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Consistent Optical and Electrical Noise Figure
Reinhold Noe

Abstract—The optimum noise figure of an electrical amplifier
is Fe = 1 and the optimum traditional noise figure of an optical
amplifier is Fpnf = 2. This irresolvable conflict is due to the fact
that Fe measurement requires electrical powers, proportional to
squared amplitudes (voltages), while Fpnf measurement requires
squares and variances of photocurrents, proportional to 4th powers
of amplitudes (fields). In line with this an electrical receiver can
receive I&Q parts of an electric carrier while a direct-detection
photoreceiver can detect only power and not phase of an optical car-
rier. Optical amplifiers cause Gaussian field noise. Photodetection
causes shot noise. Spontaneous-spontaneous beat noise in direct
detection is taken into account by negative binomial or chi-squared
photoelectron distributions, without errors of a Gaussian approxi-
mation. Coherent receivers linearly sense the Gaussian field noise.
The sensitivity of an ideal coherent I&Q receiver is not degraded
if it gets an ideal optical preamplifier, while the corresponding
Fpnf = 2 suggests degradation. Coherent I&Q or heterodyne re-
ceivers have electrical output powers proportional to squared am-
plitudes (fields). This way one has the same metric in electrical and
optical domain. One gets an optical noise figure Fo,IQ. For large
amplifier gain it is Fpnf/2. In an ideal amplifier, Fo,IQ = 1. For true
optical homodyne receivers and for direct detection receivers with
Gaussian approximation it can be converted into Fpnf and vice versa.
Phase-sensitive amplifiers are also covered. With Fe and the I&Q
optical noise figure Fo,IQ a consistent unified noise figure is derived,
valid and usable in electrical and optical domain.

Index Terms—Noise figure, optical amplifiers, optical fiber
communication.

I. INTRODUCTION

THE noise behavior of a linear electrical twoport device at
frequency f and reference temperature T can be described

by its gain G and electrical noise figure Fe [1], [2]. Measured
powers are proportional to squares of amplitudes (voltages). It
is near at hand to use the same metric for optical devices. But
the traditional optical noise figure given by EDFA pioneer E.
Desurvire [3], which may be written as Fpnf = 1/G+ 2μ̃ at
high powers, has a conflicting definition: Squares and variances
of measured photocurrents are proportional to squares of op-
tical powers, i.e., 4th powers of amplitudes (optical fields). I
noticed this discrepancy and have therefore used in my lectures
since 1996 [4] a quantity which I now call μ̃ and which is the
expectation value of input-referred noise photons per mode. It
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has the same cascading properties as the electrical excess noise
figure Fe − 1. At that time I did not question the validity of the
conflicting definition [3], all the more given that it also fulfills
Friis’ casdading formula.

Noise figure pioneer H. A. Haus independently questioned
Desurvire’s noise figure, called it Fpnf (photon number
fluctuations) and published two noise figures [5], [6]. Upon
invitation [6] he defined combined usage in electrical and optical
domains. The two noise figures are both claimed to become iden-
tical to Fe in the electrical domain but are otherwise different.
This suggests that at least one of them is inappropriate.

One is Ffas
1 based on fluctuations of amplitude squares, eqn.

(18) of [6]. In the optical domain kT << hf it approaches Fpnf

at high optical powers. This suggests that Ffas is based on
amplitudes taken to the 4th power, not on amplitude squares.
In the electrical domain the spontaneous emission factor nsp

(≡ θ in [5], [6]) is not given and should scale inversely with
frequency. If Ffas approaches Fe for kT >> hf then it carries
the same conceptual conflict as Fpnf vs. Fe. If it doesn’t then it
is in value conflict with Fe.

The other is FASE [5], [6] based on amplified spontaneous
emission, also here with nsp unknown at low frequencies. So
I published [7], [8] about an F = 1 + μ̃ ≡ FASE in the op-
tical domain. Photoelectron distributions are calculated from
the input-referred number μ̃ of noise photons per mode and
other parameters [7], also for D(Q)PSK [8].2 The good thing
about μ̃ and FASE is that measured powers are proportional to
the squares of amplitudes (fields), like for Fe. This requires a
receiver which is linear in amplitude (voltage, optical field). In
the optical domain that is a coherent receiver. But FASE does
not describe SNR degradation in a coherent receiver.

Desurvire’s Fpnf has proven extremely useful since decades.
But firstly it was derived for direct-detection receivers. These
have meanwhile been replaced by coherent I&Q receivers in
most cases in which optical amplifier noise matters. Secondly,
Fpnf has prevented an optical noise figure definition that is
consistent with the definition of Fe. H. A. Haus’ Ffas and his
(and my) FASE have problems, too, and are not established. All
three approach 2 for an ideal optical amplifier with nsp = 1 and
G → ∞.

A coherent optical I&Q receiver is linear from optical input
amplitudes to electrical output amplitudes in both quadratures,
just like an electrical amplifier is linear from input to output

1Note that the middle result and the last result in (13) of [5] and the final
definition (18) of [6] evaluated in the optical domain kT<< hf are three different,
unequal versions of Ffas. The middle result in (13) of [5], which was abandoned
in favor of the later (18) of [6], equals Fo,IQ, which is advocated in this paper.

2The technical content of this paper shall also enter a possible next edition of
[8].
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in both quadratures. The sensitivity of an ideal coherent I&Q
receiver is not degraded if it gets an ideal optical preamplifier.
In striking contrast, a noise figure equal to 2 (as predicted by
Fpnf = Ffas and FASE) suggests degradation.

The above conflicts must be resolved for consistent definition
and usage of electrical and optical noise figure.

The electrical noise figure is reviewed in Section II. The
existing optical noise figures are reviewed in Section III. Pho-
toelectron statistics are reviewed in Section IV. and in the
Appendix. Noise figures in coherent optical receivers are derived
in Section V. How the foregoing changes for phase-sensitive
amplifiers is discussed in Section VI. All noise figures are
compared in Section VII. The noise figure Fo,IQ for a coherent
optical I&Q or heterodyne receiver conceptually matches the
electrical Fe. In Section VIII. the definitions are combined into
a consistent noise figureFIQ that is valid in electrical and optical
domains. Maybe it should be called F.

II. REVIEW OF ELECTRICAL NOISE FIGURE

We define

G = (available) power gain, (1)

Ps,in = input signal power, (2)

Ps,out = GPs,in = output signal power. (3)

The gain G applies at the operation frequency f. It can for
instance be determined by measurement of Ps,in and Ps,out. A
source with known noise, such as a noisy source that can be put
at two temperatures, may avoid the need of providing an extra
signal. For simplicity let us assume: Source, device (amplifier or
attenuator) and detector have the same temperature T. Source,
device and detector be impedance-matched. In this case thermal
noise powers do not depend on impedances.

We want to determine powers in a one-sided, physical

B = 1/τ = bandwidth. (4)

With a power detector, usually incorporating a preamplifier
with large gain, one can measure the

Pn,in = kTB = input noise power. (5)

It is thermal noise. In spite of detector noise, kTB can be
determined or inferred, by heating or cooling the source to
different temperatures.

In later context it is expedient to use a filter with band-
width B and a rectangular envelope of the sinusoidal impulse
response. If τ is the length of this envelope then B = 1/τ is the
bandwidth (4).

Given that Pn,in = kT/τ is the noise input power, kT is the
noise energy collected in time τ . We can call this the thermal
noise energy in one mode. Compared to a signal carrier, the noise
can be in phase and in quadrature. So, kT/2 is the thermal energy
per mode and quadrature. A mode contains 2 quadratures.

Number of modes times quadratures per mode equals the
number of degrees-of-freedom. In the baseband or at DC there
is only one quadrature. In agreement with the foregoing the
voltage variance at a capacitance in parallel with a thermally

noisy conductance is kT/C ( = kT/C noise) [9] and the mean
stored energy is kT/2.

Furthermore we need

Pn,out = output noise power, (6)

SNRin =
Ps,in

Pn,in/2
= input signal to noise ratio, (7)

SNRout =
Ps,out

Pn,out/2
= output signal to noise ratio. (8)

Here the noise powers are divided by 2 because only half the
noise is in phase with the signal. This is not mandatory (and is
not possible in thermal detectors). But it will facilitate discussion
of single-quadrature cases found in optics. With or without this
division one arrives at the standard definition

F =
SNRin

SNRout
=

Pn,out

GPn,in
= noise figure, (9)

Fex = F − 1 = excess noise figure, (10)

Tex = (F − 1)T = excess noise temperature. (11)

An electrical amplifier has the electrical noise figure

Fe =
Pn,out

GPn,in
=

Pn,out

GkTB
> 1. (12)

The added thermal noise output power GkTexB is indepen-
dent of generator temperature. If one reduces generator temper-
ature T, total output noise power Pn,out = Gk(T + Tex)B is
reduced while Fe = 1 + Tex/T is increased. On the other hand,
cooling of the amplifier generally reduces its Tex (for instance
because its internal resistances generate less thermal noise) and
reduces both Pn,out and Fe.

For an electrical attenuator it holds

Pn,out = kTB, (13)

Fe = 1/G. (14)

When the attenuator has the same temperature T as the
generator it behaves like the generator and delivers the same
Pn,out = kTB. If the attenuator has the temperature Tatt then
Pn,out = kTGB + kTatt(1−G)B. The generator noise is at-
tenuated according to G < 1, and for Tatt = T we get the
usualPn,out = kTB. Cooling of generator or attenuator reduces
Pn,out. Cooling of generator increases, cooling of attenuator
reduces Fe = 1 + (Tatt/T )(1/G− 1).

Electrical power measurent in the carrier or radio frequency
domain yields total power in both quadratures. Using two mixers
with local oscillator signals having π/2 mutual phase difference
one can just as well downconvert this to the baseband. Addition
of the squares of the resulting I&Q signals gives total power in
the two quadratures. If the receiver is a heterodyne receiver it
needs an image rejection filter at the input. Otherwise doubled
noise power would be measured (for a given input noise power
spectral density).
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III. REVIEW OF OPTICAL NOISE FIGURES

A purely amplifying optical medium has an optical power
change dP/dt = aP where a is relative stimulated emission
coefficient per time unit. For pure attenuation we get dP/dt =
−bP where b is the relative attenuation coefficient per time unit.
For concurrent amplification and attenuation power gain equals

G = e(a−b)t = e(a−b)z/vg . (15)

Here t is time needed to pass the amplifier, z is its length and
vg is group velocity.

At the amplifier output one finds added noise in this mode
with

Pnτ = μhf = Gμ̃hf = nsp (G− 1)hf = energy per mode,

(16)

nsp =
a

a− b
= spontaneous emission factor. (17)

If we want to consider the optical amplifier as noiseless then
μ photons per mode must be added at the amplifier output, or μ̃
at the input. Tilde ∼ means input-referred.

For an amplifier with equal gain and loss (a = b, G = 1,
1/nsp = 0) we get

μ = nsp (G− 1) = lim
a→b

a

a− b

(
e(a−b)t − 1

)

= at = bt = az/vg = bz/vg = nsp (1− 1/G) = μ̃. (18)

E. Desurvire [3] has defined the signal-to-noise ratio as

SNRpnf = 〈n〉2
/
σ2
n (19)

The suffix means photon number fluctuations and has been
given by H. A. Haus [5], [6].

A sufficiently attenuated optical signal has a Poisson distribu-
tion of the photoelectron number detected during a time τ . The
variance of a Poisson distribution equals the mean value. This
means

SNRpnf,in = 〈n〉2
/
〈n〉. (20)

At the amplifier output, the mean signal equalsG〈n〉. For large
〈n〉 the variance is roughly G〈n〉+ 2nsp(G− 1)G〈n〉. Under
this approximation one obtains output SNR and Desurvire’s and
Haus’ noise figure

SNRpnf,out =
G2〈n〉2

G 〈n〉+ 2nsp (G− 1)G 〈n〉 , (21)

Fpnf =
SNRpnf,in

SNRpnf,out

=
〈n〉2
〈n〉

G 〈n〉+ 2nsp (G− 1)G 〈n〉
G2〈n〉2

=
1 + 2nsp (G− 1)

G
= 1/G+ 2μ̃. (22)

For finite 〈n〉, the resulting exact Fpnf (not given in this
paper) varies with 〈n〉, i.e., optical power, and also depending
on the mode number, i.e., polarizations (1 or usually 2) and ratio

Bo/(2Be) of optical to doubled electrical bandwidth. Anyway,
spontaneous-spontaneous beat noise is approximately taken into
account by the exact, power-dependent expression forFpnf . This
was advantageous when people wanted to avoid the more com-
plicated exact BER calculation (see next Section and Appendix)
and when coherent receivers were not used. But today it is useless
or even disadvantageous because the standard usage of optical
amplifier chains is coherent I&Q transmission. No-one would
accept an Fe which, like the exact Fpnf , depended on signal
power and detector structure.

Providing a broadband direct detection receiver for measure-
ment of Fpnf is costly. Optical power measurement is much
cheaper.

H. Haus [6] has defined a noise figure, intended to evaluate
fluctuations of amplitude squares, which in its final version, and
evaluated in the optical domain, equals

Ffas = 1/G+ 2μ̃, (23)

identical with Fpnf (at high powers).
He has also defined a noise figure based on amplified

spontaneous emissions [6], which, when evaluated in the optical
domain, can be written as

FASE = 1 + μ̃. (24)

A linear optical receiver, i.e., a coherent receiver, is needed
to measure electrical powers proportional to noise powers.
But while its (electrical) signal power is proportional to G its
(electrical) noise power is not proportional to GFASE . Namely,
shot noise generated in a coherent receiver is G times smaller
when referred to the amplifier input. This means FASE does not
describe SNR degradation.

IV. SHORT REVIEW OF PHOTOELECTRON STATISTICS

Bit error ratio (BER) calculation of optical receivers is laid out
in [8] and – for direct-detection ASK receivers only – in [7]. This
closely follows the fundamental work [10], [11]. Mathematical
help is in [12]. The most important parts of this are compiled in
the Appendix of this manuscript. In all cases, knowledge of μ̃,
the input-referred number of noise photons per mode, is needed.
A merit of FASE is that its excess is readily μ̃ = FASE − 1.

Assume an optical signal with constant power. During a time
interval τ it has the energy μ0hf . The signal is detected in a
photodiode which for simplicity has a quantum efficiency of 1.
The number of photoelectrons is Poisson-distributed with the
(generally non-integer) expectation value μ0. If the power is
switched between different values we get a weighted addition
of Poisson distributions with different expectation values. We
define an intensity x equal to a possibly variable or random value
of μ0. It has the probability density function (PDF) px(x). The
probability P(n) of detecting n photoelectrons equals [11]

P (n) =

∫ ∞

0

px (x) e
−xx

n

n!
dx (Poisson transform) . (25)
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For constant power, px(x) = δ(x− μ0) is a Dirac and the
Poisson transform delivers a Poisson distribution with expec-
tation value μ0. The signal has a constant intensity, and the
photodetection or the Poisson transform adds shot noise.

The master equation of photon statistics is a differential
equation for the time-dependent evolution of P (n) while light is
subject to spontaneous and stimulated emission and absorption.
For the moment generating function of P (n) a differential
equation can be derived. Its solution allows calculating P (n)
after the signal has passed a device [11]. If the device is a
strong attenuator then the output P (n) is a Poisson distribution.
If it is an amplifier with non-zero or zero input power then
P (n) is a non-central or central negative binomial distribution,
respectively, with 2N degrees-of-freedom or N modes. The Pois-
son transform of a chi-squared variable is a negative binomial
distribution. This means the photoelectron distribution behind
the amplifier belongs to a chi-squared intensity (that is subject to
photodetection / shot noise generation). A chi-squared variable x
with 2N degrees-of-freedom ( = χ2

2N distribution) is the sum of
2N squares of statistically independent Gaussian variables with
equal variances.

Now let us look at the intensity x processed by a photoreceiver
behind an optical amplifier. For simplicity, we define optical
fields E to have the unit

√
W such that the squared field magni-

tude equals the power (not probability)

P = |E|2. (26)

The amplifier input signal has a normalized field

Ein =
√

μ̃0/Me1e
jωt

√
hf/τo. (27)

The normalized Jones vector is e1, the angular optical fre-
quency is ω = 2πf . The photon number arriving in a detec-
tion time interval τ has the expectation value μ̃0. Quantity
M = τ/τo ≈ Bo/(2Be) is the number of statistically indepen-
dent photocurrent samples during τ . There is an optical filter
with bandwidth Bo. In this model the optical impulse response
should have a rectangular envelope of length τo = 1/Bo and the
optical receiver should simply add M photocurrent samples with
temporal neighbor spacings τo, to cover the detection interval
τ ≈ 1/(2Be) where Be is the resulting electrical bandwidth.3

The input signal is passed through an optical amplifier with
gain G and then through the optical filter. The output signal
has a field Eout =

√
GEin. Let us assume the optical ampli-

fier adds field noise ((u1 + ju2)e1 + (u3 + ju4)e2)e
jωt. The

second normalized Jones vector e2 is orthogonal to e1. The
ui =

√
Gũi (i = 1 …4) are zero-mean in-phase and quadrature

noises in the p = 2 polarizations supported by amplifier and
receiver. Referred to the input of the amplifier, which may now
be assumed to be noiseless, the total field is

Ẽ =
((√

μ̃0/M + ũ1 + jũ2

)
e1 + (ũ3 + jũ4) e2

)
ejωt

×
√

hf/τo. (28)

3This is an approximation. Strictly speaking the electrical bandwidth of the
receiver which just sums photocurrent samples is infinite. But the decision
variable x contains energy collected in time interval τ .

Let R = e/(hf) be the (ideal) photodiode responsivity. Pho-
tocurrent is I = RP. A normalized photocurrent sample is

I(t) = R|E|2 = G

((√
μ̃0/M + ũ1

)2

+ ũ2
2 + ũ2

3 + ũ2
4

)

× (e/τo) . (29)

The receiver sums up M independent photocurrent samples,
and multiplies the result by τo/e, in order to form a dimensionless
decision variable x = Gx̃. Referred to the amplifier input (i.e.,
divided by G) it is

x̃ =
τo
Ge

M∑
i=1

I(t+ iτo). (30)

But we have to consider the photodetector. The photoelectron
distribution is given by the Poisson transform of x = Gx̃.

We know already that it is negative binomial distributed. This
means that x is a variable with chi-square PDF. The only possible
interpretation is that indeed statistically independent Gaussian
field noises ui =

√
Gũi with equal variances are added by the

amplifier!
The optical signal with constant power comes into the am-

plifier as a wave. It is important to understand that optical or
quantum noise can be subdivided into two issues, amplifier noise
and shot noise:
� The amplifier adds Gaussian field noise in phase and in

quadrature of each mode.
� Photodetection adds shot noise. For large photocurrents,

shot noise can be neglected.
Indeed, for large expectation values (caused by large gain or

large input power), a non-central or a central negative binomial
or a Poisson distribution of x approaches a non-central or a
central chi-squared or a Dirac distribution, respectively.

In order to avoid scaling of distributions it is useful to evaluate
the input-referred x̃. It has a noncentral negative binomial (or
Laguerre) distribution with expectation value μ̃0 of the signal,
expectation value μ̃ of noise photons per mode and 2N = 2pM
degrees-of-freedom or N modes. All ũi have the variance σ2 =
μ̃/2. If there is no optical amplifier (and G = 1) then the
noncentral negative binomial distribution degenerates into a
Poisson distribution. If there is no signal, μ̃0 = 0, it degenerates
into a central negative binomial distribution.

For transmitted 1 or 0 there are different values of μ̃0.
The resulting two distributions allow determining the optimum
threshold and the bit error ratio (BER).

If there is also Gaussian electrical noise then the distributions
of x̃ need to be convolved with a Gaussian distribution with
a variance equal to that of of the expected charge number
generated by the circuit in τ . The detection time interval τ
is chosen a bit shorter than the symbol duration, in order to
minimize intersymbol interference.

If the direct detection receiver is for DPSK or DQPSK then
differences of photocurrents are formed at the outputs of a
delay-line interferometer. Sums and differences of time-delayed
independent noise samples can be transformed into new inde-
pendent noise samples. BER can again be calculated.

So, it suffices to know modulation format, receiver structure,
expectation value μ̃0 of signal photoelectrons that would be
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detected at the optical amplifier input in time interval τ , optical
filter impulse response length τo, gain G and μ̃, the input-referred
number of noise photons number per mode of the amplifier.

No knowledge of spontaneous-spontaneous beat noise is
needed and the result is more exact than if spontaneous-
spontaneous beat noise had been approximated by a Gaussian
distribution! The key for exact receiver performance calculation
is knowledge of μ̃ (and N).

If a coherent receiver is not balanced then the above needs to
be considered also there. But usually it is balanced and there will
be no direct detection (or spontaneous-spontaneous beat noise)
effect.

For simplicity let us further assume that the local oscillator
power approaches infinity, PLO → ∞. Then, in one quadrature
of one polarization, there is a Gaussian decision variable with
expectation value

√
μ̃0 and standard deviation

√
μ̃/2. Details

will be discussed in the next Section. Unless PLO is small, shot
noise can be neglected and noise is purely Gaussian, given that
the field noise of optical amplifiers is Gaussian. For synchronous
detection, BER calculation is trivial (erfc). For asynchronous
detection the same calculus can be applied to the electrical
signals as we have applied to the optical fields in direct detection
receivers. So, also for coherent receivers, μ̃ is needed and is
decisive.

Quantum effects with largest impact are
� Gaussian field noise of optical amplifier in front of any

receiver, and
� shot noise of strong signal in direct detection receiver

without optical amplifier,
� shot noise of local oscillator in coherent receiver without

optical amplifier.

V. NOISE FIGURES IN COHERENT OPTICAL RECEIVERS

We want to extend Fe to all frequencies including the optical
domain. A necessary condition is that an optical noise figure
Fo can be obtained from measurements which are physically
equivalent to those needed for Fe. Electrical power is propor-
tional to the square of an amplitude (voltage or current). This
means optical power must be measured to determineFo. Optical
power is proportional to the square of an amplitude (electric or
magnetic field).

Photocurrent is proportional to optical power. The electrical
power of a photocurrent is proportional to its square, hence
proportional to the 4th power of an amplitude. Clearly, powers
of photocurrents cannot be used to determine Fo.

In the electrical domain, amplitudes (voltages) are measured
directly, and devices (amplifiers) are linear. One could do the
same in the optical domain. But direct optical amplitude (field)
measurement is not possible. A linear translation from optical
to electrical amplitudes is hence needed. The electrical output
amplitude of a (linear) coherent optical receiver is proportional
to an optical field amplitude. So, for determining Fo, signal
and noise powers can be measured proportional to the electrical
power at the output of a coherent receiver.

An electrical signal can be upconverted into the optical do-
main by an I&Q modulator. An optical signal can be downcon-
verted into an electrical signal by a coherent receiver.

Fig. 1. Coherent I&Q receiver with polarization matching (top), spectrum
(bottom).

In order to work like an electrical device or amplifier the
coherent receiver must be a receiver for both quadratures. This
can be a synchronous heterodyne receiver with image rejection
filter at the input. For convenience we take instead an equivalent
I&Q receiver, composed of a 3 dB power splitter and two
homodyne receivers with local oscillator signals having π/2
mutual phase difference (Fig. 1 top).

We again define P = |E|2. The polarizations be identical,
with normalized Jones vector e1. We assume electric fields

ERX =
√
G
(√

Ps + (v1 + jv2)
√
Pn/2

)
e1e

jωt

ELO = j
√

PLOe1e
jωt (31)

with signal power Ps, equivalent input noise power Pn, local
oscillator power PLO and independent zero-mean Gaussian in-
phase and quadrature noises v1, v2 having unity varianceσ2 = 1.
The detected photocurrents and their differences and sums are

I1± = R|±ERX/2 +ELO/2|2

=
R

4

(
G
(
Ps + 2v1

√
PsPn/2 +

(
v21 + v22

)
Pn/2

)

±2
(√

Ps + v1
√

Pn/2
)√

GPLO + PLO

)

I2± = R|±Es/2 + jELO/2|2

=
R

4

(
G
(
Ps + 2v1

√
PsPn/2 +

(
v21 + v22

)
Pn/2

)

± 2v2
√

Pn/2
√

GPLO + PLO

)
, (32)

I1d = I1+ − I1− = R
(√

Ps + v1
√

Pn/2
)√

GPLO

I2d = I2+ − I2− = Rv2
√

Pn/2
√

GPLO

I1s = I1+ + I1− = R
(
G
(
Ps + 2v1

√
PsPn/2

+
(
v21 + v22

)
Pn/2

)
+ PLO

)
/2
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I2s = I2+ + I2− = R
(
G
(
Ps + 2v1

√
PsPn/2

+
(
v21 + v22

)
Pn/2

)
+ PLO

)
/2,

(33)

where R = e/(hf) is the (ideal) photodiode responsivity. One-
sided shot noise power spectral densities in I1d, I2d are 2eI1s and
2eI2s. In an ideal receiver it holds PLO → ∞. Hence we may

neglect the termG
(
Ps + 2v1

√
PsPn/2 +

(
v21 + v22

)
Pn/2

)
in

2eI1s, 2eI2s, also thermal receiver noise. Let us assume the
coherent receivers integrates the currents over a time τ . This
corresponds to an electrical bandwidth Be = 1/(2τ) (Fig. 1 bot-
tom). The optical bandwidth in which the I&Q receiver detects
noise is Bo = 2Be = 1/τ . The noise generated by the optical
amplifier has a one-sided power spectral density Pn/Bo = μ̃hf .
This is the input-referred noise energy per mode. For SNR
calculation I2d, I2s are not needed. At the output we obtain
the SNR

SNRo,IQ,out=
I1d

2

σ2
I1d

+ σ2
I1s

=
R2GPsPLO

R2PLOμ̃GhfBo/2 + eRPLOBe

=
RPsτ

Rμ̃hf/2 + e/(2G)
=

Psτ

(μ̃+ 1/G)hf/2
.

(34)

Under synchronous detection (namely QPSK, QAM), BER is
given by erfc functions. In the I&Q receiver asynchronous de-
tection (ASK, DPSK, DQPSK) is also possible. BER calculation
is the same as for the corresponding direct detection receivers
(comprising 0, 1 or 2 interferometers) as outlined in Section IV.
(with details given for instance in [8] and the Appendix of this
paper).

In a true homodyne receiver there are no power splitters and
there is only receiver branch 1, for the in-phase signal. Hence
Ps, Pn and PLO arrive in this receiver (branch) twice as strong
as in Fig. 1. We get

SNRo,I,out =
4R2GPsPLO

4R2PLOμ̃GhfBo/2 + 2eRPLOBe

=
2Psτ

(2μ̃+ 1/G)hf/2
. (35)

The quantum noise energy per mode and quadrature is hf/2.
Assume the (mean) signal energy Psτ = μ0hf corresponds to
an average of μ0 detected photons and the added noise power
is zero, Pnτ = μ̃hf = 0, because there is no optical amplifier.
All the same the resulting SNRo,IQ = 2μ0, SNRo,I = 4μ0 are
finite. Shot noise, here (mainly) that of the local oscillator, limits
SNR. Also in direct detection SNR is limited, see (20).

In the coherent receiver PLO dominates. Its photodetection
causes shot noise, even if input powers are zero, Ps = Pn = 0.
It is hence appropriate to model an internal shot noise source in
the coherent receiver. Shot noise is hf per mode when referred
to the receiver input.

Fig. 2. Source, amplifier and detector (linear I&Q, electrical or coherent
optical), noisy or noiseless with equivalent added noise energies per mode.
Individual devices (top) and equivalent interpretations (middle, bottom).

Fig. 3. Like Fig. 2, but for attenuator instead of amplifier.

When an amplifier or other device is inserted in front of the
receiver it becomes part of a new combined detector, as will be
seen in Figs. 2 and 3.

To evaluate (34) without optical amplifier we set G = 1,
nsp = 0 (or finite), μ̃ = nsp(1− 1/G) = 0 and obtain

SNRo,IQ,in =
Ps,inτ

hf/2
, (36)

Fo,IQ =
SNRo,IQ,in

SNRo,IQ,out
= μ̃+ 1/G

=
nsp (G− 1) + 1

G

= 1 + (nsp − 1) (1− 1/G) . (37)

Let us check the last expression. In an amplifier, G ≥ 1, 1−
1/G ≥ 0, nsp − 1 ≥ 0. This means Fo,IQ ≥ 1.
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We can convert Fpnf (in the limit of high powers) into the
optical I&Q noise figure Fo,IQ and vice versa,

Fo,IQ = (Fpnf − 1/G)/2 + 1/G

Fpnf = 2 (Fo,IQ − 1/G) + 1/G. (38)

In the usual case G >> 1,

Fo,IQ ≈ Fpnf/2 Fo,IQ,dB ≈ Fpnf,dB − 3dB (39)

where F...,dB is a noise figure expressed in dB.
Conversion from/to FASE is likewise possible,

Fo,IQ = FASE − 1 + 1/G

FASE = Fo,IQ − 1/G+ 1. (40)

For the true homodyne receiver we obtain

SNRo,I,in =
2Psτ

hf/2
, (41)

Fo,I =
SNRo,I,in

SNRo,I,out
= 2μ̃+ 1/G =

2nsp (G− 1) + 1

G
.

(42)

The optical true homodyne noise figure Fo,I is identical with
Fpnf (for high powers) even though the receivers are quite
different. All the same, the result Fo,I = Fpnf (for high power)
does not surprise too much because the true homodyne receiver
and the intensity-modulation-direct-detection (IM-DD) receiver
with high power both don’t evaluate quadrature noise. Compared
to the I&Q receiver the true homodyne receiver has no power
splitter at the input. This is why its shot noise, referred to the
input, is only half as large. As a consequence, SNRo,I,out and
Fo,I are affected twice as much by μ̃ than SNRo,IQ,out and
Fo,IQ.

The foregoing can for instance be verified with BER mea-
surements. As mentioned, optical amplifiers generate Gaussian
noise of field and of coherent receiver output signals.

Coherent receivers cut off nasty noise in extra modes, namely
a ratio Bo/(2Be) > 1 and the second polarization e2. A dual-
polarization coherent receiver processes each of the two signal
polarizations like a single-polarization coherent receiver pro-
cesses a single signal polarization.
SNRo,IQ, SNRo,I , Fo,IQ, Fo,I are defined for coherent op-

tical receivers. But coherent receivers are not experimentally
required: One can measure G and pμBo simply with an optical
power meter and an optical filter having a known bandwidth
Bo. If the amplifier is polarization-insensitive there are p =
2 polarizations. If the amplifier is polarizing then we have
p = 1 polarization. Of course, time-gated noise measurement
during short dark periods of an applied optical signal (or another
method) is required to maintain the wanted correct G (which,
due to saturation, is lower than the idle G). From the obtained μ
and G one can calculate Fo,IQ, Fo,I .

The coherent SNRo,IQ,in, SNRo,IQ,out are halved if noise
from both quadratures is taken. This does not change their
quotient Fo,IQ. All the same it seems more appropriate to take
noise into account only in phase with the signal:
� The best possible signal processing involves synchronous

detection, which cuts off quadrature noise.

� Insertion of a phase-sensitive amplifier would lead to an
unfair comparison if noise of both quadratures were eval-
uated.

VI. PHASE-SENSITIVE AMPLIFIERS

Let us check how the foregoing changes when optical phase-
sensitive amplifiers (PSA) [13], [14], [15] are used, namely
degenerate parametric optical amplifiers. For simplicity let the
gain be sufficiently high, G>> 1. In (34), (35) the term μ̃G = μ,
multiplied by hf/2, is only the in-phase noise. It must be substi-
tuted by the (ideally) half as high in-phase noise of the PSA.
In spite of physical differences, let us consider μ̃ simply as a
quantity which ideally can be as low as 1. If we do so and want
to describe the PSA then we must replace μ̃ by μ̃/2 in (34), (35)
and also in (37), (42).

As a result, the insertion of an ideal optical PSA before a
true homodyne receiver will give it a noise figure μ̃+ 1/G. This
is equal to the expression Fo,IQ of the I&Q receiver. It can
approach the value 1, identical to the traditional noise figure
value Fpnf = 1 of an ideal optical PSA. One sees that the high
sensitivity of the true homodyne receiver is not deteriorated by
the ideal PSA.

If the ideal PSA is inserted before an ideal optical I&Q
receiver it will have a noise figure μ̃/2 + 1/G. In the limit it can
be as low as 1/2. This means: The I&Q receiver sensitivity, which
is 2 times worse than that of the true homodyne receiver, can be
improved, times 2, to the true homodyne receiver sensitivity at
the input of an inserted optical PSA.

For high gain G >> 1 of the optical PSA the noise of the
subsequent receiver can be neglected, no matter whether it is
direct detection, homodyne or I&Q. In all cases one gets the
homodyne sensitivity at the input of the optical PSA.

This fits into the foregoing considerations, there is no contra-
diction. Logically, an ideal single or dual quadrature amplifier
has an ideal noise figure Fo,I = Fpnf = Ffas or Fo,IQ of 1
before a single or dual quadrature receiver, respectively.

Note that there is a difference between optical and electrical
PSA, which has nothing to do with noise figure definition. An
optical PSA is quantum-based. This is why at high G the in-phase
noise is halved, and sensitivity for the in-phase signal of an I&Q
receiver is ideally doubled. In electrical PSA [16], governed by
thermal noise, one defines the noise squeezing factor. The best
possible value equals 1/2. In that case there is only in-phase
noise and no quadrature noise. In-phase noise has the same gain
as the signal. When looking at only the in-phase components,
SNR stays unchanged (is not doubled by the electrical PSA) and
ideal noise figure equals 1.

VII. COMPARISON OF NOISE FIGURES

We start by deriving a condition (43) for noise figures. In
order to consider the device as noiseless, we say a noise μ
(of unspecified kind) is added at the device output or a noise
μ̃ = μ/G is added at its input. For a cascade of devices 1, 2 it
holds μ = μ1G2 + μ2, μ̃ = μ̃1 + μ̃2/G1 and G = G1G2. Let
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TABLE I
COMPARISON OF NOISE FIGURES

us assume there exists a noise figure defined by

F = A+ (1−A)/G+Bμ̃. (43)

A, B are constants. Term A stands for noise generated in the
source, namely thermal noise. Term (1−A)/G stands for noise
generated upon detection, namely shot noise. B brings device
noise into the game. One easily shows that the device cascade
fulfills

F = F1 + (F2 − 1)/G1. (44)

By complete induction one shows that definition (43) fulfills
Friis’ cascading formula for arbitrary device cascades,

F − 1 =

n∑
i=1

Fi − 1∏i−1
k=1 Gk

. (45)

As can be seen, excess noise figures are added after having
been divided by the total prior gain.

Equation (43) gives some freedom in noise figure design. For
Fe it holds A = 1 and for instance B = 1, μ̃ = Tex/T where
Tex is an excess noise temperature. All the above noise figures
Fe, Fpnf =Ffas=Fo,I , FASE , Fo,IQ fulfill (43)!

One can cascade many optical amplifiers and attenuating fiber
links. Transmission with a certain BER is possible if the signal
power needed before the first amplifier is not too large. This is
found using the noise figure of the whole cascade.

Ascending noise measure

M =
F − 1

1− 1/G
(46)

indicates the order in which amplifiers with different noise
figures and gains should be cascaded for lowest total noise.

We compare the various noise figures (Table I). In all cases,
input-referred noise energy per mode can be calculated from
the noise figure. For the ideal optical amplifier we assume not
only nsp = 1 but also G → ∞. Based on noise measure M, all
optical noise figures yield the same cascading rule for noise
minimization: Order amplifiers according to ascending nsp. For
an ideal amplifier, M = 0 in the case of Fe and Fo,IQ but M =
1 in the case of Fpnf = Ffas = Fo,I and FASE .

For a pure attenuator, FASE equals 1 whereas the other noise
figures equal 1/G. More importantly, calculation of Fo,IQ, Fo,I

has shown that the differing FASE is not an SNR degradation

factor. Reason is that fundamental quantum noise (shot noise) is
added upon photodetection, not by the source.

If one wanted to match Fpnf = Ffas = Fo,I withFe then, for
increasing f, squares of amplitudes (these squares correspond
to electrical RF powers) would need to gradually become 4th
powers of (field) amplitudes (these 4th powers correspond to
squares of photocurrents), or heterodyne receivers would need to
gradually become homodyne receivers. This seems impossible.

Obviously Fo,IQ is the only optical noise figure which
matches Fe and avoids contradictions. The reason for this is that
both are defined for the same kind of system (linear I&Q) with
the same metrics (powers proportional to squared amplitudes).

For an ideal optical amplifier it holds Fo,IQ = 1. This is
against traditional physical practice Fpnf = 2. But it is natural
for communication engineers:
� An ideal optical preamplifier does not deteriorate the sen-

sitivity of a system with ideal optical I&Q receiver.
� Ideal electrical amplifiers have the same low noise figure

value Fe = 1.
� Just like electrical amplifiers, coherent optical I&Q re-

ceivers are linear in amplitudes and transparent for both
quadratures. True optical homodyne receivers pass only
one quadrature (unsuitable). Optical direct-detection re-
ceivers are not linear in (field) amplitudes (unsuitable)
and, when ASK or DPSK, pass only one quadrature
(unsuitable).

� Today, coherent optical I&Q receivers are standard in most
cases in which optical noise figure matters, namely long-
haul amplified fiber communication.

� Fo,IQ of an amplifier or of a whole cascade of amplifiers
and fibers directly tells how much worse I&Q receiver sen-
sitivity is at the amplifier or cascade input. No manipulation
(38) of Fpnf is needed.

VIII. CONSISTENT UNIFIED NOISE FIGURE

Given that Fe defines powers proportional to squares of
amplitudes and Fpnf defines powers proportional to the squared
squares of amplitudes there is no way to reconcile Fpnf with Fe.

One cannot say Fpnf is only for quantum detectors such
as photodiodes and Fe is only for electrical detectors because
the noise figure must not depend on the choice of detector. In
particular it might one day be possible to construct electrical
and quantum detectors for the same f (in the low THz range?)
and this would oppose presumably unequal Fpnf and Fe for the
same usage of the same device.

Electrical and optical signals are both electromagnetic signals
and should be treated equally. The conceptual match of Fe and
Fo,IQ allows deriving a consistent unified noise figure, usable
in electrical, thermal and optical domains.

Fig. 2 top depicts source, amplifier and detector, noisy or
noiseless with equivalent added noises. The detector is linear
in amplitude for I&Q components. If it is optical then it is a
coherent I&Q receiver, comprising LO, couplers, photodiodes
like in Fig. 1 and subsequent electrical amplifiers. Fig. 3 is like
Fig. 2, but for an attenuator instead of an amplifier. The source
generates thermal noise kT. Of course the detector also generates
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thermal noise. But that can be calibrated away after connecting
the source directly to the detector and putting it to two different
temperatures T. The detector adds shot noise hf.

The amplifier in Fig. 2 works at frequency f. In the electrical
domain it generates thermal excess noise, GkTex at the output
or kTex at the input. In the optical domain it adds field noise.
This is μhf = nsp(G− 1)hf at the output. All these noises are
Gaussian (unless PLO is small). Their powers can be added. In
the thermal domain, both noises need to be considered.

Amplifier noise may be considered like a signal. If desired, it
may be pushed over into the detector where it forms a total quan-
tum noise (μ+ 1)hf (optical amplifer noise and shot noise). For
μ >> 1 the shot noise can be neglected. Total quantum noise
(μ+ 1)hf can also conveniently be pushed to the amplifier
input, of course divided by G because it is then amplified
by G. Total quantum noise referred to the amplifier input is
(μ̃+ 1/G)hf with μ̃ = μ/G. Thermal noise of the amplifier
can also been pushed to its input. This way we may consider the
noisy amplifier and the noisy detector together as a new, resulting
noisy detector, see Fig. 2 middle. If also the two thermal noise
sources are combined then we arrive at Fig. 2 bottom which is
recognized in the following equations.

Optical and electrical gains G are identical because they mani-
fest at the same frequency f. Total thermal noise in bandwidthBo

at the amplifier output is GFekTBo. Half of this is in phase with
the signal. In the coherent I&Q receiver it appears multiplied
with R2PLO, like the amplified signal power GPs. In (34) we
add this thermal noise power σ2

e ,

SNRIQ,out =
I1d

2

σ2
e + σ2

I1d
+ σ2

I1s

=
R2GPsPLO

R2PLOGFekTBo/2 +R2PLOμ̃GhfBo/2 + eRPLOBe
.

=
GPs

GFekTBo/2 + μ̃GhfBo/2 + hfBe

=
Psτ

FekT/2+Fo,IQhf/2
=

Psτ

k (T+Tex)/2 + (μ̃+ 1/G)hf/2
(47)

The 3rd line of (47), where R2PLO has been canceled, is the
quotient of signal and noise powers in a possible I&Q electrical
receiver (instead of I&Q receiver with quantum detectors).

For thermal detectors the same expression holds, except that
noise powers will be twice as large because quadrature noise
will not be suppressed. The same noise power doubling will
also apply in the following SNRIQ,in (48). Hence FIQ (49) will
stay unchanged in thermal detectors.

Remember that noise energies hf/2, kT/2 are per quadrature
whereas hf, kT in Figs. 2, 3 are per mode.

Without amplifier it holdsG = 1,Tex = 0,nsp = 0 (or finite),
μ̃ = 0. We get

SNRIQ,in =
Psτ

kT/2 + hf/2
, (48)

FIQ =
SNRIQ,in

SNRIQ,out
=

FekT + Fo,IQhf

kT + hf

=
k (T + Tex) + (μ̃+ 1/G)hf

kT + hf

(
A =

kT

kT + hf

)
.

= A+ (1−A)/G+ (ATex/T + (1−A) μ̃) (49)

In case of an attenuator it holds G < 1, Tex = T (1/G− 1),
nsp = 0, μ̃ = 0, Fe = Fo,IQ = FIQ = 1/G.

As required, the unified I&Q noise figureFIQ fulfills (43) and
Friis’ cascading formula. At low f, FIQ becomes Fe. At high f
it becomes Fo,IQ. Among the optical noise figure definitions
unified with Fe, only FIQ yields the same noise figure ( = 1)
for ideal amplifiers in electrical and optical domains. The others,
Ffas, FASE in [6] and Fpnf if unified with Fe, fail to fulfill this.

To determine FIQ one must measure powers. At low f this
needs an electrical measurement (preamplifier, squarer). At high
f this is possible in a coherent optical receiver. And at all f one can
just as well measure power directly, at least in principle and after
preamplification, but including quadrature noise. Power can be
measured as dissipated heat. In the optical domain it is more
convenient to use an optical filter and an optical power meter,
also with quadrature noise, than an I&Q or heterodyne receiver.
So, power detection is always possible and detector choice is a
matter of convenience, not a definition.

IX. CONCLUSION

It has been shown that all prior optical and unified noise
figures lead into contradictions. Reasons are nonlinear metrics
(ofFfas = Fpnf ) which differ from linear metrics applied for the
measurement of the electrical noise figure Fe or the not taking
into account (in FASE) that shot noise generated in a coherent
receiver is G times smaller when referred to the amplifier input.
In the optical domain they all are misleading because an ideal
amplifier has anFfas = Fpnf = 2 = FASE although it does not
degrade the SNR of an ideal coherent optical I&Q receiver.
The contradictions are resolved by an optical I&Q noise figure
Fo,IQ ≥ 1 which is defined with the same metrics as Fe: two
quadratures, linear in amplitude, and powers are proportional to
squares of amplitudes. For large gains G >> 1, Fo,IQ is simply
Fpnf/2, i.e., 3 dB less if expressed in dB.

For true homodyne receivers an Fo,I = Fpnf ≥ 2 is found.
Phase-sensitive amplifiers can improve this to 1. Coherent op-
tical I&Q systems with phase-sensitive amplifiers are made to
operate like (more sensitive) homodyne systems.

In amplified fiber links, direct-detection receivers, for which
an optimum noise figure Fpnf = 2 made some sense, have been
largely replaced by coherent I&Q receivers, which need Fo,IQ.

Combination of Fo,IQ with Fe yields a unified I&Q noise
figureFIQ. It fulfills Friis’ cascading formula. It does not depend
on the detector type (electrical, thermal, optical). Maybe Fo,IQ

should be called Fo. Maybe FIQ should be called F.

APPENDIX

BER CALCULATION IN OPTICAL DIRECT DETECTION

RECEIVERS

This derivation is from [8]. All random variables (RV) except
fields be ≥ 0. For small time increments dt the probability
P (n, t+ dt) to detect n photons in a medium at time t+ dt
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depends on the probabilities to detectn− 1,n, or n+ 1 photons
at time t, and on the conditional transition probabilities from one
of these numbers to n,

P (n, t+ dt) = P (n |n )P (n, t) + P (n |n− 1)

× P (n− 1, t) + P (n |n+ 1)P (n+ 1, t).
(50)

For dt → 0 the transition probabilities are

P (n |n−1)=((n−1) a+c) dt P (n |n+1)=(n+1) bdt

P (n |n )=1−P (n−1 |n )−P (n+1 |n )=1−(n (a+b)+c) dt
(51)

with a = stimulated emission rate per photon, b = absorption
rate per photon, c = spontaneous emission rate. This yields the

dP (n, t)/dt = (P (n, t+ dt)− P (n, t))/dt

= − (n (a+ b) + c)P (n, t)

+ ((n− 1) a+ c)P (n− 1, t)

+ (n+ 1) bP (n+ 1, t) (52)

master equation of photon statistics.
If a particular photon statistic is to persist it must fulfill (52) but

statistical parameters such as expectation value 〈n〉may be time-
variable. E.g., if there is only attenuation (b > 0, a = c = 0), a
Poisson distribution

P (n) = e−μ0
μn
0

n!
with 〈n〉 = μ0 (t) = μ0 (0) e

−bt (53)

results. It is conserved under pure attenuation.
The moment generating function (MGF) is

Mn

(
e−s

)
=

〈
e−sn

〉
=

∞∑
n=−∞

P (n) e−sn for discreten, (54)

Mx

(
e−s

)
=

〈
e−sx

〉
=

∫ ∞

−∞
px (x) e

−sxdx for continuousx.

(55)

The lower boundary can be set 0 for our nonnegative RVs.
Inverse Laplace or, using e−s = z−1, inverse z transform allows
obtaining probabilities P (n) or probability density function
px(x). See Table II for important examples. Adding statistically
independent RVs requires convolution of the corresponding
PDFs, or multiplication of the corresponding MGFs. The MGF
allows obtaining the moments,

〈
xk

〉
= (−1)k

dkM (e−s)

(ds)k

∣∣∣∣∣
s=0

(same for
〈
nk

〉
). (56)

P (n, t) is time-variable while a signal passes an optical ampli-
fier. We determine

∂Mn (e
−s, t)

∂t
=

∞∑
n=−∞

e−sn dP (n, t)

dt
=

∞∑
n=0

−e−sn

× (n (a+ b) + c)P (n, t)

TABLE II
SOME RV DISTRIBUTIONS WITH MGFS, MEAN VALUES AND VARIANCES

+

∞∑
n=1

e−sn ((n− 1) a+ c)P (n− 1, t)

+
∞∑

n=−1

e−sn (n+ 1) bP (n+ 1, t) . (57)

In the last but one sum n is replaced by n+1. In the last sum n is
replaced by n – 1. Using ∂Mn(e

−s,t)
∂s = −∑∞

n=−∞ ne−snP (n, t)
we obtain

∂Mn (e
−s, t)

∂t
= c

(
e−s − 1

)
Mn

(
e−s, t

)

− (a− bes)
(
e−s − 1

) ∂Mn (e
−s, t)

∂s
(58)

with the solution, at the amplifier output after group delay t,

Mn

(
e−s, t

)
=

(
1 + μ

(
1− e−s

))−N

×Mn

(
1− G (1− e−s)

1 + μ (1− e−s)
, 0

)
. (59)

Here N = c/a is the number of noisy modes, G = G(t) =
e(a−b)t is the accumulated power gain, μ = nsp(G− 1) is
the expectation value of noise photons per mode and nsp =
a/(a− b) is the spontaneous emission factor.

At the amplifier input we assume a Poisson distribution with
mean μ̃0 = μ0/G and Mn(e

−s, 0) = e−μ̃0(1−e−s). Using (59)
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we get

Mn

(
e−s, t

)
=

(
1 + μ

(
1− e−s

))−N
e

−µ0(1−e−s)
1+µ(1−e−s) (60)

and a noncentral negative binomial distribution (Table II) where

Lα
n (x) =

1

n!
exx−α dn

dxn

(
e−xxn+α

)

=

n∑
m=0

(−1)m
(

n+ α
n−m

)
xm

m!
(61)

is a Laguerre polynomial. For μ̃0 = 0 (no input signal) one
obtains a central negative binomial distribution at the output.

Let us cascade two optical amplifiers 1, 2. For a Poisson
distribution with mean μ̃0 at its input the MGF Mn,1(e

−s, t1)
behind amplifier 1 is obtained as (60) with μ = μ1, G = G1

and μ0 = μ0,1 = μ̃0G1. Under the assumption that there is only
one optical filter, behind all amplifiers and directly in front of
the receiver, the mode number N is identical for both amplifiers.
The MGF at the output of amplifier 2 is

Mn,2

(
e−s, t2 + t1

)
=

(
1 + μ2

(
1− e−s

))−N

×Mn,1

(
1 + (μ2 −G2) (1− e−s)

1 + μ2 (1− e−s)
, t1

)

withN = ci/ai, nsp,i = ai/(ai − bi), Gi = e(ai−bi)ti ,

μi = nsp,i (Gi − 1) . (62)

This can be rewritten as (60) with t = t2 + t1, μ = μ2 +
μ1G2, μ0 = μ0,1G2 = μ̃0G1G2 = μ̃0G. The input-referred
number of noise photons per mode is μ̃ = μ1G2+μ2

G1G2
= μ̃1 +

μ̃2

G1
.

By induction we can extend this to a larger amplifier cascade,
μ̃ =

∑n
i=1

μ̃i∏i−1
k=1 Gk

, like (45).

Now we know photoelectron distributions for transmitted
ones and zeros, can determine the optimum decision threshold
where they intercept and can calculate BER. It depends on μ̃, G,
N and μ̃0 = 2Pτ/(hf) where P is the mean optical power and τ
is the observation or integration time, usually a bit shorter than
the symbol duration. For BER = 10–9, N = 1, G → ∞, μ̃ = 1
a mean of μ̃0/2 = 38 signal photons are needed at the amplifier
input during τ . More in detail, let us consider polarization-
independent optical amplifier, bandpass filter with rectangular
impulse response envelope of duration τo = 1/Bo and optical
bandwidth Bo, photodetector and baseband filter consisting of
M impulses spaced by τo each (Fig. 4). τ = Mτo is less or equal
to the symbol duration. A real receiver will have lowpass char-
acteristic of the photoreceiver and a rounded optical bandpass
filter impulse response envelope. At the decision instant the sum
of N = pM independent negative binomial distributions is
taken where p = 2 is the number of polarizations. Adding
independent RVs means we can multiply MGFs. Multiplication
of N negative binomial MGFs with equal μ̃, G (and originally
N = 1) yields (60). Given that there are two quadratures in
each mode there are 2N = 2pM degrees-of-freedom (DOF).
Signal-spontaneous and spontaneous-spontaneous beat noises
are automatically taken into account, exactly for our model
receiver (Fig. 4). Fpnf is not directly needed.

Fig. 4. Optical amplifier and receiver and impulse responses.

To understand optical amplifier noise better we considerP (n)
to be the result of the Poisson transform (25). P (n) and px(x)
scale with G. No limit exists for MGF or distributions in the case
G → ∞. Yet G mainly scales the x range so that the PDF px̃(x̃)
of a normalized input-referred intensity x̃ = x/G depends only
weakly on G, and lim

G→∞
px̃(x̃) exists. Insertion of x = Gx̃ into

(25) results in a normalized Poisson transform

P (n) =

∫ ∞

0

px̃ (x̃) e
−x̃G (x̃G)n

n!
dx̃ (63)

with px̃(x̃) = Gpx(Gx̃). After inserting (63) we obtain

lim
G→∞

Mn

(
e−s/G

)
= lim

G→∞

∞∑
n=0

P (n) e−(s/G)n

= Mx̃

(
e−s

)
. (64)

From that we can obtain px̃(x̃). In Table II, this converts a
Poisson distribution into a Dirac distribution, i.e., constant inten-
sity, and the negative binomial distributions become chi-squared
distributions with 2N DOF. These are easier to evaluate. Among
the variances of non-central RVs in Table II, the first summand
corresponds to spontaneous-spontaneous beat noise, the second
to signal-spontaneous beat noise.

Constant intensity yields a Poisson distribution due to shot
noise. So, (64) eliminates shot noise by amplification and nor-
malizes with respect to G. Inversely, (63) undoes the normaliza-
tion and adds shot noise. x̃ and x contain optical amplifier noise
(but no shot noise) and of course intensity modulation.

A chi-squared random variable is the sum of the squares of
2N independent Gaussian variables with equal variances. On the
other hand, if we have a field (28) the (input-referred) intensity
(30) is the sum of the squares of 2N independent Gaussian vari-
ables with equal variances μ̃/2. In the absence of noise the expec-
tation value is μ̃0, corresponding to the sum of squares of expec-
tation values of fields. The only possible physical interpretation
is: The optical amplifier adds Gaussian field noise in phase and
in quadrature. The particle aspect is invoked upon detection:
Photodetection adds shot noise.

For direct-detection DPSK and DQPSK receivers with inter-
ferometers, things are similar. At the interferometer outputs, dif-
ferences of independent negative binomial (or chi-squared in the
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case G → ∞) distributions with halved variances μ̃/4 of Gaus-
sian field noises are the decision variables. The MGF of such
a difference x̃ = x̃1 − x̃2 is Mx̃(e

−s) = Mx̃1
(e−s)Mx̃2

(es).
MGF, PDF and finally BER can be calculated. In some cases
this even yields analytical BER results. For DPSK, G → ∞,
N = 1 a BER = (1/2)e−μ̃0/μ̃ is obtained.

For ASK the Gaussian approximation (taking means and
variances from Table II and then calculating BER using the erfc
function) is in reasonable agreement with the exact solution.
This has contributed to the success of Fpnf . But for D(Q)PSK
the Gaussian approximation yields BER considerably off the
exact solution.

Coherent receivers with asynchronous detection for ASK,
DPSK or DQPSK perform the same signal manipulations as
their incoherent counterparts with 0, 1 or 2 interferometers. BER
calculation is possible with the same mathematics and results. In
coherent receivers there is usually only p = 1 active polarization.

Longer mathematical derivation, numerical results and di-
agrams are available for ASK in [7], [8] and for D(Q)PSK
in [8].
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