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Mission

T he University of Florida strives 
to be the internationally recog-
nized leader among research 

universities creating new knowl-
edge and technologies, performing  
research with impact, spawning new 
economic opportunities, and educat-
ing the next generation of leaders. 
The mission of the Advanced Inter-
disciplinary Research and Education 
Lab for Connected, Autonomous, 
Shared, and Green Transportation 
Systems (AI+CASE Lab) at the Civil 

and Coastal Engineering Depart-
ment is to develop interdisciplin-
ary research and training which 
produces 1) comprehensive and ad-
vanced artificial intelligence (AI)-
empowered operations, research, 
and innovative data analytics meth-
ods for essential transportation 
problems raised by emerging tech-
nologies, such as connected vehicles, 
autonomous vehicles, connected 
and autonomous vehicles (CAVs), 
electric vehicles (EVs), mobility on 
demand, and mobile charging on 
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demand (CoD), and 2) rigorous analy-
ses of mathematical properties of the 
models and solutions (optimality, algo-
rithm convergence, resilience analysis, 
control feasibility, stability analysis, etc.) 
for improving traffic safety, efficiency, 
sustainability, and resilience. This is 
accomplished through the research pro-
grams presented below.

Research Programs: Monument  
and Future Directions
To date, the AI+CASE Lab has been dedi-
cated to investigating innovative solu-
tions for the research programs related 
to CAV platooning, on-demand mobile 
charging service, coordinated routing 
mechanisms (CRMs), transportation do-
main knowledge-based AI applications, 
and the vehicle-to-vehicle communica-
tion (V2V) network. The lab’s studies 
have been sponsored by the U.S. National 
Science Foundation (NSF), Department 
of Transportation (DOT) University 
Transportation Centers (UTCs), state 
DOTs, Toyota, and university research 
funding (Figure 1). Many Ph.D. and 
master’s students and visiting scholars 
have been involved in the lab’s research 
activities and produced considerable 
outcomes (Figure 2).

Develop Platoon-Centered Control (PCC) 
for CAV Platooning
CAV technology can provide great 
opportunities to address urban and 

highway traffic issues. CAV platoon-
ing has been considered one of the 
most important techniques to co-
ordinate CAV driving to improve 
safety, relieve traff ic congestion, 
and reduce energy consumption. 
Specifically, CAV platooning groups 
and drives a f leet of CAVs together 
through cooperative acceleration 
and longitudinal speed control. 
While existing research is based 
on controlling individual vehicles 
using adaptive cruise control and 
cooperative adaptive cruise control 
techniques, the AI+CASE Lab has de-
signed an innovative PCC approach 
for CAV platooning.

The PCC approach considers the 
platoon as a system and uses control 
technology to coordinate individual 
CAVs’ maneuvers toward a better 
platoon-wide system performance. 
An interesting challenge with the 
PCC approach is that it often gives 
rise to complicated, large-scale opti-
mal control or optimization problems 
that require extensive computation. 
To successfully implement the PCC 
approaches, beginning with the NSF 
Civil, Mechanical and Manufactur-
ing Innovation (CMMI) 1436786 and 
1901994 awards, the team has been 
dedicated to developing a comprehen-
sive framework, shown in Figure 3,  
that integrates control theory, optimi-
zation theory, distributed algorithms, 

and machine learning (ML) ap-
proaches to address various driving 
scenarios (Figure 4) such as car fol-
lowing [1], [2], lane change [3], merg-
ing and splitting [4], eco-intersection 
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passing [5], [6], and broader inter-
actions between PCC and other 
road infrastructure.

Mobile Charging On-Demand  
(CoD) Service
Mobile charging is an emerging tech-
nology that combines CAV technology 
and mobile V2V (wireless or cable-

connected) charging (V2VC) or auto-
mated battery-swapping technology 
to provide CoD services for eliminat-
ing lengthy charging delays or de-
tours, alleviating EV “range anxiety,” 
and promoting the mass adoption of 
EVs. Specifically, it uses electric vans 
[Figure 5(a)] or battery-swapping ser-
vices [Figure 5(b)] as mobile chargers 

or swappers for on-demand roadside 
charging. Started from NSF award 
1818526 and the Southeastern Trans-
portation Research, Innovation, De-
velopment and Education (STRIDE) 
UTC project [the STRIDE Center is 
the 2016 USDOT Region 4 (South-
east) UTC], the AI+CASE Lab devel-
ops innovative and viable solutions 
to mobile CoD services, leveraging 
these emerging charging technolo-
gies. Specifically, by publishing mul-
tiple research papers since 2019 (e.g., 
[7]), the AI+CASE Lab contributed the 
methodologies to enable 1) large-scale 
CoD via on-the-move charging [Fig-
ure 5(c)] or mobile battery swapping 
[Figure 5(d)] while balancing service 
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CAV platooning has been considered one of the most important 
techniques to coordinate CAV driving to improve safety, relieve  
traffic congestion, and reduce energy consumption.
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eff iciency and traf f ic overhead, 
2) pairing electric vans and demand 
on a road for safe and efficient on-the-
move V2VC charging [Figure 5(e)], and 
3) a resilient and optimal charging 
station plan [Figure 5(f)].

CRMs for Connected Vehicle Systems
With the rapid developments in wire-
less communication, mobile comput-
ing, and GPS technologies, connected 
vehicles have the potential to revolu-

tionize transportation by increasing 
safety, reducing congestion, and im-
proving the system’s efficiency and sus-
tainability. One key research area in the 
AI+CASE Lab is to realize this potential 
by developing effective CRMs for con-
nected vehicle systems [Figure 6(a)], 
in which vehicles communicate with 
each other and/or to a central planner 
to jointly decide their route choices. 
Sponsored by the NSF CAREER award, 
the AI+CASE Lab utilizes game theory, 

ML, optimizations, and distributed 
computations to develop new methods 
and algorithms to coordinate and/or 
manipulate the movement of connected 
vehicles in highly dynamic and uncer-
tain environments, shown in Figure 6(b). 
The innovation and contribution of our 
methodologies are demonstrated from 
the following aspects:
1)	 modeling, i.e., proposing snapshot 

equilibrium routing mechanisms 
based on atomic game theories to 
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FIG 5 Mobile charging as service. (a) Mobile cable-connected V2VC [7]. (b) Mobile battery swapping [8]. (c) and (d) The dispatching, routing, and  
rebalancing of electric vans. (e) Pairing electric van and demand on a road. (f) Resilient and optimal charging station planning.
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mitigate traffic congestion without vi-
olating travelers’ self-interests [10, 11]

2)	 solution, i.e., developing efficient 
and robust distributed solution al-
gorithms [10] to solve large-scale 
game models in real time for online 
navigation services and handle un-
stable wireless communications 
commonly encountered in real-
world applications [13]

3)	 optimality, i.e., designing infor-
mation perturbations and infor-
mation incentives [15], [16] and 
utilizing game theories to push 
snapshot equilibrium routing de-
cisions toward system optimal 
while satisfying travelers’ selfish 
nature without using externalities 
such as regulations and tolls

4)	 scalability, i.e., developing rout-
ing coordination potential theo-
ries and applying AI to form rout-
ing coordination coalitions that 
could solve the scalability issue 
of implementing CRMs in big cit-
ies with a large scale of travelers 
[16], [17]

5)	 extension, i.e., applying the co-
ordination strategy to improve 
the system’s efficiency in other 
transportation scenarios such as 
parking [12], ridesharing [17], EV 
charging, etc.

Transportation Domain Knowledge-
Based AI Applications
AI and data acquisition technologies 
have been broadly applied for plan-

ning and managing transportation 
networks in recent decades. However, 
we still face the challenge of identify-
ing appropriate application scenarios 
of AI in transportation and develop-
ing effective solutions. Seizing this 
opportunity, the AI+CASE Lab works 
on integrating AI and transportation 
domain knowledge to explore latent 
features of the transportation sys-
tem and develop physics-informed, 
interpretable, and robust solutions to 
address traffic problems (Figure  7). 
Supported by NSF and DOT UTC 
projects, the aggregated ef fort of 
our lab made the following signifi-
cant contributions:
1)	 Our lab developed transportation 

domain knowledge-based data-
driven/AI approaches (e.g., deep 
learning [18], [19] and reinforce-
ment learning [20]) for traffic speed, 
shockwave, traffic events, and traf-
fic network performance detection 
and prediction. The proposed ap-
proaches leverage traffic flow the-
ory and AI technologies to capture 
traffic dynamics in real time.
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V2V communication via dedicated short-range communications 
provides real-time information for traffic prediction and management, 
but we need tools to trace information availability.
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2)	 Our lab integrated the domain 
knowledge and ML/AI approaches 
(Gaussian process regression [15], 
community learning [17], cluster-
ing [7], and regression [3]) into 
large-scale optimization modeling 
and solution approaches to address 
CAV control and operation prob-
lems. The proposed approaches 
can efficiently solve the optimiza-
tion model online by reducing the 
solution space, which is achieved 
by capturing the traffic features 
through AI technologies.

Modeling Information Flow Dynamics 
Upon Traffic Flow Dynamics
V2V communication via dedicated 
short-range communications pro-
vides real-time information for traf-
fic prediction and management, but 
we need tools to trace information 
availability. Starting from NSF award 
CMMI-1817346, we developed a math-
ematical simulation framework (Fig-
ure 8) to trace V2V information prop-
agation dynamics built upon traffic 
f low dynamics. Through multiple 
journal papers, we made contribu-
tions as follows:
1)	 developed mathematical formula-

tions [22], [23], [24], [25] to charac-
terize the connectivity, broadcast 
capacity, and interference of V2V 
communications in a traffic flow 
on road segment

2)	invented novel mathemat ical 
techniques to capture information 
propagation delay on a long stretch 
of road, considering intermittent 
transmission resulting from traf-
fic flow dynamics [22], and devel-
oped the information and traffic 
f low coupled cell transmission 
model (IT-CTM) to trace V2V in-
formation spreading dynamics on 
a road segment [21]

3)	 modeled V2V information dissemi-
nation dynamics at an arterial or 
ramp intersection [IFNM-a(r)], 
integrated IFNM-a(r) and IT-CTM 
to trace information dissemina-
tion across a road network, and 
predicted information propagation 
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dynamics to capture traffic con-
gestion and events [18], [19].
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In the ar t icle “A New Cel lular 
Vehicle-to-Everything Application: 
Daytime Visibility Detection and 
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