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Crowdsourcing Affective Annotations Via
fNIRS-BCI

Tuukka Ruotsalo

Abstract—Affective annotation refers to the process of label-
ing media content based on the emotions they evoke. Since such
experiences are inherently subjective and depend on individual
differences, the central challenge is associating digital content
with its affective, interindividual experience. Here, we present a
first-of-its-kind methodology for affective annotation directly from
brain signals by monitoring the affective experience of a crowd
of individuals via functional near-infrared spectroscopy (fNIRS).
An experiment is reported in which fNIRS was recorded from
31 participants to develop a brain-computer interface (BCI) for
affective annotation. Brain signals evoked by images were used to
draw predictions about the affective dimensions that characterize
the stimuli. By combining annotations, the results show that mon-
itoring crowd responses can draw accurate affective annotations,
with performance improving significantly with increases in crowd
size. Our methodology demonstrates a proof-of-concept to source
affective annotations from a crowd of BCI users without requiring
any auxiliary mental or physical interaction.

Index Terms—Affective computing, emotion classification,
FNIRS, functional near-infrared spectroscopy, pattern classific-
ation.

I. INTRODUCTION

UMAN:-computer interaction with digital content has

long focused on information value and presentation. How-

ever, in recent years, affective dimensions have become increas-
ingly recognized as integral to the user experience.

[2], [25], [50]. A key aspect of understanding modeling,

and personalizing such experiences is the ability of computing

systems to infer the affective states that digital information is
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likely to evoke and associate that with the content via affective
annotation. Affective annotation can then be used in downstream
tasks to adjust and personalize content, avoid exposure to harm-
ful information, and understand how people consume and react
to information that provokes strong emotions [35]. A trivial
solution to affective annotation is to rely on manual annotation,
where users markup their affective experiences [31]. Manual
annotation may be practical for limited scenarios in which users
are willing to take the effort, such as marking up content in
personalized social media feeds or videos in streaming services.
However, the requirement for manual annotation is not likely to
scale to a broader set of applications. For instance, it is unlikely
that users would be willing to manually annotate their affective
reactions for every video clip they watch, song they listen to, or
image they view on the Web.

Another approach is to make predictions by analyzing the
content itself. For example, using natural language processing
to extract affective descriptions from text [68] or computer vision
techniques for images and video [33]. However, these methods
rely solely on features present within the content itself and do not
consider the affective reactions evoked in humans experiencing
that content [24]. For example, affective differences may arise
from changes in how stimuli are interpreted, such as viewing a
scene from a football game. The scene may evoke a variety of
responses, depending on whether the person observing it is a fan
of the team or not.

Here, as a viable alternative to manual and content-based
annotation, we present a method for obtaining the emotional
responses implicitly by monitoring human affect at the time
of experience. We achieve this by directly measuring passively
evoked affective states toward content via fNIRS brain-computer
interfacing (fNIRS-BCI). As the brain responses can be noisy,
prone to artifacts, and diverging across individuals in differ-
ent contexts, we approach affective annotation as a crowd-
sourcing problem. This is based on a simple but powerful
idea: multiple participants contribute a noisy signal that can
be used to draw consensus estimates [55], [62]. Consequently,
crowdsourcing allows learning affective annotations from brain
responses of many individuals and can mitigate noise and
artifacts.

To this end, we ask the following research questions:

RQ1: Can fNIRS-BCI monitoring be effectively employed in
crowdsourcing settings to predict the affective content of
stimuli?

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
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RQ2: To what extent does fNIRS-based affective crowdsourc-
ing improve performance of predictive models compared to
individual classification?

To answer the research questions, we report on a neuroimag-
ing data acquisition experiment in which 31 participants viewed
visual affective stimuli while their brain responses were moni-
tored via fNIRS.

The participants were not required to perform any artificial
physical or mental activities; instead, the experiment relied
solely on their natural affective reactions, as indicated by ground
truth valence and arousal labels from a well-established data
source. Next, we report an affective annotation experiment in
which we calibrated machine learning models for participants
to distinguish between high/low valence and high/low arousal
classes, using consensus labels derived from the signals of
multiple participants.

In summary, our contributions are as follows:

1) We present the first-of-its-kind affective annotation from
crowdsourced fNIRS-BCI to decode valence and arousal
directly from natural affective reactions as they are expe-
rienced by a crowd of individuals in response to stimuli.

2) We demonstrate that affective states can be decoded with
relatively high accuracy. A crowd of eight participants
achieved average accuracies from 0.48 (4-class valence
arousal classification) to 0.78 (two-class valence classifi-
cation of high-arousal stimuli) with consistently increas-
ing performance as a function of the crowd size.

II. BACKGROUND

Our work is based on several distinct areas of study: emotion
research, affective annotation, affective decoding, and crowd-
sourcing annotations. These are shortly reviewed below.

A. Models of Emotion and Affect

From a psychological perspective, emotion encompasses a
wide range of phenomena, including the perception, experience,
and expression of emotions, their neural correlates, and social
contexts. Research has typically used models to reduce this com-
plexity for empirical studies. In this manner, studies of emotional
perception have investigated how stimuli with emotional content
affect the body, brain, and behaviour [43], [61] Another research
tradition focuses on the experience of emotion itself — the
mental representation of physiological changes occurring during
an emotion [17] — and the consequences thereof, for example by
investigating emotional sensitivity [38], or by determining how
cognition is affected by mood experience [64]. Furthermore,
studies of emotional expression have explored how emotions
alter facial expressions, body postures, and communication, with
along-standing debate continuing as to whether these are mostly
universal [30], or primarily defined by culture and norms [57]. In
reality, the boundaries between these different focuses are often
blurred: seeing a gaping depth opening before you, your emo-
tional perception will prompt fear, and a corresponding, fearful
expression would probably follow. However, over a century of
research on emotion has not seen a clear consensus being reached

as to the exact causal relationship between perception, action,
and mental states [13], [29], [49].

In addition to a model of emotion’s specific focus, another
critical factor for affective computing is the model’s taxonomy of
emotional identities. Two broad families of emotion theories are
commonly found. On the one hand, discrete theories of emotions
typically identify a limited number of qualitatively different
emotions that give rise to the range of experiences named in
most languages. For example, universal emotion theory tends
to understand emotions by their evolutionary value for com-
munication, with facial expressions signifying critical messages
that can be understood even across different cultures [30]. On
the other hand, dimensional theories identify a smaller num-
ber of continuous variables as latent factors that provide an
internal representation of emotions. For instance, the primary
dimension of arousal is traditionally thought to be caused by
autonomic nervous activity, resulting in outward expressions of
excitement [32]. The hedonic dimension of valence, whether
affective state is experienced as pleasant or unpleasant, is often
viewed as involving more cerebral cognitive processes such as
attribution [58]. Dimensional theories thus account for emotions
by combining the dimensions, for example explaining “joy” as
caused by high arousal and high valence.

B. Affective Annotation

Annotation refers to adding descriptive metadata to digital
content, which has traditionally been an essential component
of many digital media services. By labeling media content with
their evoked emotional experience, affective annotation provides
particularly useful information. The methodological aim of af-
fective annotation is to build methods to estimate how humans
would experience content. For example, whether they find it
pleasant, offensive, relaxing, or frightening. Traditionally, affec-
tive annotation has been approached via manual interaction [1]
and content-based analysis of text or visual media content [4],
[26]. The manual annotation process relies on explicit interac-
tion enabled by interface designs that allow users to manually
indicate their affective reactions when they are experiencing
the content. Well-known examples of manual annotation are
markup that allows expressing emotional responses or affective
experiences [60].

While manual annotation can produce rich descriptions, the
process is typically labor-intensive and limited by how much
conscious access annotators have to affective states. For ex-
ample, users might thoroughly enjoy digital media during the
experience but forget the initial impact or constructively reinter-
pret their experience later. By not focusing on explicit, manual
processes, implicit methods of affective annotation may avoid
such constraints, presenting affective decoding techniques for
detecting how content is perceived emotionally without relying
on explicit interaction from users [10].

C. Affective Decoding

Affective decoding aims to estimate the affective experi-
ence of an individual by mapping the relationship between
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emotions and measurable signals. Neuroimaging provides in-
formation directly from the presumed origin of affective states:
the brain [50]. Measures can be obtained with various non-
invasive imaging techniques, such as electroencephalography
(EEG) and functional magnetic neuroimaging (fMRI). In studies
using EEG, alpha power asymmetry between frontal sites has
been used to detect the motivational direction and valence [39].
However, the limits of localizing scalp-recorded EEG have
led to controversy over the use of this biomarker [3], [18].
Previous fMRI studies have shown that valence and arousal
affect both the prefrontal cortex and deeper brain structures
such as the amygdala and insula [52]. Activity in the amyg-
dala, in particular, has been associated with the highly salient
emotion of fear (high arousal/negative). In contrast, prefrontal
areas have been associated with affective processing of the
pleasantness of images [36]. Despite their power to study the
underlying structural and spatiotemporal correlates of emo-
tions, neither electroencephalography (EEG) nor fMRI has seen
strong uptake in the field of affective computing in practical
human-machine interfacing settings, owing to their high cost and
unwieldiness.

Functional near-infrared spectroscopy (fNIRS) presents an
alternative method for quantifying cortical activity for inferring
emotional processing. Since neural activity causes changes in
blood oxygenation (BOLD) and since the light-absorption is
affected at different wavelengths for oxygenated and deoxy-
genated hemoglobin [6], [12], NIRS allows neural activity to
be quantified, especially in cortical areas near the surface that
are unimpeded by light-interfering tissues (e.g., hair). Thus,
anterior-frontal and frontal-polar areas underneath the forehead
tend to provide stronger signal-to-noise than deeper areas that
reside below regions of the scalp that are typically covered by
hair, such as the inferior parietal lobule.

Recent studies show fNIRS holds clear promise for affective
decoding of both discrete emotions [40] and emotional dimen-
sions [7]. In particular, fNIRS may be more successful than
more ubiquitous forms of biosensing that measure activation of
the autonomic nervous system, such as electrodermal activity
(EDA) or heartrate, by potentially detecting valence from corti-
cal activity in the central nervous system. Previous studies, for
example, showed that viewing unpleasant (negatively valenced)
images was found to particularly affect the BOLD response in
the right prefrontal cortex [7]. Such findings have seen strong
application within the field of human-computer interaction, in
which the use of fNIRS has become increasingly common [67].
Studies in HCI have, for example, applied fNIRS during implicit
interfacing between users and computing [69], enhancing real-
time interfaces with additional input modality [66], evaluating
visualizations [51], and determining the user experience in vir-
tual reality [72]. Thus, although the usefulness of fNIRS as a
general tool for HCI and user experience studies depends on the
type of task [47], a clear consensus is forming that fNIRS can
be a viable alternative to existing biological sensors and physi-
ological measures, showing strong potential for complementing
human-computer interaction studies with tools for quantifying
affective experiences of users.
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D. Crowdsourcing Annotations

Crowdsourcing has emerged as a powerful approach to ob-
taining annotations for large media databases, such as labeling
objects appearing in images, labeling text, and affective features
of stimuli [14], [48], [74]. In this process, users undertake micro-
tasks and human cognition is exploited jointly with computing
systems to obtain information about stimuli. Conventionally,
these tasks require simple manual input, such as selecting images
that match a description [11], [73]. The majority of applications
of crowdsourcing have focused on such explicit human input.
However, another line of crowdsourcing research and practice
relies on implicit feedback, where task-relevant information
is collected implicitly as a side product of people’s natural
interactions. For example, search engines obtain annotations
for query-document pairs by observing documents clicked in
response to a query [15].

Recently, researchers have also explored physiological signals
for crowdsourcing. In [20], researchers presented a methodology
called brainsourcing, in which EEG responses toward facial
images were decoded for relevance and consensus annotations
were inferred through a crowd model. In [63], researchers ap-
proached a similar problem and presented results for predicting
stimuli classes in a multi-user setting. In [28], the emotional
experience of multimedia contents was detected from EEG in
real-time when users were watching video clips. These responses
were then used for emotion tagging. Similarly to our work,
inter-brain features from a group of participants were used to
find a consensus label.

EEG and fNIRS data have also been used in studying both
within-subject [8] and cross-subject [9] classification scenarios.
The authors have identified neural correlates of emotions using
fNIRS data across subjects. However, although the models were
built across subjects, which provided the capacity to generalize
and predictively classify emotions in new participants, the task of
predicting crowdsourced consensus estimates was not explored.

In summary, brain-computer interfacing demonstrates the
potential for implicit crowdsourcing, where human opinions
about stimuli are inferred from subject-independent models or
collective models are trained using physiological data [22].
Our approach follows this line of research but is the first to
employ fNIRS neuroimaging and adopt affective annotation that
relies on natural responses to stimuli, rather than pre-assigned
recognition tasks. Furthermore, we demonstrate that decoding
affective states from these reactions through crowdsourcing
leads to significant improvements in performance.

III. NEUROIMAGING DATA ACQUISITION

The study was performed in compliance with the protocols
laid out by the Declaration of Helsinki and was approved by the
Ethical review board in humanities and social and behavioral
sciences of the University of Helsinki. Participant recruitment
concentrated on the undergraduate and postgraduate student
population, with no requirements other than having a normal
or correct-to-normal vision and having no psychiatric disorder
(operationalized as having no current diagnosis and not currently
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Fig. 1. Distribution and examples of stimuli samples in the four classes
positioned on valence and arousal scales. Low-valence high-arousal (LVHA)
in blue, high-valence low-arousal (HVLA) in green, low-valence low-arousal
(LVLA) in orange, and high-valence low-arousal (LVLA) in red. Below the
example images are their tags and crowdsourced image-specific classification
accuracies with N = 8.

taking any psychopharmaceuticals.). Thirty-one participants
volunteered and took part in the study after being fully informed
of the study and their rights, including the right to withdraw at
any point without fear of negative consequences and signing
their informed consent. Following pre-processing of data (see
below), four participants were found to have fluctuations in the
data recordings and were removed from the conventional statis-
tical analysis that were conducted to study neurophysiological
effects. All participants were, however, included in the machine
learning experiments. The average age of the participants was
31.4 (minimum 21, maximum 52, SD = 7.76) years. Regarding
gender, fifteen participants reported being male, eleven female,
and the rest non-binary. They were compensated for their time
and efforts with local movie vouchers.

A. Stimuli

Stimuli were sampled from the international affective picture
system (IAPS) [44] for use in the present study. The TAPS is
a database of images previously rated by a large sample on
their emotional reactiveness across three dimensions: arousal,
valence, and dominance. Like most studies in affective comput-
ing and neuroscience, we focussed on the first two dimensions,
being traditionally understood as the two main dimensions of
emotion [59]. Arousal refers to the degree of nervous excitation
provoked by the stimuli. The pleasantness or hedonic value
of such stimulation is referred to as valence. By orthogonally
crossing the dimensions, i.e., combining the classes of low and
high valence with those of low and high arousal, four quadrants
were defined: low valence / low arousal (LVLA), low valence /
high arousal (LVHA), high valence / low arousal (HVLA), and
high valence / high arousal (HVHA). Since high arousal images
tend to have higher variance in valence [56], we selected the 60
images with the lowest valence (2.71 +-01.81 onascale of 1 t09),
and 60 with the highest valence (6.94 +- 0.53), then divided these
each to form the low and high arousal samples (i.e., creating four
quadrants of 30 images each). Examples and the distribution of
stimuli samples are shown in Fig. 1. From each quadrant, a
participant viewed a random selection of 10 individual images.

To increase standardization of perceptual factors, images were
scaled vertically to 1024 px.

B. Apparatus

E-Prime 3 (Psychology Software Tools, Inc., Sharpsburg PA),
running on a Windows 10 PC, was used for stimulus presen-
tation, behavioral data recording, and device synchronization.
The presentation used a 22-inch LCD monitor running at 1920
x 1080 px, explicit feedback were obtained from the keyboard,
and synchronization between the display and data recording was
done via the DCOM interface to send triggers to the fNIRS
device. Optical density data were recorded using an Artinis
Brite-24 fNIRS device. The Brite uses 10 LED transmitters and
8 receiving photodiodes placed on an elastic cap to standardize
localization between users. Here, a frontal configuration was
used, with each receiver obtaining light from three transmitters
placed at a distance of ca. 3 cm. By combining 5 transmitters
and 4 receivers for each hemisphere, we were able to record
optical densities from 12 left and 12 right frontal areas. These
were digitized and recorded using Artinis OxySoft software at
a sample rate of 50 Hz.

C. Procedure

The experiments took place in a designated laboratory space.
After reading the instructions and signing informed consent, the
participants were seated and fitted with an fNIRS device. This
involved putting on the elastic cap and fitting the diodes in the
holders, then adjusting hair and diode orientation so as to reduce
interference and artifacts. Following this, a 1-minute resting-
state measurement was obtained while participants focussed
on a centrally displayed crosshair against a grey background.
The recording session itself involved two blocks of 20 trials
each. Each trial commenced by instructing users to carefully
view the subsequently presented image and freely associate
with its content. After taking the necessary time to read these
instructions and pressing a key, a fixation cross was shown for
4 seconds to provide a neutral baseline for data analysis, before
the experimental stimulus was presented, which was shown
for 14 seconds. Finally, during a blank inter-trial interval of at
least 0.1 s, trial-specific information was synchronised with the
biosignal data. Note that the influence of the preceding image on
the evoked response of the present was assumed to be limited for
two reasons. First, the interval between two emotional images
was substantial (4 s + 14 s + time to press, total M = 21.1 s,
SD = 1.9 s). Second, stimuli of each quadrant were presented
with their order randomised for every four trials (restricted only
against emotion repetition). Thus, any carryover effect would
be equal across averages. As all analysis and machine learning
experiments were also averaged either by analyzing all data or
through cross-validation, there should be no effect on the results.
The entire experiment took about 45 minutes to complete.

IV. AFFECTIVE ANNOTATION EXPERIMENT

The affective annotation experiment aimed to evaluate
the predictive performance of the crowdsourcing approach
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to decode affective categories of stimuli from their evoked
fNIRS responses. The methodology, from producing individual
classifications for each epoch to combining them to create
crowdsourced predictions, is described below.

A. Tasks

We experiment with five affective classification tasks based
on the well-known dimensionality theory of affect. The dimen-
sionality of emotion or affect is most commonly represented in
a two-dimensional space spanning valence and arousal. Valence
accounts for the extent to which an emotion is positive or
negative, and arousal accounts for the intensity of the asso-
ciated emotional state. The main task, referred to as 4-class,
aims to classify each image into one of four affective classes,
high-valence-high-arousal (HVHA), high-valence-low-arousal
(HVLA), low-valence-high-arousal (LVHA), and low-valence-
low-arousal (LVLA). The following two tasks, Valence and
Arousal, only try to predict the high or low valence (negativity or
positivity) or high or low arousal (intensity level) of the stimuli,
ignoring the other affective dimension. In tasks high-arousal
valence (HA Valence) and low-arousal valence (LA Valence),
images are also classified by valence, but the classification con-
siders only either high-arousal or low-arousal stimuli. Studying
these separately is motivated by an assumption that affective
states with stronger intensity (high arousal) are more important
for many downstream tasks and may be easier to decode.

B. Data Preprocessing

The Optical Density (OD) data and stimuli are processed using
MNE python [37]. We apply a 3x3 grid layout for both left and
right hemispheres, closely resembling the original sensor layout.
Since raw fNIRS recordings are susceptible to various noise
sources, standard preprocessing is conducted. First, to detect
poorly connected sensors, the scalp coupling index (SCI) [54]
is applied to each channel. SCI measures whether the channels
measuring activity at different wavelengths in the same location
are negatively correlated at the heartbeat’s frequency range
(0.7-1.5 Hz). Low SCI indicates poor coupling; hence channels
with SCI below the threshold of 0.8 are interpolated by taking
the average of their neighboring channels. As the final OD
preprocessing step, artifacts due to, e.g., motion, are corrected
with temporal derivative distribution repair [34].

After processing the OD data, it is converted to oxygenated
hemoglobin (HbO) and deoxygenated hemoglobin (HbR) con-
centrations with the modified Beer-Lambert law [23]. Finally,
to remove physiological noise, such as the heartbeat, from the
hemoglobin concentrations, a 0.1 Hz low-pass filter is used,
while a 0.01 Hz high-pass filter is applied to eliminate slow
drifts in the signal. After preprocessing, the data is divided into
17-second epochs, consisting of 12 seconds of recording after
the stimulus and a 5-second baseline period before.

C. Neuroimaging Analysis

To infer the effect of affect on perceiving emotional images
on frontal brain activity, we performed a statistical analysis at
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Fig. 2. fNIRS channel and diode placement. The analysis used only the
channels highlighted with grey circles, with a montage separating the regions
into anterior (A) and posterior (P) frontal regions and each of the hemispheres
divided across lateral (L), central (C), and medial (M) channels.

the population level. Baseline activity was subtracted from the
averaged 12 seconds of post-stimulus HbO and HbR levels. A
brain-wide analysis was conducted with channels arranged along
amontage using solely the transmitter/receiver diode pairs along
the sagittal plane (i.e., up/down arranged on the forehead), as
shown in Fig. 2. For the areas, we then compared these between
the left and the right hemisphere; between three relative levels
of lateral region from the furthest to the side (lateral), via the
central/medial, to the medial; and between the relatively anterior
and the posterior frontal region. Thus, for every participant and
each combination of low and high valence, and of low and
high arousal, 12 averages were analysed for two hemispheres,
three lateral regions, and two frontal regions. To determine if
valence, arousal, and their interaction affected fNIRS responses
across participants, two 5-way repeated measures ANOVAs
were conducted, one with HbR as the measure, and the other with
HbO as the measure. To reduce the chance of type-I errors, only
p-values below 0.025 (i.e., with Bonferroni correction applied to
the alpha criterion) were reported. To maintain brevity, we do not
report non-significant effects or effects without the involvement
of emotional factors.

D. Feature Extraction

The high-dimensional epoch data was converted to lower-
dimensional feature space. In fNIRS, a typical response to stim-
uli occurs approximately 4 to 12 seconds after stimulation, which
is used here as the size of an epoch. To capture this effect with
simple features, the windowed mean from three equally sized
non-overlapping windows was extracted for each channel. To
further reduce the dimensionality of the feature space, the HbR
channels were eliminated, as HbO and HbR channel pairs are
strongly dependent [16]. Finally, the features are concatenated,
resulting in feature space with 72 features per epoch.

E. Prediction Model

Linear discriminant analysis classifier with shrinkage regu-
larization (SLDA) was used as the predictive model. SLDA
offers many attributes that make it an attractive choice for
fNIRS modeling, such as good performance in high-dimensional
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low-sample settings, fast training and inference, and output
of prediction probabilities for each class, which are essential
for crowdsourced predictions. The classifier does not require
hyperparameters, and the regularization parameter of the SLDA
model is determined by the Ledoit and Wolf lemma [46], which
provides an analytical estimate for the optimal shrinkage con-
stant.

F. Prediction Setup

The prediction model’s target is to predict each class’s prob-
ability for each epoch using the feature representation. The data
are split into training and testing sets with the stratified k-fold
cross-validation scheme, where k is the number of samples in
the least common class for that participant. Selecting k in this
manner ensures that each test set has at least one sample from
each class. For 29 out of 31 participants, the cross-validation is
equivalent to stratified 10-fold, but for participants with missing
epochs, a smaller k is required. Since each sample belongs to
exactly one test set, this process yields one test set prediction
for each epoch, which are used in the latter steps.

G. Crowdsourced Prediction Setup

The crowdsourcing experiment follows a scenario where
groups of N € {1,...,8} participants produce crowdsourced
predictions for images in a way that allows comparison between
different group sizes.

Before producing the crowdsourced predictions, 22 images
were eliminated because there was data from less than 8 partici-
pants available for them. The varying amount of predictions for
different images is due to the sampling in the stimuli selection
process; each subject is shown 10 randomly sampled images
from each class. Eliminating images with less than eight predic-
tions allowed the use of the same set of images for all group sizes.
The remaining 98 images had 8 to 17 unique predictions, 11 on
average, and the class distribution was as follows: LVLA = 27,
LVHA = 26, HVLA = 24, and HVHA = 21.

The crowdsourced predictions were produced iteratively for
each image individually. On each iteration, a new participant is
sampled with replacement from the participants to whom the
image was shown and added to the image’s participant pool.
Then, the predictions from the image’s updated participant pool
are combined via soft voting, i.e., by taking the average of class
probabilities over each participant’s predictions, and choosing
the class with the largest mean probability, which forms the
new crowdsourced prediction. Soft voting was chosen as it
was found to perform the best among several voting schemes
(See Appendix A, available online). The iteration is stopped
when crowdsourced predictions for N € {1, ...,8} are created.
Adding one participant to the previous iteration’s participant
pool minimizes noise factors due to, e.g., entirely different
participants, and the difference in results between N can be
attributed to the change in group size. This process was repeated
100 times for each of the 98 images with the aim of simulating
crowdsourcing’s effectiveness across different, varying groups.
Each repetition produced eight predictions for different group
sizes, resulting in 98 x 100 x 8 crowdsourced predictions.

H. Control Model and Statistical Testing

A random model was trained for a control model to find
an empirical random performance. The training followed the
same procedure as the model with real data, but the labels were
permutated. The mean accuracy scores for each N were then
evaluated with permutation tests with 100 permutations. All
tasks achieved the minimum p-value, p = 0.01, with all N.

V. RESULTS
A. Neuroimaging Effects

To determine whether emotion generally affected the Oxy-
genated hemoglobin (HbO) and deoxygenated hemoglobin
(HbR) responses to viewing images, repeated measures
ANOVAs were conducted with valence (1ow, high), arousal (low,
high), hemisphere (left, right), lateral region (lateral, central,
medial), and frontal region (anterior, posterior) as factors, and
HbO and HbR as measures. In HbO, this showed significant
effects of valence, F(1,26) = 8.88, p=0.006, with more negative
responses in low (—1.95 +— 0.36) than high (—1.14 +— 0.40)
valence conditions. Valence furthermore interacted with the
hemisphere and frontal region, F(1,26) =7.15,p=0.01, and en-
tered a three-way interaction with the frontal region and arousal,
f(1,26) = 16.46, p < 0.001. This effect could be characterized
in reference to the general negative effect of low valence being
especially large in the more anterior area in the high arousal
condition (D = 1.44) compared to low arousal (0.47) or the more
posterior region (0.89). With HbR, only one significant effect
was observed, the interaction between valence, hemisphere, and
frontal region. This suggested a more positive effect of low
valence in left posterior areas than left frontal areas (—0.002)
or right hemisphere areas (0.04). A more comprehensive, ex-
ploratory analysis is presented in Fig. 3 with all diode-pairs
included, showing effects for HbO, particularly in left medial-
posterior and right frontolateral areas. Valence generally shows
a stronger response than arousal, although the two lower rows
in the figure suggest this effect occurs mainly in conditions of
high arousal.

B. Classification Performance

Participant-Specific Models: The participants’ individual
classification performance was evaluated before the
crowdsourcing task. Each participant’s individual classification
accuracy was calculated from all predictions made by that
participant. The participant-specific 4 class accuracies are
shown in Fig. 4. In the 4-class task, the average overall accuracy
for a participant was 0.40 £ 0.02 (&£ standard error). For other
tasks, the mean accuracies were Valence 0.59 4+ 0.01, Arousal
0.56 £ 0.02, HA Valence 0.67 &+ 0.02, and LA Valence 0.57 +
0.02. All mean accuracies were significantly different from the
accuracies of the random model using permutation tests with
100 permutations (p = 0.01).

Crowdsourced Models: Table I and Fig. 5 show the classifica-
tion accuracies for different group sizes. First, 100 combination
scores were calculated for each N by, fori € {1, .., 100}, taking
the prediction from the ith participant group of each image
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TABLE I
ACCURACY AND F1 SCORES FOR DIFFERENT N FOR EACH TASK. THE DATASETS ARE NEARLY BALANCED FOR ALL PREDICTION TASKS

N=1 N=2 N=4 N=8
Task
Acc F1 Acc F1 Acc F1 Acc F1
4 class 0.40 0.39 0.40 0.40 0.45 0.45 0.48 0.48
Valence 0.59 0.58 0.62 0.62 0.64 0.64 0.67 0.66
Arousal 0.56 0.56 0.60 0.60 0.61 0.61 0.63 0.63
HA Valence 0.67 0.67 0.70 0.70 0.74 0.74 0.78 0.78
LA Valence 0.57 0.57 0.59 0.58 0.61 0.61 0.63 0.63
060 e e Participant
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Fig. 3. Affective fNIRS oxygenated hemoglobine (HbO) response. Contrasts

are shown to highlight the effect of arousal (high arousal versus low arousal,
HA-LA); valence (high valence versus low valence, HV-LV); valence given high
arousal (high valence high arousal versus low valence high arousal, HVHA-
LVHA); and valence given low arousal (high valence low arousal versus low
valence low arousal, HVLA-LVLA).

and calculating their classification accuracy. For example, the
first combination score is calculated by taking the classification
accuracy over the crowdsourced predictions from the first par-
ticipant combination of each image. This is conducted for each
participant combination, resulting in 100 combination scores
per N. Fig. 5 visualizes the mean and standard deviation of
the accuracies for different group sizes, and Table I shows the
numerical values of the mean accuracies and F1 scores. The
classification performance consistently improves as the crowd
gets larger in all tasks. This is also visible in classifier decision
probabilities in Fig. 6. The distribution converges as crowd size
increases.

Significance of Crowd Size: The improvement in performance
relative to group size was evaluated by testing for linear de-
pendence between N and mean accuracy. This test was con-
ducted by first fitting an OLS simple linear regression model
to {(N;, Acc;)}$_, for each task. The fits of these models are

Task BN p

4 class 0.012 < 0.001
Valence 0.010 < 0.001
Arousal 0.009 < 0.01
HA Valence 0.017 < 0.001
LA Valence 0.008 < 0.001

visualized in Fig. 5 as purple lines. Then, testing if the coefficient
of N, By, is significantly different from O with a Student’s t-test.
The coefficients S and their corresponding p-values are shown
in Table II.

Differences in the performance of crowdsourced predictions
with respect to group sizes were also compared at the image level
to outrule the possibility that different stimuli would account for
the performance differences. The accuracies were calculated by
taking the classification accuracy over all combinations for each
image. This results in 98 image scores for each N. The image
scores of different NV were compared with each other using the
Wilcoxon signed-rank test, with the alternative hypothesis that
the larger group outperforms the smaller one. The image-specific
accuracies of larger groups are predominantly greater than those
of smaller groups, especially when the difference in size is sub-
stantial. The Benjamini-Hochberg adjusted pairwise statistically
significant differences across different crowd sizes are visualized
in the top-right corner of Fig. 5.

Significance of Affective Class and Stimulus Content: There
were substantial differences between crowdsourced classifica-
tion accuracies of different images in the 4 class task with
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arousal (right). Bottom: Classification accuracy for low-arousal valence (left) and high-arousal valence (right). All results show accuracy as a function of crowd
size. The orange lines show control model performances trained with randomly permutated labels. The error bars denote the standard deviation of the accuracy

scores.

8 participants. Fig. 1 illustrates the image-specific accuracies
by the relative size of the dot markers. Noticeably, LVHA
images have higher average classification accuracy (0.62) than
HVHA, LVLA, and HVLA, with accuracies of 0.45, 0.45,
and 0.38, respectively. It is evident that the image class, and
therefore the valence and arousal, affects the classification
accuracy. Most notably, high-arousal images achieved sig-
nificantly higher accuracies (Mann-Whitney U = 1515.5, p
< 0.05 two-tailed) than low-arousal images, suggesting that

images that evoke more intense emotional responses are easier to
recognize.

To further investigate the distinguishability of types of images,
we assigned images to smaller groups with descriptive tags (e.g.,
Fig. 1) and examined differences in prediction accuracy for each
tag. Tags with less than three representative images were not
considered. In line with our previous finding, the highest scoring
tags were associated with the LVHA class, more specifically with
grisly images (grisly 0.72, injury 0.68). In addition, the LVHA
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Fig. 6. Distribution of crowdsourced predictions for the target label in valence
classification for increasing crowd size (upper left N = 1, upper right N = 2,
lower left N = 4, lower right N = 8). The prediction probabilities converge as
crowd size increases.

class had another tag type that scored high, threats of violence
(knife 0.56, threat of violence 0.55). The highest scoring tags
from other classes were couple (HVHA) 0.66, dirty (LVLA)
0.49, and sociability (HVLA) 0.45. Lower scoring tags were
usually ambiguous, such as peaceful (LVLA) 0.22, which was
most commonly predicted as HVLA, or associated with multiple
classes, such as animals (HVLA, HVHA, LVHA) 0.33. This
result further supports the finding that high-arousal images are
easier to classify.

Prediction accuracy is dependent on the content of the stim-
ulus image. Images that evoke strong responses are easier to
classify, while it is more difficult to distinguish between milder
emotional responses. This suggests that greater performance
could be achieved in downstream tasks that deal with distinctive
content evoking strong responses.

VI. DISCUSSION AND CONCLUSIONS

Existing approaches to affective annotation typically rely
upon manual annotation, which is labor-intensive and neces-
sitates explicit interactions from users. On the other hand, au-
tomatic methods that analyze only content to estimate users’
affective responses may be unreliable and produce affective state
estimations that diverge from users’ actual experiences. Here,
we explored an intriguing alternative to affective annotation:
learning affective annotations directly from brain signals by
passively monitoring the affective experiences of a crowd of par-
ticipants. The present work, to the best of our knowledge, is the
first-of-its-kind to employ fNIRS brain-computer interfaces in a
crowdsourcing setting for affective annotation. Our approach is
based on a simple but powerful idea: The affective states decoded
from the brain responses of many participants toward stimuli can
be used to infer a consensus estimate of the affective response
that the stimuli are likely to evoke. Since our approach relies on
implicit affective responses as they are naturally experienced by
users, without requiring any artificial physical or mental activity,
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we envision that they could be monitored implicitly as part of
everyday human-computer interaction.

A. Answers to Research Questions

To study whether crowdsourced brain-computer interfacing
can be used for affective annotation we asked two research
questions, which we answer below.

RQI: Can fNIRS-BCI monitoring be effectively employed
in crowdsourcing settings to predict the affective content of
stimuli? Yes, we show that fNIRS measured from the frontal lobe
carries information about affective states experienced by humans
(Fig. 3). Valence, in particular, was associated with activity in
the medial left and lateral right frontal cortex. We demonstrate
that from such patterns of activity, affective annotations can be
decoded via machine learning with relatively high accuracy and
significantly increasing performance with respect to crowd size
(Fig. 5). The prediction accuracy varies between 0.48 (against
0.25 random) for a four-class valence-arousal classification to
0.78 (against random 0.5) valence classification for high-arousal
stimuli (see Table II for details). High-arousal stimuli, in general,
are more likely to evoke stronger affective responses [58]. They
can also be more important for downstream applications: The
stronger the affective response, the higher the importance for
affect detection and annotation. The accuracy of the latter result
is particularly encouraging as it suggests that performance in
real-world downstream tasks, such as detecting harmful con-
tent or content that evokes particularly positive responses, may
perform at a similar level of quality as manual annotation. It
is noteworthy that these results are achieved entirely implicitly,
meaning they are based solely on perception without requiring
any explicit mental or physical activity from the participants.

RQ?2: To what extent does fNIRS-based affective crowdsourc-
ing improve performance of predictive models compared to indi-
vidual classification? The results show a significant increase in
accuracy with respect to crowd size, exhibiting a consistently in-
creasing performance. This suggests that relatively small crowds
can be used to source affective annotations effectively, and less
than 10 participants are enough to obtain high accuracy (Fig. 5).
The classifier analysis further supports this finding, which shows
the distribution of average class probabilities stabilizing as a
function of crowd size (Fig. 6).

B. Limitations

The reported performance may overestimate or underestimate
future replications or applications, depending on differences in
sampling procedures and apparatus. However, the standardized
acquisition setup and data processing protocols make it unlikely
that the reported differences between conditions were due to
confounding factors. That is, noise in the LED-diode-based
fNIRS may have adversely affected accuracy compared to laser-
based fNIRS, which has been shown to reduce crosstalk and
improve spatial accuracy [41]. Conversely, our recruitment of
healthy, relatively young participants may have improved overall
accuracy due to their engagement with the task being likely
stronger than would be observed in the general population.
However, since the neuroimaging data acquisition employed
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a fully randomized experimental protocol, such effects cannot
account for the observed differences between the conditions.
Moreover, these effects were robust across variations in neu-
roimaging analysis, decoding models, and crowd-analyses. We,
therefore, expect the results to generalize towards future studies
and application settings.

The experimental design further places limitations on the
ecological validity. For example, while the randomised order
balanced interference from preceding emotional images, such
that the reported averages were unlikely to have been due to
carry-over effects from preceding trials, such balancing is un-
likely to occur in the real world. Indeed, in common interaction,
emotions may follow one another in rapid succession and repeat
more frequently than alternate. Furthermore, the visual stimuli
we used were selected from a standard and widely used affective
image database. This allows for excluding many contextual
factors that might be present in real-world content, such as news
articles and associated images. It also allows for comparing
and reproducing our results. On the other hand, the images are
old and may not always be comparable to images that users
would encounter when browsing the Web, for example. Such
differences in studies of emotions within and outside the labora-
tory are now more frequently recognized within psychology and
affective computing [45], [70], [71], and future research must
determine whether the reported results will replicate towards
emotions captured during real-life interaction.

Another factor in our experiment is the specific decoding
model that is used to classify affective states. The model is a
fairly standard classification model, and we used standard grid
search to optimize pre-processing and feature extraction. All
procedures were conducted in a repeated k-fold cross-validation
setting, with any model tuning performed exclusively using
the training data. We also experimented with other standard
models and did not find performance differences that would be
significant. Our consensus labeling followed a simple strategy of
aggregating individual predictions that were also found success-
ful in earlier studies with manual labels [62]. Therefore, we can
be confident that the model or the learning setup does not account
for the significance of the results. Nevertheless, it is possible
that experimentation with a larger amount of participants, more
advanced representation learning, or more sophisticated label
aggregation could lead to further improvement of the results.

C. Ethics

Brain-computer interfacing, and physiological computing
more generally, provide new opportunities for computing sys-
tems that learn directly from the human cognitive system. This
is enabled by active monitoring of humans while they are in-
teracting with their digital environments. This technology has
advanced with unprecedented speed during the past decade and
is transforming from laboratory experimentation in a research
setting to consumer-grade devices that measure human brain
activity and physiology in the wild.

These new opportunities provide novel signals from humans
to be used in a variety of human-facing applications, but the
technology may also raise concerns about the abuse and misuse
of these susceptible signals.

For instance, fNIRS data should be considered personal med-
ical data; protecting it becomes particularly important as it
can be used as a cognitive biomarker [53], detecting cognitive
load [67], detecting cognitive (dis)ability [5], and other sensitive
biomarkers, such as deception [27]. On the other hand, it is
clear that the current stage of technology is not such that one
might unobtrusively detect emotions. That is, unlike signals such
as EDA or heartrate, fNIRS is far from a ubiquitous form of
biosensing, making it at present unlikely to be used without a
user’s explicit consent.

Data captured via BCI could also be used together with
other individuals’ signals. For example, combining the affective
data with browsing behavior and comparing that to the data of
other individuals’ behavior and affective responses. Moreover,
subliminal probing could be used beyond the annotation task for
predicting unwanted user characteristics [21] and compared to
other individuals’ data to reveal even social or political views.
Preventing unintended use of these signals requires future re-
search for protecting the privacy of data.

D. Future Work

Although ergonomics, cost, and comfort may impede the
adoption of consumer-grade BCI, our methodology demon-
strates a proof-of-concept approach to source affective annota-
tions from a crowd of BCI users without requiring additional
mental or physical interaction effort. Future work could ex-
perimentally investigate affective decoding with novel sensors
and fewer transmitter-receiver pairs to study whether a reduced
hardware setup could yield similar results.

The present machine learning models are well-suited for the
scenario where a relatively small amount of data is available
from each participant. Although classical machine learning
methods have proven challenging to outperform in affective
classification settings for various downstream tasks [19],
[42], [65], conducting experiments with representation
learning and contrastive learning models, along with data
augmentation, should be considered. These could learn to
better separate nuanced signals associated with each affective
state. Furthermore, by extending the models to account for
participant-independent data, a single model could be trained
across participants rather than requiring per-participant models
that are then fused in the crowdsourcing stage.

Our approach and study fall under implicit crowdsourcing:
participants were not instructed to perform any specific tasks,
and they only naturally reacted to the presented stimuli, which
were successfully decoded from both individual and crowd
responses. This mitigates the need for setting up specific ex-
periments for utilizing our methodology in real-world settings.
To this end, future research should explore sourcing affective
annotations with accessible hardware and data outside of a
pre-recorded stimuli database to capture affective annotations as
they occur in our everyday interaction with digital information.
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