cepstral Distorion

Spectral features, based on the short-term power spectrum
of sound, such as Mel-cepstral coefficients (MCEPs), contain
rich information about expressivity and emotion [123]. Mel-
cepstral Distortion (MCD) [124] is a widely adopted metric
to measure the spectrum similarity, which is calculated
between the synthesized (ŷ = {ŷm}) and the target MCEPs
(y = {ym}):

MCD [dB] =
10
√
2

ln 10

1

M

√√√√ M∑
m=1

(ym − ŷm)2, (8)

where M represents the dimension of the MCEPs. A lower
value of MCD indicates a higher similarity of the spectrum.

4.2.3 Pearson Correlation Coefficient

Pitch is considered a major prosodic factor contributing
to speech emotion, closely correlated to the activity level
[125], [126]. In practice, the pitch is often represented by
the fundamental frequency (F0), which can be estimated
with the harvest algorithm [127]. We calculate the Pearson
Correlation Coefficient (PCC) of F0 to measure the linear de-
pendency between two F0 sequences, which has been used

in previous studies [128], [129], [130]. The PCC between two
F0 sequences is given as:

ρ(F s
0 , F

t
0) =

cov(F s
0 , F

t
0)

σF s
0
σF t

0

, (9)

where cov(·) represents the covariance function, σF s
0

and
σF t

0
are the standard deviations of the synthesized se-

quences (F s
0 ) and the target F0 sequences (F t

0), respec-
tively. A higher PCC value represents a higher similarity
of prosody.

4.2.4 Discussion of the MCD and PCC Results
To show the effectiveness of synthesizing mixed emotions,
we calculate MCD and PCC between the synthesized results
and the reference emotions (Angry, Happy and Sad). We
choose one male (’0013’) and one female speaker (’0019’)
from the ESD dataset [115]. For each speaker, we use 20
utterances for evaluation. We report four different percent-
ages of Angry, Happy and Sad that are: 0%, 30%, 60% and
90%. Again, we keep Surprise as the primary emotion that
has a percentage of Surprise is always 100%.

We first compare spectrum similarity as shown in Figure
8. For all three different combinations, we observe that the
MCD values decrease as the percentage of reference emo-
tions (Angry, Happy and Sad) increases as shown in Figure
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TABLE 2: Mean Opinion Score (MOS) with 95% confidence
interval to evaluate the speech quality of synthesized mixed
emotions.

Configuration MOS

Ground truth (Surprise) 4.83 ± 0.16

Mixing Surprise (100%)

with Angry

Ground truth (Angry) 4.81 ± 0.19
+ 0% Angry 3.51 ± 0.36
+ 30% Angry 3.79 ± 0.37
+ 60% Angry 3.81 ± 0.35
+ 90% Angry 3.76 ± 0.35

Mixing Surprise (100%)

with Happy

Ground truth (Happy) 4.93 ± 0.05
+ 0% Happy 3.21 ± 0.41
+ 30% Happy 3.36 ± 0.36
+ 60% Happy 3.39 ± 0.39
+ 90% Happy 3.52 ± 0.42

Mixing Surprise (100%)

with Sad

Ground truth (Sad) 4.84 ± 0.15
+ 0% Sad 3.64 ± 0.35
+ 30% Sad 3.73 ± 0.32
+ 60% Sad 3.74 ± 0.31
+ 90% Sad 3.60 ± 0.38

8(a), (b) and (c). These results show that the synthesized
emotion becomes more similar to the reference emotions in
the spectrum as we increase the percentage of the reference
emotions.

We have similar observations for prosody similarity as
shown in Figure 9. As the percentage of reference emo-
tions (Angry, Happy and Sad) increases, we observe that
the PCC value consistently increases. It indicates that the
synthesized mixed emotions have a stronger correlation
with the reference emotions (Angry, Happy and Sad) in terms
of the prosody variance. These results show that we can
effectively synthesize and further control the rendering of
mixed emotions in terms of the spectrum and prosody.

4.3 Subjective Evaluation
We conduct subjective evaluations with human listeners,
whom we ask to focus on two aspects: (1) Speech Quality
and (2) Emotion Perception.

4.3.1 Speech Quality
We first conduct the Mean Opinion Score (MOS) test to
evaluate speech quality, covering the speech’s naturalness,
intelligibility and listening efforts. All participants are asked
to listen to the reference speech (“Ground truth”) and the
synthesized speech with mixed emotions and score the
“quality” of each speech sample on a 5-point scale (‘5’ for
excellent, ‘4’ for good, ‘3’ for fair, ‘2’ for poor, and ‘1’ for
bad). 20 subjects listened to 80 speech samples in total (80 =
5 x 4 (# of percentages) x 3 (Angry, Happy and Sad) + 20 (#
of Ground truth)). The actual speech samples can be found
in our demo website. We report the MOS results in Table 2,
which show that our synthesized mixed emotions retain the
speech quality between fair and good.

4.3.2 Emotion Perception
We then conduct the best-worst scaling (BWS) test to evalu-
ate the emotion perception of synthesized mixed emotions.
All participants are asked to listen to the speech samples
and choose the best and the worst one according to their

TABLE 3: Best-worst scaling (BWS) test results to evaluate
the perception of the reference emotions (Angry, Happy, and
Sad) in synthesized mixed emotions.

(a) Perception of Angry

Configuration Best (%) Worst (%)

Mixing Surprise (100%)
with Angry

+ 0% Angry 8.3 61.7
+ 30% Angry 6.0 19.5
+ 60% Angry 24.8 11.3
+ 90% Angry 60.9 7.5

(b) Perception of Happy

Configuration Best (%) Worst (%)

Mixing Surprise (100%)
with Happy

+ 0% Happy 8.3 44.4
+ 30% Happy 24.0 25.6
+ 60% Happy 27.1 11.2
+ 90% Happy 40.6 18.8

(c) Perception of Sad

Configuration Best (%) Worst (%)

Mixing Surprise (100%)
with Sad

+ 0% Sad 9.0 57.1
+ 30% Sad 9.0 29.3
+ 60% Sad 20.3 3.8
+ 90% Sad 61.7 9.8

TABLE 4: Best-worst scaling (BWS) test results to evaluate
the perception of mixed emotional effects (Outrage, Delight,
and Disappointment) in synthesized mixed emotions.

(a) Perception of Outrage

Configuration Best (%) Worst (%)

Mixing Surprise (100%)
with Angry

+ 0% Angry 6.8 61.7
+ 30% Angry 4.5 23.3
+ 60% Angry 15.8 9.8
+ 90% Angry 72.9 5.2

(b) Perception of Delight

Configuration Best (%) Worst (%)

Mixing Surprise (100%)
with Happy

+ 0% Happy 5.3 66.2
+ 30% Happy 10.5 21.8
+ 60% Happy 30.1 3.0
+ 90% Happy 54.1 9.0

(c) Perception of Disappointment

Configuration Best (%) Worst (%)

Mixing Surprise (100%)
with Sad

+ 0% Sad 11.3 54.9
+ 30% Sad 12.0 26.4
+ 60% Sad 14.3 9.0
+ 90% Sad 62.4 9.7

perception of a specific emotion type. 20 subjects listened to
168 speech samples in total (168 = 7 x 4 (# of percentages) x
6 (Angry, Happy, Sad, Outrage, Delight and Disappointment)).
The actual speech samples can be found on our demo
website.

We first evaluate the perception of the reference emo-
tions (Angry, Happy and Sad) that are mixed with Surprise.
As shown in Table 3a, 3b and 3c, the mixed emotion with
90% of the reference emotions consistently achieves the
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highest percentage of the “Best” score; also, the “Best” score
increases as the percentage of reference emotion increases.
Similarly, the highest “Worst” score is observed when the
reference emotion is added at the lowest percentage (0%).
These results confirm the effectiveness of controlling the
rendering of mixed emotions. We also observe a slight rise
of the worst rating when the percentage of Happy and Sad
exceeds 60% in Table 3 (b), and (c). This observation we
attribute to the unnatural emotional expressions that may
be created to influence listeners’ preferences.

We then take one step further to evaluate the percep-
tion of Outrage, Delight and Disappointment in synthesized
speech. In psychology, there is evidence that those feelings
could be produced by combining several emotions. We
observe that participants can perceive such feelings, and
most of them choose those with 90% of reference emotions
as the “Best”, as shown in Table 4a, 4b and 4c. As for the
rating of “Worst”, we also have similar observations to those
in Table 3. These results show that we can synthesize new
emotion types that are subtle and hard to collect in real life,
which will significantly benefit the research community.

4.4 Ablation Study
We further conduct ablations studies to validate the con-
tributions of the proposed relative scheme on emotional
expression. We compare the proposed framework with or
without the relative scheme through several XAB preference
tests, where the participants are asked to listen to the refer-
ence emotional speech first, then choose the one closer to
the reference in terms of emotional expression. 20 subjects
listened to 60 speech samples in total (60 = 5 x 2 (# of
frameworks) x 4 (# of emotions) + 20 (# of ground truth)).

We report the XAB results in Figure 10 where we observe
that “Proposed w/ Relative Scheme” consistently and con-
siderably outperforms “Proposed w/o Relative Scheme” for
all emotions (Angry, Happy, Sad and Surprise). Besides, the
p values calculated between those two pairs (“Proposed w/
Relative Scheme” and “Proposed w/o Relative Scheme”) are
always lower than 0.05, indicating that the out-performance
did not occur by chance. These results demonstrate that
our relative scheme can improve emotional intelligibility in
synthesized emotional speech.

5 FURTHER INVESTIGATIONS AND DISCUSSION

In this section, we expand our experiments and show the
ability of our proposed methods on other interesting topics.
We first investigate the mixed emotional effects of Happy
and Sad, which are two oppositely valenced emotions. We
then build an emotion transition system with our pro-
posed method. We do not seek to conduct comprehensive
evaluations but to provide some interesting insights into
mixed emotion synthesis and its applications. All the speech
samples are provided on the demo page.

5.1 Oppositely Valenced Emotions: Happy and Sad
In our experiments, we mostly focus on mixing Surprise with
other emotions (Angry, Happy and Sad), which is thought
to be easier to perceive for human listeners. Here, we
move one step further to study a more challenging task,
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Fig. 10: XAB preference test results with 95% confidence
interval to evaluate the emotion similarity with the ground
truth emotions. The marker * indicates p < 0.05 for paired
t-test scores (pairs between “Proposed w/ Relative Scheme”
and the others).

which is to synthesize mixed effects of Happy and Sad. In
Russell’s valence-arousal model [92], Happy and Sad are
two conflicting emotions with opposite valance (Pleasant
and Unpleasant). There are some debates that agree with
the co-existence of conflicting emotions [131], [132]. In real
life, there are also some terms to describe such feelings
in different cultures, for example, “Bittersweet” in English.
Professional actors are thought to be able to deliver such
feelings to the audience through both actions and speech.
With our proposed methods, we are able to synthesize such
mixed feelings of the oppositely valenced emotions such as
Happy and Sad. Readers are suggested to refer to the demo
page.

5.2 An Emotion Transition System

One potential application of mixed emotion synthesis is
building an emotion transition system [133]. Emotion transi-
tion aims to gradually transition the emotion state from one
to another. One similar study is emotional voice conversion
[116], which aims to convert the emotional state. Compared
with emotional voice conversion, the key challenge of emo-
tion transition is to synthesize internal states between differ-
ent emotion types. With our proposed methods, we are able
to model these internal states by mixing them with different
emotions. To achieve this, the sum up of the percentages of
each emotion needs to be 100% (e. g., 80% Surprise with 20%
Angry; 40% Happy with 60% Sad). Then, we can synthesize
various internal emotion states by adjusting the percentages.
Compared with traditional methods such as interpolation,
our proposed system is data-driven, and the synthesized
emotions are more natural.

5.3 Discussion

This study serves as the first attempt to model and syn-
thesize mixed emotions for speech synthesis. Although we
have shown the effectiveness of our methods, the related
problems have not been completely solved. We provide a
discussion to address the concerns, show our findings, and
inspire future studies.
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5.3.1 Category vs. Dimensional Emotion Models
Our assumptions, formulation, and evaluation of mixed
emotions are all based on categorical emotion studies. We
note that mixed emotions can also be modelled with di-
mensional representations such as arousal, valence, and
dominance. A dimensional model can capture a wide range
of emotional concepts, which offers a means of measuring
the similarity of different emotional states [134]. However,
several problems need to be adequately dealt with when
modelling mixed emotions with a dimensional model. As
mentioned in Section 3.1, the significant challenge for using
dimensional representations comes from the lack of labels.
Besides, humans are more efficient at discriminating among
options than giving an absolute score [135], which adds
challenges to the evaluation process. Furthermore, dimen-
sional models are restricted to modelling the co-occurrence
of like-valenced discrete emotions [136]. For these reasons,
we refrain from applying dimensional emotions to the cur-
rent framework.

5.3.2 Remaining Challenges
There are a few remaining challenges that need attention
from the community. As mentioned in Section 4.3.2, increas-
ing the percentage rate of mixing emotions may result in
unnatural emotional expressions. If the synthesized emotion
sounds unnatural or is difficult to understand, it may not be
effective in achieving the desired outcome. Additionally, the
human voice is a complex and highly variable instrument,
and different people can produce the same emotional state
in very different ways. This can make it difficult to accu-
rately capture and reproduce a desired mix of emotions. At
last, human raters are asked to evaluate the mixed emotions
totally based on their personal experiences because of the
lack of “ground truth” emotions. People from different
cultures may have different experiences and backgrounds
that can influence their emotional responses, and having
a diverse group of evaluators can provide a more well-
rounded perspective on the synthesized emotions.

5.3.3 Potential Improvements
We discuss several potential improvements to inspire future
studies on mixed emotion synthesis: 1) Selection of rank-
ing functions: adopt deep learning-based ranking methods
[137] to improve the performance of ranking; 2) Multi-
speaker studies: add training data from multiple speak-
ers; 3) Non-autoregressive backbone frameworks: use non-
autoregressive TTS framework as the backbone to avoid the
misalignment of attention and improve the naturalness of
synthesized speech.

6 CONCLUSION

This contribution fills the gap on mixed emotion synthe-
sis in the literature on speech synthesis. We proposed an
emotional speech synthesis framework that is based on a
sequence-to-sequence model. For the first time, with the pro-
posed framework, we are able to synthesize mixed emotions
and further control the rendering of mixed emotions at run-
time. The key highlights are as follows:

1) We proposed a novel relative scheme to measure the
difference between each emotion pair. We demonstrate

that our proposed relative scheme enables the effective
synthesis and control of the rendering of mixed emo-
tions. Through ablation studies, we also show that the
proposed relative scheme improves emotional intelligi-
bility in synthesized speech;

2) We presented a comprehensive study to evaluate mixed
emotions for the first time. Through both objective
and subjective evaluations, we validated our idea and
showed the effectiveness of our proposed framework in
terms of synthesizing mixed emotions;

3) We present further investigations on synthesising a
bittersweet feeling and an emotion triangle. The inves-
tigation study serves as an additional contribution to
the article, which could broaden the scope of the study.

In this article, we only focused on studying mixed emo-
tions for emotional text-to-speech. We believe that our pro-
posed relative scheme could enable mixed emotion synthe-
sis in most existing emotional speech synthesis frameworks,
including but not limited to emotional text-to-speech. We
will expand our experiments to include emotional voice
conversion in our future studies.

The future work includes: 1) a comparison with other
ranking methods such as metric learning [138] and Siamese
neural networks [137]; 2) conducting experiments for more
emotion combinations, speakers, and other languages. Be-
sides, a closer look at linguistic prosody for emotional
speech synthesis is foreseen; for example, different semantic
meanings can affect the way of expressing an emotion.
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[51] J. Fürnkranz and E. Hüllermeier, “Pairwise preference learn-
ing and ranking,” in European conference on machine learning.
Springer, 2003, pp. 145–156.

[52] R. Lotfian and C. Busso, “Retrieving categorical emotions using a
probabilistic framework to define preference learning samples.”
in Interspeech, 2016, pp. 490–494.

[53] S. Parthasarathy, R. Cowie, and C. Busso, “Using agreement
on direction of change to build rank-based emotion classifiers,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 24, no. 11, pp. 2108–2121, 2016.

[54] H. P. Martinez, G. N. Yannakakis, and J. Hallam, “Don’t classify
ratings of affect; rank them!” IEEE transactions on affective comput-
ing, vol. 5, no. 3, pp. 314–326, 2014.

[55] G. N. Yannakakis and H. P. Martinez, “Grounding truth via
ordinal annotation,” in 2015 international conference on affective
computing and intelligent interaction (ACII). IEEE, 2015, pp. 574–
580.

[56] J. Huang, Y. Li, J. Tao, Z. Lian et al., “Speech emotion recognition
from variable-length inputs with triplet loss function.” in Inter-
speech, 2018, pp. 3673–3677.

[57] K. Feng and T. Chaspari, “A siamese neural network with
modified distance loss for transfer learning in speech emotion
recognition,” arXiv preprint arXiv:2006.03001, 2020.

[58] X. Zhu, S. Yang, G. Yang, and L. Xie, “Controlling emotion
strength with relative attribute for end-to-end speech synthesis,”
in 2019 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU). IEEE, 2019, pp. 192–199.

[59] Y. Lei, S. Yang, and L. Xie, “Fine-grained emotion strength
transfer, control and prediction for emotional speech synthesis,”
in 2021 IEEE Spoken Language Technology Workshop (SLT). IEEE,
2021, pp. 423–430.

[60] K. Zhou, B. Sisman, R. Rana, B. W. Schuller, and H. Li, “Emotion
intensity and its control for emotional voice conversion,” IEEE
Transactions on Affective Computing, 2022.

[61] Y. Lei, S. Yang, X. Wang, and L. Xie, “Msemotts: Multi-scale
emotion transfer, prediction, and control for emotional speech
synthesis,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 2022.

[62] D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine transla-
tion by jointly learning to align and translate,” in 3rd International
Conference on Learning Representations, ICLR 2015, 2015.

[63] K. K. J. F. S. Kyle, K. A. C. Y. B. Jose, and S. M. Sotelo, “Char2wav:
End-to-end speech synthesis,” in International Conference on Learn-
ing Representations, workshop, 2017.

[64] D. M. Schuller and B. W. Schuller, “A review on five recent and
near-future developments in computational processing of emo-
tion in the human voice,” Emotion Review, p. 1754073919898526,
2020.

[65] K. Zhou, B. Sisman, and H. Li, “Limited data emotional voice
conversion leveraging text-to-speech: Two-stage sequence-to-
sequence training,” arXiv preprint arXiv:2103.16809, 2021.

[66] D. Wu, T. D. Parsons, and S. S. Narayanan, “Acoustic feature
analysis in speech emotion primitives estimation,” in Eleventh
Annual Conference of the International Speech Communication Asso-
ciation, 2010.

[67] A. Rabiee, T.-H. Kim, and S.-Y. Lee, “Adjusting pleasure-arousal-
dominance for continuous emotional text-to-speech synthesizer,”
in INTERSPEECH 2019. INTERSPEECH 2019, 2019.

[68] X. Cai, D. Dai, Z. Wu, X. Li, J. Li, and H. Meng, “Emotion
controllable speech synthesis using emotion-unlabeled dataset
with the assistance of cross-domain speech emotion recognition,”
in ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 5734–5738.

[69] T. Li, S. Yang, L. Xue, and L. Xie, “Controllable emotion transfer
for end-to-end speech synthesis,” in 2021 12th International Sym-
posium on Chinese Spoken Language Processing (ISCSLP). IEEE,
2021, pp. 1–5.

[70] S. Ma, D. Mcduff, and Y. Song, “Neural tts stylization with
adversarial and collaborative games,” in International Conference
on Learning Representations, 2018.

[71] T. Cornille, F. Wang, and J. Bekker, “Interactive multi-level
prosody control for expressive speech synthesis,” in ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2022, pp. 8312–8316.

[72] V. Klimkov, S. Ronanki, J. Rohnke, and T. Drugman, “Fine-
Grained Robust Prosody Transfer for Single-Speaker Neural Text-
To-Speech,” in Proc. Interspeech 2019, 2019, pp. 4440–4444.

[73] X. Li, C. Song, J. Li, Z. Wu, J. Jia, and H. Meng, “Towards Multi-
Scale Style Control for Expressive Speech Synthesis,” in Proc.
Interspeech 2021, 2021, pp. 4673–4677.

[74] G. Zhang, Y. Qin, and T. Lee, “Learning syllable-level discrete
prosodic representation for expressive speech generation.” in
INTERSPEECH, 2020, pp. 3426–3430.

[75] K. Zhou, B. Sisman, and H. Li, “Limited Data Emotional Voice
Conversion Leveraging Text-to-Speech: Two-Stage Sequence-to-
Sequence Training,” in Proc. Interspeech 2021, 2021, pp. 811–815.

[76] H. Choi and M. Hahn, “Sequence-to-sequence emotional voice
conversion with strength control,” IEEE Access, vol. 9, pp. 42 674–
42 687, 2021.

[77] S. Mozziconacci, “Prosody and emotions,” in Speech Prosody 2002,
International Conference, 2002.

[78] Y. Lee and T. Kim, “Robust and fine-grained prosody control
of end-to-end speech synthesis,” in ICASSP 2019-2019 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 5911–5915.

[79] D. Tan and T. Lee, “Fine-Grained Style Modeling, Transfer and
Prediction in Text-to-Speech Synthesis via Phone-Level Content-
Style Disentanglement,” in Proc. Interspeech 2021, 2021, pp. 4683–
4687.

[80] G. Sun, Y. Zhang, R. J. Weiss, Y. Cao, H. Zen, and Y. Wu, “Fully-
hierarchical fine-grained prosody modeling for interpretable
speech synthesis,” in ICASSP 2020-2020 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2020, pp. 6264–6268.

[81] G. Sun, Y. Zhang, R. J. Weiss, Y. Cao, H. Zen, A. Rosenberg,
B. Ramabhadran, and Y. Wu, “Generating diverse and natural
text-to-speech samples using a quantized fine-grained vae and
autoregressive prosody prior,” in ICASSP 2020-2020 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2020, pp. 6699–6703.

[82] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[83] Y.-J. Zhang, S. Pan, L. He, and Z.-H. Ling, “Learning latent rep-
resentations for style control and transfer in end-to-end speech
synthesis,” in ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp.
6945–6949.

[84] T. Kenter, V. Wan, C.-A. Chan, R. Clark, and J. Vit, “Chive:
Varying prosody in speech synthesis with a linguistically driven
dynamic hierarchical conditional variational network,” in Inter-
national Conference on Machine Learning. PMLR, 2019, pp. 3331–
3340.

[85] N. H. Frijda, A. Ortony, J. Sonnemans, and G. L. Clore, “The com-
plexity of intensity: Issues concerning the structure of emotion
intensity.” 1992.

[86] K. Matsumoto, S. Hara, and M. Abe, “Controlling the Strength
of Emotions in Speech-Like Emotional Sound Generated by
WaveNet,” in Proc. Interspeech 2020, 2020, pp. 3421–3425.

[87] B. Schnell and P. N. Garner, “Improving emotional tts with an
emotion intensity input from unsupervised extraction,” in Proc.
11th ISCA Speech Synthesis Workshop (SSW 11), pp. 60–65.

[88] S.-Y. Um, S. Oh, K. Byun, I. Jang, C. Ahn, and H.-G. Kang,
“Emotional speech synthesis with rich and granularized control,”
in ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 7254–7258.

[89] C.-B. Im, S.-H. Lee, S.-B. Kim, and S.-W. Lee, “Emoq-tts: Emotion
intensity quantization for fine-grained controllable emotional
text-to-speech,” in ICASSP 2022-2022 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2022, pp. 6317–6321.

[90] C. M. Whissell, “The dictionary of affect in language,” in The
measurement of emotions. Elsevier, 1989, pp. 113–131.

[91] P. Ekman, “An argument for basic emotions,” Cognition & emo-
tion, 1992.

This article has been accepted for publication in IEEE Transactions on Affective Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2022.3233324

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



14

[92] J. A. Russell, “A circumplex model of affect.” Journal of personality
and social psychology, vol. 39, no. 6, p. 1161, 1980.

[93] M. Schroder, “Expressing degree of activation in synthetic
speech,” IEEE Transactions on Audio, Speech, and Language Process-
ing, vol. 14, no. 4, pp. 1128–1136, 2006.

[94] C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S. Kim,
J. N. Chang, S. Lee, and S. S. Narayanan, “Iemocap: Interactive
emotional dyadic motion capture database,” Language resources
and evaluation, vol. 42, no. 4, p. 335, 2008.

[95] C. Busso, S. Parthasarathy, A. Burmania, M. AbdelWahab,
N. Sadoughi, and E. M. Provost, “Msp-improv: An acted cor-
pus of dyadic interactions to study emotion perception,” IEEE
Transactions on Affective Computing, vol. 8, no. 1, pp. 67–80, 2016.

[96] D. Parikh and K. Grauman, “Relative attributes,” in 2011 Interna-
tional Conference on Computer Vision. IEEE, 2011, pp. 503–510.

[97] A. Kovashka, D. Parikh, and K. Grauman, “Whittlesearch: Image
search with relative attribute feedback,” in 2012 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2012, pp. 2973–
2980.

[98] Z. Zhang, C. Wang, B. Xiao, W. Zhou, and S. Liu, “Robust relative
attributes for human action recognition,” Pattern Analysis and
Applications, vol. 18, no. 1, pp. 157–171, 2015.

[99] Q. Fan, P. Gabbur, and S. Pankanti, “Relative attributes for large-
scale abandoned object detection,” in Proceedings of the IEEE
International Conference on Computer Vision, 2013, pp. 2736–2743.

[100] O. Chapelle, “Training a support vector machine in the primal,”
Neural computation, vol. 19, no. 5, pp. 1155–1178, 2007.

[101] M. Zhang, X. Wang, F. Fang, H. Li, and J. Yamagishi, “Joint
training framework for text-to-speech and voice conversion using
multi-source tacotron and wavenet,” Proc. Interspeech 2019, pp.
1298–1302, 2019.

[102] J.-X. Zhang, Z.-H. Ling, and L.-R. Dai, “Non-parallel sequence-
to-sequence voice conversion with disentangled linguistic and
speaker representations,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 28, pp. 540–552, 2019.

[103] M. Zhang, Y. Zhou, L. Zhao, and H. Li, “Transfer learning from
speech synthesis to voice conversion with non-parallel training
data,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 29, pp. 1290–1302, 2021.

[104] A. Polyak and L. Wolf, “Attention-based wavenet autoencoder
for universal voice conversion,” in ICASSP 2019-2019 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 6800–6804.

[105] W. Ping, K. Peng, A. Gibiansky, S. Ö. Arik, A. Kannan, S. Narang,
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