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Abstract—Integrated photonic devices in diamond have tremen-
dous potential for many quantum applications, including long-
distance quantum communication, quantum information process-
ing, and quantum sensing. These devices benefit from diamond’s
combination of exceptional thermal, optical, and mechanical prop-
erties. Its wide electronic bandgap makes diamond an ideal host for
a variety of optical active spin qubits that are key building blocks
for quantum technologies. In landmark experiments, diamond
spin qubits have enabled demonstrations of remote entanglement,
memory-enhanced quantum communication, and multi-qubit spin
registers with fault-tolerant quantum error correction, leading to
the realization of multinode quantum networks. These advances
put diamond at the forefront of solid-state material platforms for
quantum information processing. Recent developments in diamond
nanofabrication techniques provide a promising route to further
scaling of these landmark experiments towards real-life quantum
technologies. In this paper, we focus on the recent progress in creat-
ing integrated diamond quantum photonic devices, with particular
emphasis on spin-photon interfaces, cavity optomechanical devices,
and spin-phonon transduction. Finally, we discuss prospects and
remaining challenges for the use of diamond in scalable quantum
technologies.

Index Terms—Cavity optomechanics, color centers, diamond,
quantum network, quantum photonics, sensing and metrology,
nanofabrication, spins, spin-photon transduction.

I. INTRODUCTION

QUANTUM technology has come a long way since
the Stern–Gerlach experiment was conducted a century
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ago [1]. Developments in quantum theory have provided the
foundation for present-day technology, including, but not limited
to, lasers, atomic clocks, and techniques in medical imaging, and
have the potential to impact diverse fields spanning computing
[2], [3], communication [4], [5], and sensing [6], [7], [8]. We are
now at an exciting moment where early-stage quantum comput-
ers have demonstrated quantum advantage [9], [10], [11], [12],
quantum-secured communication has been demonstrated over
intercontinental distances [13], [14], and quantum sensors have
surpassed the sensitivity limits defined by the laws of classical
physics [15].

A cornerstone for the development of real-world quantum
applications is the resilient and scalable interconnection of
different quantum systems. While several proof-of-principle
experiments have been conducted with trapped atoms and
ions [16], [17], [18], [19], [20], [21], [22], [23], [24], scaling
remains a challenge. Solid-state systems offer the possibility
to adapt nanofabrication capabilities developed by the
semiconductor industry to mass-produce quantum devices [25].
Superconducting quantum circuits [26], gate-defined quantum
dots [27], and semiconductor spin qubits [28] all take advantage
of scalable nanofabrication to create quantum information
processing devices. Integrated photonic devices could play a
key role in these efforts by harnessing light’s ability to transmit
quantum information, and are becoming increasingly important
as quantum technologies mature. Diamond has emerged as
a promising material for photonic quantum systems build
around artificial atoms formed by impurities in the diamond
crystal [29]. These atomic-scale impurities are optically active,
allowing them to be controlled and connected through photonic
channels, and to be interfaced with other photonic quantum
technologies.

In recent decades, the development of photonic quantum tech-
nologies [30] has expanded the quantum information ecosys-
tem, particularly in the fields of quantum communication and
quantum sensing. Quantum communication has many poten-
tial applications, including clock synchronization [31] and en-
crypted communication [32], [33]. Central to these applications
is a quantum photonic network enabling the transmission and
entanglement of quantum bits (qubits) over long distances [34].

To realize a quantum network, remote quantum network nodes
must be entangled via quantum links. As illustrated in Fig. 1(a),
these network nodes are small-scale quantum processors that
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Fig. 1. Key motives for diamond integrated quantum photonics: (a) The
requirements of a quantum network node. A photonic platform in diamond is a
promising candidate to meet all the requirements. (b) The solid-state structure
of diamond allows for a variety of device designs utilizing photons, phonons
and applied RF/magnetic fields to manipulate qubits via en-masse fabrication
techniques. Color centers can be deterministically created through implantation
and annealing. (c) A quantum sensor based on the single electron spin associated
with the NV center. Sensing of the local spin environment or magnetic fields,
temperature, and electric/stain field has been demonstrated using NV centers.
Structure of (d) the NV and (e) the group-IV split-vacancy centers in diamond.
The NV center has outstanding spin properties, with long coherence times at
elevated temperatures. The inversion symmetry of the group-IV color centers
leads to a larger Debye-Waller factor and a vanishing permanent electric dipole
moment, making these color centers suitable for integration in nanophotonic
devices.

combine robust storage of quantum information with an interface
to the quantum communication channels [35]. The nodes must
enable high-fidelity operations on several entangled qubits and
fault-tolerant multi-qubit protocols [36]. Furthermore, the nodes
need to be capable of storing quantum states utilizing ‘memory’
qubits for a longer time than is required to generate asynchronous
entanglement across numerous distant nodes. An additional
requirement for network nodes is the realization of a fast and
efficient interface between stationary qubits and ‘flying’ pho-
tonic qubits. For long-distance communication, the flying qubits
must have minimal loss in the photonic quantum channel, thus
favoring telecom photons that are compatible with pre-existing
low-loss optical fiber networks [34], [37], [38].

Optically active spin qubits in diamond have successfully
been utilized in several proof-of-principle experiments targeted

towards the integration of the above mentioned components to
realize a quantum network [39], [40], [41], [42], [43], [44].
Advances in spin-photon entanglement [45] paved the way
for photon-mediated entanglement of remote qubits [46], [47],
[48], culminating in the recent demonstration of a three-node
quantum network [49], [50]. While these demonstrations have
been fruitful, it is worth noting that parallel advances have been
made with other experimental platforms including trapped atoms
and ions [17], [51], [52], [53], [54], [55], [56], superconducting
resonators [57], [58], self-assembled quantum dots [59], [60],
[61], and defect-based qubits in other wide-bandgap semicon-
ductors and dielectrics [62], [63], [64], [65], [66], [67], [68],
[69], [70], [71], [72].

Realizing an efficient interface between diamond qubits
and photons at telecommunication wavelengths for fiber-based
quantum channels remains a significant hurdle as diamond-
based qubits do not intrinsically couple to telecom photons.
The optically active spin qubits found in diamond typically emit
photons in the visible range, thus requiring quantum frequency
conversion to telecom wavelengths [73] to mitigate absorption
loss in fiber optic links [34]. The need for optical frequency
conversion, however, can be circumvented by taking inspira-
tion from the development of quantum transducers [74] and
utilizing the mechanical properties of diamond in combination
with device engineering [75]. Diamond is the stiffest material
known to man, with Young’s modulus exceeding 1,200 GPa
[76], facilitating the fabrication of high-frequency mechanical
resonators [77], [78]. These mechanical resonators have the
potential to be universal quantum transducers [79], [80], capable
of coupling a myriad of different quantum systems, including
connecting superconducting qubit resonators and optical pho-
tons [81], [82]. Photon-phonon and subsequent spin-phonon
coupling in a mechanical resonator constitutes a promising route
to realize a spin-photon interface natively operating at telecom
wavelengths [75], [83], [84]. Furthermore, the high mechanical
frequencies of these diamond resonators suppress the population
of thermal phonons, facilitating preparing of the mechanical
resonator to the quantum ground state.

Unleashing diamond’s full potential as a material platform
for quantum information processing is impaired by two pre-
eminent challenges: deterministic creation of highly coherent
qubits and scalable device fabrication. A key requirement for
scaling beyond a few qubits is the precise fabrication of arrays
of identical qubits separated by a few nanometers, the level
of precision required to magnetically couple the electron spins
to mediate multi-qubit operations [85], [86], [87]. Significant
progress has been achieved in ‘top-down’ qubit fabrication
techniques; however, it remains challenging to meet the nec-
essary requirements [88]. A promising approach to overcome
this obstacle is ‘bottom-up’ atomically-precise fabrication that
has been successfully demonstrated in silicon [89]. Alterna-
tively, proposals for coupling qubits via a quantum optical bus
require devices that combine deterministic creation of qubits
with quantum control via externally applied fields [90], such as
optical, stress, magnetic, and radio and microwave frequency
electric fields, see Fig. 1(b). The engineering of these control
mechanisms requires robust device fabrication. Utmost care
needs to be taken during device fabrication as the qubits are
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intrinsically sensitive to their surrounding environment and their
properties can be degraded by their proximity to surfaces [91].
However, by turning the problem around, their sensitivity to
their environment (see Fig. 1(c)) can be exploited to realize
quantum sensors [8] that offer advantages over their classical
counterparts. Diamond-based sensors are being developed at a
rapid pace and offers to fill the gap created by other candidates
in terms of resolution, portability, and cost.

In this article, we focus on recent developments in the field
of diamond integrated photonics and its impact on the quan-
tum technology ecosystem. The article is organized as follows.
In Section II we introduce the physics and the strengths and
weaknesses of diamond colour centers. In Sections III and
IV, we provide an overview of the recently developed field
of diamond cavity optomechanics and discuss the potential of
photon-phonon coupling for quantum technology in diamond. In
Sections V, VI, VII, and VIII, we review the current state-of-the-
art, discuss open questions, and provide a roadmap unravelling
the promising future for quantum photonic devices, sensing and
metrology, qubit-photon interfaces and diamond nanofabrica-
tion.

II. COLOR CENTERS IN DIAMOND

Diamond, an inherently transparent material, is host to over
200 optically active defect centers [92], [93]. These defects,
known as color centers, can occur naturally or be created in the
lab (see Section VIII-C). Some color centers combine atom-like
optical transitions with long-lived electron spins, resembling
ions trapped in the diamond lattice [94]. Diamond’s large elec-
tronic bandgap (5.47 eV) and resulting wide transparency win-
dow and large energy separation between colour center energy
levels and the crystal’s conduction and valance bands, combined
with a low population of thermal phonons (Debye temperature
Θ ∼2,000K [76], [95]) promotes coherent single-photon emis-
sion and long spin coherence times, making diamond an ideal
host for solid-state qubits. Furthermore, the diamond lattice is
largely composed of nuclear spin-0 12C atoms (natural abun-
dance 98.9%), thus suppressing background magnetic noise.
Synthetic growth of diamond using isotopically purified starting
material further reduces magnetic noise, leading to prolonged
spin coherence times [96]. The electron spin associated with
color centers may be utilized as a qubit that, when interfaced with
photons, can form part of a quantum network node. Furthermore,
coupling to nearby long-lived 13C nuclear spins [97] can be
harnessed to build quantum memories [98] and multi-qubit spin
registers [99]. Entanglement swapping between the electron
spin and long-lived nuclear spin quantum memory [40], [100],
can free up the communication qubit, enabling high-fidelity
multi-qubit protocols [101]. For scalability, it is desirable to
position the memory qubit in close spatial proximity to the
communication qubit; a challenging task using 13C spins owing
to the low natural abundance of only 1.1% [102]. As an alterna-
tive, a quantum memory can be realized using the nuclear spins
intrinsic to the color center [102]. This latter approach carries
the advantage that the memory qubit is automatically located
adjacent to the communication qubit [103].

Being robust single-photon sources [104], [105], the nitrogen-
vacancy (NV) [106] and silicon-vacancy (SiV) [107] centers
have over the years gained traction as promising candidates for
a variety of applications in photonic quantum technologies [29],
[108]. NV centers have been used in various proof-of-principle
experiments, including, but not limited to quantum sensing
[109], quantum teleportation [39], quantum error correction
[85], [110], [111], demonstration of a multi-qubit quantum
processor with coherence times approaching a second for the
electron spin [112] and a minute for the nuclear spin [99],
fault-tolerant operations [36], and the realization of multinode
quantum networks [49], [50]. On the other hand, SiV centers
integrated with nanophotonic structures with exceptionally large
cavity cooperativities have been used to demonstrate memory-
enhanced quantum communication [42]. In addition, novel color
centers based on the heavier group-IV atoms such as germanium
(Ge), tin (Sn), and lead (Pb), show promising potential for
quantum applications [113]. However, research on these defects
is still in the early stages and will therefore not be discussed
extensively in this review.

A. Defect Structure

The NV center, depicted schematically in Fig. 1(d), consists
of a substitutional nitrogen atom and an adjacent lattice vacancy
with the symmetry axis along the 〈111〉 crystal direction. The
group-IV atoms, on the other hand, are too large to occupy a
carbon site. Instead, the impurity atom takes up an interstitial
position, flanked by a vacancy on either side [114], [115]. This
split-vacancy configuration, with the group-IV atom positioned
at the inversion point of the diamond lattice, is shown schemat-
ically in Fig. 1(e). The centrosymmetric configuration results
in a vanishing permanent electric dipole moment, rendering the
group-IV color centers insensitive to linear Stark shifts [116],
[117]. The unpaired electrons associated with the neutral charge
states, NV0 and XV0, where X refers to one of the group-IV
atoms in Fig. 1(e), can efficiently capture an electron from
the environment, forming the negative charge states, NV− and
XV−, respectively [118], [119]. The negative charge state is the
most studied for both classes of defects. However, it is worth
mentioning that for the SiV center, careful doping and surface
treatment have stabilized the neutral charge state SiV0 [120],
[121]. Similar results are yet to be reported for the heavier
group-IV defects. Therefore, in the context of this review, we
will be referring to the negative charge states, unless explicitly
stated otherwise.

B. Spin and Optical Properties

The NV center ground-state manifold is composed of an
orbital singlet, spin-triplet state (S = 1) [134], where, for zero
magnetic field, the ms = 0 and the ms = ±1 spin sub-levels
are split by 2.87GHz due to spin-spin interactions [106]. For
the group-IV split-vacancies, the ground-state manifold is an
orbital-doublet state, where spin-orbit interactions split the or-
bital branches by ΔGS [119], [133]. As will be discussed below,
the value of ΔGS directly influences the spin coherence times. A
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TABLE I
OVERVIEW OF THE SPIN AND OPTICAL PROPERTIES OF NV AND SiV COLOR CENTERS IN DIAMOND

comparison between the key spin and optical properties for the
NV and SiV center is summarized in Table I.

As a direct consequence of the difference in symmetry
(Figs. 1(d) and 1(e)) and corresponding energy level structure,
NV and SiV centers exhibit different spin and optical properties,
in turn determining in which areas they find applications. Due
to the weak spin-orbit coupling [135] and the largely spin-free
diamond lattice [96], the NV center electron spin is only weakly
coupled to its environment, resulting in exceptionally long spin-
lattice relaxation times (T1) and spin-coherence (T2) at room
temperature [76]. The long spin coherence time makes the NV
center a workhorse in quantum sensing applications across a
broad temperature range [136], [137]. The SiV center, on the
other hand, suffers from relatively short spin coherence times.
In the case of the SiV center, the spin coherence time is limited
by phonon-assisted population transfer between the two orbital
branches (split by ΔGS ∼ 48 GHz), resulting in coherence times
limited by the orbital T1 time [133], [138], [139]. Cooling
down to millikelvin temperatures suppresses the thermal phonon
population, thereby increasing the spin coherence time [131].
SiV center coherence time-scales are typically in the range of
100 ns at 3 K, extendable to a few ms at millikelvin temper-
atures, thus limiting the potential sensing applications of SiV
centers.

The observation of two-photon quantum interference from
spatially separated emitters [140], [141], [142], a prerequisite
for remote entanglement protocols [46], [47], requires coher-
ent emission of indistinguishable photons. For NV centers,
the photon flux is limited by the long radiative lifetime of
12 ns. Furthermore, emission into the zero-phonon line (ZPL) at
637 nm, quantified by the Debye-Waller (DW) factor, accounts
for only ∼3% of the total emission [124]: the remaining 97% is
accompanied by phonons, resulting in a broad phonon-sideband
(PSB) extending to∼800 nm. The SiV center, on the other hand,
exhibits a comparatively short radiative lifetime of 1.8 ns [127],
[128]. Moreover, ∼70% of the emitted photons are directed
along the ZPL at 738 nm [119], [130]. However, the SiV center
suffers from a low quantum efficiency (QE) of only ∼0.1 [128],
[129] compared to a near-unity QE for the NV center [123].

In brief, the large difference in the DW factor between NV and
SiV centers can be attributed to the symmetry of the defect [135].
In the case of the NV center, excitation from the ground-state
(GS) to excited-state (ES), denoted by 3A2 and 3E, respectively
[134], shifts the charge distribution towards the N atom [143],
[144]. This charge redistribution alters the equilibrium position
of the nuclei, resulting in a reduced overlap between the ground-

and excited vibronic states manifested by a large PSB [106],
[135]. In comparison, the charge distribution between the ground
(2Eg) and excited state (2Eu) of the SiV center remains similar;
there is little change in the nuclear equilibrium coordinates. Con-
sequently, optical emission from the SiV center occurs largely
into the ZPL [114], [135].

For both families of color centers, the presence of a mag-
netic field lifts the ground-state spin degeneracy: the spin sub-
levels can be individually addressed using externally applied
microwave [131], [145], [146] or strain fields [132], [147],
[148], enabling the formation of a qubit. Furthermore, both
defects exhibit cycling optical transitions, enabling all-optical
spin control [149], [150] and single-shot spin-readout [131],
[151] at cryogenic temperatures.

III. COHERENT PHOTON-PHONON COUPLING IN DIAMOND:
CAVITY OPTOMECHANICS

Initial efforts to integrate diamond qubits with photonic de-
vices have focused on spin-photon coupling, as discussed in
previous reviews [152], [153] and addressed later in this review.
Recently, efforts to harness spin-phonon coupling in diamond
for realizing both on-chip and long-distance quantum coherent
connections between diamond spin qubits have emerged [76],
[154]. Central to these efforts is the field of cavity optome-
chanics, which can provide coherent photon-phonon coupling in
integrated photonic devices. Cavity optomechanics [155], [156],
has enabled quantum technologies in fields including sensing
and precision measurement, studies of the quantum properties
of mechanical objects, quantum memories, and quantum trans-
duction. It has been investigated in a plethora of materials and
designs, and has recently been shown to be a viable and promis-
ing route to control and read out spin qubits in diamond [75].
This latter demonstration harnesses the convenient frequency
matching between mechanical resonances of integrated devices
and solid-state qubit spin transitions.

Cavity optomechanical systems use two distinct mechanisms
to create and enhance the interaction between the optical field
in a cavity and mechanical resonators: moving mechanical
boundaries [157] and photoelasticity [158]. The mechanical dis-
placement of vibrating cavity walls drives the moving boundary
effect, whereas the photoelastic effect is a bulk response that
manifests as strain-induced modulation of the refractive index.
These light-matter interactions are quantified through the single-
photon optomechanical coupling rate, g0, calculated as the prod-
uct of the optical frequency shift per unit displacement and the
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mechanical zero-point fluctuation amplitude of a mechanical
resonator mode of interest. Experimental determination of g0,
in general, is realized by the parametric fitting of well-known
optomechanical (OM) effects, such as the optical spring effect
and the optomechanical (anti-) damping. A direct measure of g0
is possible by comparing the OM transduction with an artificial
phase-modulated tone, a method commonly used and described
by Gorodetsky et al. [159]. These measurements are corrobo-
rated by numerical simulations utilizing perturbation theory and
the finite element method [160].

To be used in quantum applications, optomechanical cavities
must be designed to achieve high g0 while also overcoming
optomechanical losses. This requirement is characterized by the
optomechanical cooperativity, given by:

Com =
4ncavg

2
0

κγm
. (1)

Here, κ and γm are the energy decay rates of the cavity’s optical
and mechanical modes of interest, respectively, and ncav is the
average intracavity photon number. Com can be interpreted as
the probability of coherent OM interaction [161]. The con-
dition Com > 1 has been realized in a variety of cavity OM
devices, including those fabricated from diamond [77], [78].
Moreover, quantum state transfer between light and mechanics
that can generate entanglement between photons and phonons
demands devices with Com > nth + 1, where nth is the average
thermal phonon number of the mechanical resonator due to its
thermal bath [162], [163]. Lowering nth either requires cool-
ing resonators to cryogenic temperatures, using high-frequency
resonators, or a combination of both. Another condition that
is key to many applications is reaching the sideband-resolved
regime, that is, when the resonator’s mechanical mode frequency
exceeds κ/2, facilitating delayed optical back-action that can
be harnessed for optical amplification or cooling of mechanical
resonance.

The above discussion only accounts for the real part of the
optomechanical coupling. In cases where the change in a cav-
ity’s optical losses via mechanical displacement is significant,
g0 will be defined as a complex quantity with dispersive and
dissipative contributions [160]. Furthermore, when the device
is operated under high optical power, dynamic and static pho-
tothermal and thermoelastic effects may be relevant, which can
significantly modify the physics of the problem [164], [165],
[166]. In this review, we focus on the dispersive OM interac-
tion; the above-mentioned effects are neglected unless explicitly
stated otherwise.

A. Relevant Material Properties

A fortuitous combination of exceptional intrinsic material
properties is responsible for making diamond an ideal material
for cavity optomechanics. Advances in the synthetic growth of
single-crystal diamond (SCD) combined with the development
of fabrication techniques to realize suspended structures from
high-quality SCD chips have accelerated the recent emergence

of diamond nanophotonic and nanomechanical devices for quan-
tum technologies. Diamond’s key material properties relevant to
quantum optomechanics are outlined below.

1) Optics: The strong covalent bond of diamond hinders
electrical conductivity, resulting in a wide bandgap of 5.47
eV (225 nm). This large bandgap creates a broad transparency
window ranging from ultraviolet to radio frequencies, except for
a weak absorption window appearing between 2.6 and 6.2 μm
due to multi-phonon coupling [167]. Outstanding transparency,
when combined with a high refractive index of ∼ 2.4 and low
dispersion, makes diamond a robust and versatile medium to
confine photons. Additionally, the large bandgap suppresses
multi-photon absorption, providing the ability to handle large
optical power inside a cavity with minimal nonlinear absorption
and resulting thermal effects, unlike other popular semiconduc-
tors such as silicon and gallium arsenide [168].

While thermal nonlinear effects are mostly undesirable,
optical nonlinearities lead to interesting physics. Diamond’s
lowest-order non-zero nonlinear susceptibility, χ3, allows for
the study of phenomena such as Raman scattering [169], [170],
[171], the Kerr effect [172], [173], and four-wave mixing
[174]. Amid many prospects, the on-chip demonstration of
diamond-based microcombs [175], Raman lasers [176], [177],
and single-photon frequency conversion via a combination of
parametric processes with color centers are among the most
promising [178].

Special attention must be paid to surface termination, which
can introduce additional losses when device dimensions reach
the nanoscale. A high concentration of impurities, such as color
centers, may have an impact on both optical and mechanical loss
rates. Even though diamond is an optically isotropic material
due to its cubic lattice symmetry, the strain induced by lattice
dislocations can cause birefringence [179].

2) Mechanics: Diamond has exceptional mechanical prop-
erties. It has a high Young’s modulus of 1,220 GPa, four
times larger than silicon, making it a stiff material with a
large speed of sound (∼18,000 m/s). The large stiffness facil-
itates the fabrication of high-frequency resonators by reduc-
ing reliance on small geometry, ameliorating access to me-
chanical resonances resonant with a wide range of spin qubit
transition frequencies. Equally important, diamond is a ma-
terial with low intrinsic mechanical dissipation. In general,
the predominant geometry-independent dissipative channels for
nanomechanical semiconductor resonators near room temper-
ature are thermoelastic damping and phonon-phonon scatter-
ing [180]. Both these effects are temperature-dependent, and
therefore, their contribution is relatively small in diamond due
to its high thermal conductivity (2,200 W/mK, several times
higher than copper) and density (3,500 kg/m3), alongside its
low thermal expansivity. At cryogenic temperatures, scatter-
ing by defects such as dangling bonds, intrinsic or extrin-
sic dopants, and lattice imperfections can dominate phonon
losses [181]. Such interactions are commonly modelled as
strain waves coupling to two-level systems and might be
the ultimate limit for achieving ultra high-Q nanomechanical
resonators [182].



SHANDILYA et al.: DIAMOND INTEGRATED QUANTUM NANOPHOTONICS: SPINS, PHOTONS AND PHONONS 7543

Fig. 2. Diamond optical and mechanical resonators: Simulation of (a) microdisk cavity and (b) 1D optomechanical crystal (OMC). WGM: whispering gallery
mode; (R)BM: (radial) breathing mode; |u| and Ez(y) stand for normalized mechanical displacement and electric field at the z (y) direction, respectively. Reported
quality factors: (c) optical and (d) mechanical diamond resonators (experimental data). Nanobeams: 7 [183] and 14 [184]; 1D Photonic crystals (PhC): 1 [185],
2 [186], 9 [187], 11 [188], 13 [189], 17 [78], 18 [78], 19 [190], 20 [191], 24 [192] and 25 [193]; 2D PhCs: 3 [186], 5 [194], 10 [195], 12 [196] and 21 [197];
Cantilevers: 4 [198], 6 [183] and 8 [181]; Microdisks: 15 [77], 16 [77], 22 [199] and 23 [200]. The studies are enumerated chronologically based on their publication
date.

Besides the lattice anisotropy introduced by defects, even
undoped SCD is an imperfect isotropic elastic material.
Although the anisotropy level is often disregarded without
penalty, fine tailoring of diamond’s mechanical properties is
sometimes necessary. Huang et al. [201] have demonstrated that
Young’s modulus varies depending on the crystal orientation.
Likewise, other properties such as photo-elasticity are also in-
fluenced by the crystallographic direction, as demonstrated in
gallium arsenide [158]. These variations can be accounted for
by a thorough description of the diamond elasticity tensor [202],
[203].

B. Experimental Realizations of Diamond Optomechanical
Devices

Efforts to utilize optical fields to manipulate and probe micro-
and nano-scale mechanical objects have led to numerous types
of optomechanical devices [156]. Amongst these, microdisk
resonators are one of the simplest optical cavity designs and play
an important role in many photonics and optomechanics exper-
iments. Microdisks support optical whispering gallery modes
(WGMs), in which the electromagnetic field is confined by total
internal reflection at the circular boundary (Fig. 2(a)). The mode
volume of WGMs decreases with decreasing microdisk radius,
while optical radiation loss increases. An optical quality factor
ofQo ∼ 105 at telecommunication wavelengths was achieved in
5μm diameter SCD microdisks by Mitchell et al. [200], limited
by fabrication related surface roughness. At visible wavelengths
resonant with NV optical transitions, Qo > 104 have been ob-
served in SCD microdisks [77].

Optomechanical microdisks are supported by small pedestals
that minimize anchor losses, as shown in Fig. 2(a). Optical
WGMs couple most effectively to mechanical radial breath-
ing modes (RBM): resonances with mechanical frequency
Ωm/2π ∼ 2 GHz, mechanical quality factor Qm ∼ 10,000,

and g0/2π � 26 kHz have been reported for a diamond
microdisk [77]. This device demonstrated Com ∼ 3 at ambient
conditions, enabling a number of coherent optomechanics ex-
periments, including reversible photon-phonon conversion via
optomechanically-induced transparency [204], [205], phonon-
mediated wavelength conversion [206], and optomechanical
memory [205]. These demonstrations took advantage of the
multimode nature of the diamond microdisk; a topic that will
be discussed in Section IV.

The advantages of microdisk resonators go beyond their ease
of fabrication and effective OM interaction. Usually, resonators
with small dimensions are targeted due to their low effective
modal mass, leading to a higher Ωm and larger g0. Tuning of
the device geometry modifies the optical free spectral range and
can enable mechanical frequencies ranging from kHz to GHz –
such design flexibility is favorable for coupling to spin qubits
[154]. On the downside, mechanical quality factors are highly
dependent on the disk-to-substrate interconnection. While M.
Mitchell et al. [77] demonstrated the feasibility of fabricating
a thin pedestal in diamond microdisks, the patterning of a
nanostructured phononic shield on the top of the disk could
provide a solution to further isolate clamping and reduce anchor
losses [207], [208].

Optomechanical crystals (OMC, Fig. 2(b)) are another device
design used to simultaneously confine optical and mechanical
modes [209]. Their sophisticated engineering allows for small
optical mode volumes and high OM coupling rates compared
to other geometries. The basic principle involves introducing a
geometric defect in an artificially patterned lattice (Fig. 2(b))
that generates periodicity in the dielectric constant and elastic
properties of a material. This in turn modifies the dispersion
of photonic and phononic modes of the structure. These de-
fects are generally implemented by alternating air and material
regions, for example by introducing air holes in a suspended
film. The resulting photonic and phononic band structures have
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regions with vanishing density of states. Introducing defects that
break the lattice’s translational symmetry allows the formation
of localized optical and mechanical resonances at frequencies
within the bandgaps of the respective optical and photonic band
structures. Additionally, these modes can simultaneously have
low radiation and clamping losses, respectively, by ensuring that
the defect minimizes the coupling to the lossy modes of the
underlying periodic structure [210].

Diamond photonic crystal cavities (PCCs) and nanome-
chanical resonators were initially explored independently.
Photonic crystal optical cavities using triangular nanobeam
were demonstrated with center wavelength ∼ 630 nm and
Qo ∼ 1,000 [185], soon followed by cavities with Qo > 105 in
the infrared (IR) band [188]. Rectangular cross-section photonic
crystal cavities [189], better suited for integration into a larger
photonic integrated circuit [211], have been demonstrated using
quasi-isotropic undercutting of SCD with Qo ∼ 14,000 at visi-
ble wavelengths [191]. These rectangular cross-section cavities
minimize the mixing of the TE and TM optical modes which
can be responsible for optical loss in triangular cross-sections
[185].

Photonic crystal cavities fabricated using heteroepitaxy of
diamond on silicon [186] or diamond membrane transfer [193]
have Qo ∼ 104. Two-dimensional PCCs have been realized
from diamond films bonded or deposited over a different ma-
terial substrate. They can currently reach optical Q-factors of
a few thousand [186], [194], [196]. Recently, quasi-isotropic
etching [212] was used to realize 2D photonic crystals with
Qo > 6× 103 [197]. The aforementioned devices have been
realized with cavities in the visible wavelength range, as shown
in Fig. 2(c).

The realization of SCD nanomechanical resonators has made
steady progress in recent years, as illustrated in Fig. 2(d). Can-
tilevers with μm dimensions suspended over a SiO2 substrate
have been demonstrated with a Qm ∼ 3× 105 in vacuum [198].
Tao et al. [181] reported similar structures made from SCD
film in a ‘quartz sandwich’ with Qm ∼ 106; these high-Qm

cantilevers were also leveraged to investigate the relevance of
surface termination and defect concentration. In [183], both
singly- and doubly-clamped nanobeams demonstrated Qm >
104 in angle-etched SCD.

Khanaliloo et al. [184] demonstrated one-dimensional sus-
pended waveguides in SCD supporting flexural mechan-
ical modes with Qm > 7× 105. Polycrystalline diamond
nanobeams and H-resonators with Qm ∼ 104 have been con-
nected to nanophotonic circuits [195], [213]. Cady et al. [192]
have fabricated diamond OMCs using a SCD-on-insulator plat-
form with integrated telecom waveguides with Qo > 104 and
GHz mechanical modes with Qm ∼ 100. Burek et al. [78] fab-
ricated and measured a 1D OMC with a Qo > 105, Qm × fm ∼
1014 and g0/2π ∼ 240 kHz.

These realizations demonstrate that diamond cavity optome-
chanics has enormous potential. However, the fabrication of
smooth sidewalls and the precise etching of small periodic fea-
tures in diamond OMCs are currently major obstacles to further
experimental progress, as will be discussed in Section VIII.

Fig. 3. Multimode cavity optomechanical systems and applications:
(a) Schematic illustration of two different multimode optomechanical systems.
(b) Amplified wavelength conversion using an optomechanical device. Two
optical modes at different frequencies are illuminated by a strong red-detuned
and blue-detuned control beam, respectively. A signal injected at the resonance
of mode 1 is converted into a signal emerging from mode 2, as demonstrated
using diamond microdisk in [206].

IV. MULTIMODE OPTOMECHANICS

The majority of cavity optomechanics studies utilize systems
with a single optical mode coupled to one mechanical mode.
As discussed, an asset of diamond cavities is their ability to
support optical modes across a wide transparency window,
thus facilitating the study of multimode optomechanics, where
multiple optical modes are coupled to the same mechanical
mode (see Fig. 3 (a, left)). Similarily, mechanical resonators
typically support a spectrum of modes that can couple to a single
optical mode (see Fig. 3 (a, right)). Constraining the physics to
the ‘one-to-one’ model is often justified and dictated by the
experimental design. For example, cooling or heating in the
resolved sideband regime singles out a particular mechanical
mode via the choice of laser detuning [214].

Setups with multimode coupling have been realized in a
wide range of materials [215] and have a number of additional
valuable features [216], [217], [218], [219], [220], [221]. For
example, bulk acoustic modes in a macroscopic scale quartz
cavity have been used to demonstrate optomechanically induced
transparency and absorption [222]. Multiple mechanical modes
coupled to an optical mode have demonstrated a cascaded optical
transparency scheme by leveraging the parametric phonon–
phonon coupling with an aluminium nitride microwheel res-
onator [223], coherent optomechanical state swapping between
two spatially and frequency separated resonators with silicon
nitride trampoline resonators [224], and multimode phonon
lasing with a 1D silicon optomechanical crystal cavity [225].
Furthermore, exploring multimode systems in synchronized OM
oscillator arrays constitutes an interesting approach for sensing
and metrology [226].

Multimode cavity optomechanical devices also offer great
potential to connect disparate quantum technologies in a net-
work, via phonon-mediated coherent transduction of quantum
information from visible or microwave photons to telecommu-
nication wavelengths. As such, the field of optical-to-microwave
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transduction [227] is currently a highly active area of research
[228]. Optomechanical systems with Com > 1 are capable of
frequency conversion between multi-wavelength cavities [206],
[229], [230], eliminating the need for material-dependent non-
linear optical processes. Cavity optomechanical wavelength
conversion coherently couples two optical cavity modes via their
independent optomechanical coupling to a common mechanical
resonance [206], [229].

In diamond, optomechanical cavities have been used to
demonstrate wavelength conversion between frequencies sep-
arated by over 4 THz with an internal efficiency of 45 %
[206]. For wavelength up- and down-conversion, both strong
optical control fields are typically red-detuned by the mechanical
frequency from cavity modes resonant with each wavelength of
interest. However, blue detuning of one of the control fields
can be harnessed for optomechanically amplified wavelength
conversion, as illustrated in Fig. 3(b). Dynamics in both of
these wavelength conversion schemes can be modelled by a
photon-phonon beamsplitter or squeezing Hamiltonian [155].
These systems can, in principle, be utilized to convert the zero
phonon line emission from NV and SiV centers in diamond to
telecom photons for application in quantum networks, provided
the cavity supports high-Qo optical modes at both the photon
emission wavelength and the telecom wavelength of interest,
and that Com ≥ 1 can be achieved for each mode. However,
these advancements are currently limited due to the modest Qo

at visible wavelengths. Advances in fabrication techniques and
better cavity design can overcome this problem, see Section VIII.
Coupling higher intensity control fields to the cavity at the visible
wavelength in order to achieve larger ncav will also increase
Com.

Other multimode optomechanical phenomena with promis-
ing quantum applications have been demonstrated in diamond
devices enabled by double-optomechanically induced trans-
parency (DOMIT). Examples include all-optical switching [231]
and optomechanicaly tunable pulse storage [205]. Recently,
optical modes were used to drive a broad mechanical mode
spectrum of diamond microdisks. In this work, higher-order
mechanical modes with frequencies over 5 GHz were observed
[232]. Devices with one optical and multiple mechanical modes
could lead to many interesting studies, as already demonstrated
in the microwave domain [233], but have not yet been explored in
SCD optomechanical systems. Hybrid SCD cavity optomechan-
ical devices integrated with superconducting quantum devices
could accelerate the realization of transducers for connecting
superconducting quantum computers to quantum networks [79].

V. QUANTUM PHOTONIC DEVICES

Efficient collection of photoluminescence (PL) is of
paramount importance for applications using color centers in
diamond. However, the large refractive index of diamond (n =
2.4) leads to total internal reflection at the diamond-air interface,
thus limiting the detection efficiency to only a few % for color
centers in bulk diamond when using a high numerical aperture
microscope [234]. To remedy this problem and improve the

Fig. 4. Photonic devices for efficient light extraction: (a) SEM image of
a SIL fabricated using FIB milling. (b) Top panel: schematic of a hybrid
photonic platform based on GaP on diamond. Evanescent coupling between
color centers and optical resonators enhances the photon emission, which is
further waveguided and detected via grating out-couplers. Bottom panel: SEM
image of the hybrid photonic device. (c) Schematic of a diamond membrane
embedded in an open microcavity. The fully tunable platform allows for in situ
tuning of both the cavity resonant frequency and the position of the color center
with respect to the cavity mode. Panel (a) is reprinted from M. Jamali et al., Rev.
Sci. Instrum. 85, 123703 (2014) with permission of AIP Publishing. Panel (b) is
reprinted with permission from M. Gould et al., Phys. Rev. Applied 6, 011001
(2016), Copyright 2016 by the American Physical Society. Panel (c) is reprinted
with permission from D. Riedel et al., Phys. Rev. X 7, 031040 (2017) licensed
under the terms of the Creative Commons Attribution 4.0 license.

photon flux, a variety of different micro- and nano-photonic
devices have been fabricated on diamond [235].

A. Efficient Photon Extraction via Device Fabrication

A widely adopted approach for improving the collection
efficiency of broadband PL from color center is fabricating solid
immersion lenses (SILs, see Fig. 4(a)) [234], [236]. PL emitted
from a color center located in the focus of the SIL will strike
perpendicular to the diamond surface, thus suppressing total
internal reflection. SILs have been used to demonstrate enhanced
detection efficiency from NV centers [151], [237], SiV centers
[119], [127] and GeV centers [238], [239]. One key advantage
of SILs is their relatively easy fabrication using focused ion
beam (FIB) milling around pre-characterized color centers lo-
cated deep in the diamond. This is of particular importance for
experiments using NV centers, where their proximity to surfaces
often deteriorates their optical coherence [91]. State-of-the-art
demonstrations of remote entanglement of NV centers [46], [47]
utilized diamond SILs fabricated around naturally occurring NV
centers [240]. Diamond SILs provide a detection efficiency of
∼ 10% [241], which can be further improved by the application
of an anti-reflective coating [39].

Although diamond SILs suppress total internal reflection,
photon detection efficiency is still limited by the non-directional
emission of the color center PL. Recently, it has been demon-
strated that detection efficiency can be further increased by
using layered dielectric optical antennas [242]. Such a de-
vice combines layers of different dielectric materials, where
the contrast in refractive index modifies the emission pattern,
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leading to preferential photon emission into the high-index
material [243]. In the context of diamond photonics, a low-loss,
broadband dielectric antenna has been demonstrated using a
diamond micromembrane (n = 2.4) bonded to a macroscopic
GaP SIL (n = 3.3) suspended in air (n = 1.0) [244]. As a
consequence of the asymmetric refractive index profile, PL is
predominantly emitted into the GaP. The hemispherical shape
of the SIL suppresses total internal refraction, and can thus, in
principle, provide a near-unity collection efficiency [245], [246].
An alternative approach constitutes the use of inverse design
[247] to fabricate photonic structures. Recently, this approach
demonstrated a 14-fold enhancement of broadband PL from NV
centers located at a depth of ∼100 nm [248].

Nanophotonic waveguiding structures, such as nanowires
[249], [250], [251] and nanopillars (see Fig. 7(d)) [252], [253],
offer an alternative method to improve the collection efficiency
of broadband PL. These devices act like antennas, directing the
emitted PL into a well-defined guided mode [152]. Detection
efficiency of 40% has been demonstrated using top-down fabri-
cated nanowires on diamond with ingrown NV centers [249].
One particular advantage of nanopillars is the possibility to
embed single color centers close to the tip (∼10 nm) by shallow
ion implantation (see Section VIII-C) prior to fabrication, while
maintaining long spin coherence times [254], [255]. This is
of particular importance for applications in quantum sensing,
where the spatial resolution depends on the sensor to sample
distance [109]. Tailoring the pillar geometry can further increase
the collection efficiency. Recently, a collection efficiency of 57%
was demonstrated for an NV center located at the focus of a
truncated parabolic reflector diamond nanopillar [256].

B. Engineering of the Photonic Environment

The devices discussed so far enhance the collection efficiency
of broadband PL, which is particularly useful for applications
in quantum sensing, where an increased photon flux leads to
improved sensitivity to magnetic fields [109]. However, quan-
tum information applications require a high flux of coherent,
indistinguishable photons, and therefore modification of the
optical properties of the color centers is often desired. The
rate of remote entanglement in schemes relying on two-photon
quantum interference is limited by the detection rate of coherent
photons. At the time of writing, the current state-of-the-art
experiment using NV centers achieved an entanglement rate
of ∼10Hz [48], [49], limited by the long radiative lifetime
(τ � 12 ns), the aforementioned small branching into the ZPL
(Debye-Waller factor of ∼3%) and poor photon extraction ef-
ficiency owing to total internal reflection. While the group-IV
defect centers possess more favorable optical properties in terms
of a larger Debye-Waller factor and shorter radiative lifetime, to
date, no experiments demonstrating remote entanglement have
been conducted, though recently indistinguishable photons from
GeV [257] and SnV color centers were reported [258].

In principle, these shortcomings can be addressed by em-
bedding color centers in photonic resonators [259]. Resonant
coupling of the ZPL to a single cavity mode enhances the ZPL
emission on two grounds. First, the cavity directs the emission

into a well-defined output mode, improving the photon collec-
tion efficiency [260], [261]. Second, the emitter experiences a
Purcell effect [262] that enhances the spontaneous emission rate
of transitions resonant with a cavity mode. This can be used
to increase the fraction of photons emitted into the ZPL [124].
For an optical cavity with quality factor Qo and mode volume
V , the Purcell factor is given by

FP = Fmax
P ξ

1

1 + 4Q2
o (λZPL /λcav − 1)2

,
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P = 1 +

3

4π2
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(
λ

n

)3
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where ξ =
(

|µ·E|
|µ|·|E|

)2

describes the overlap between the dipole

moment µ and the electric field E. Note that FP is independent
of any emitter properties–FP is described solely by the charac-
teristics of the cavity [261]. The scaling FP ∝ Qo /V motivates
the use of high-quality resonators with minimal mode volume
[153].

Coupling between color centers in diamond and photonic
resonators has been demonstrated on various different platforms
[153], including, but not limited to, photonic crystal cavities
[186], [194], [263], [264], [265], nanobeam cavities [41], [42],
[266], [267], [268], [269], [270], waveguides [271], [272], [273],
microrings [274], [275], [276], hybrid optical devices [211],
[277], [278], [279], [280], [281] and open microcavities [124],
[282], [283], [284], [285], [286], [287].

In photonic crystal cavities, the periodic change in refractive
index creates a photonic bandgap. Tailoring of the periodicity
can confine light to a mode volume of � (λ /n)3. However, at
the visible wavelengths relevant for color centers in diamond,
imperfections in the fabrication of these devices limits the
achievable optical Q-factor to ∼103 − 104. The current state-
of-the art PCC containing SiV centers exhibits Qo = 2× 104

and V = 0.5(λ /n)3 [42]. Note that PCCs with Qo > 105 have
been demonstrated for λ = 1550 nm [188]. As discussed in
Section VIII-C, deterministic coupling of color centers to PCCs
can be achieved via FIB milling around pre-characterized color
centers [264], or by using a FIB to implant ions in fabricated
structures. The latter approach has been proven to be particularly
successful for SiV centers [41]. Furthermore, red-shifting of the
cavity resonance is possible via deposition of N2 [41] or Ar [269]
gas, thereby maximizing the spectral overlap between the color
center ZPL and the cavity mode.

Coupling to WGMs in diamond microdisk and ring resonators
offer a monolithic alternative to PCCs. In general, WGMs of-
fer a larger optical Q-factor, albeit at the expense of a larger
V ∼ 10(λ /n)3. In practice, due to fabrication imperfections and
surface roughness, the achievable optical Q-factors are compa-
rable to those of PCCs [274]. Nevertheless, due to advances in
device fabrication, a diamond microdisk with Qo = 11,000 has
been demonstrated for λ = 638 nm [77].

The monolithic photonic devices discussed above offer large
Qo /V ratios at the expense of invasive nanofabrication. While
NV centers with close-to lifetime limited optical linewidths
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have been reported in bulk [288], [289], [290], NV centers em-
bedded in nanophotonic devices often suffer from poor optical
coherence and inhomogeneous broadening of the ZPL linewidth
on the account of a fluctuating charge environment caused
by fabrication induced surface damage [91], [291]. Therefore,
increasing the defect free, crystalline environment has proved to
be beneficial [292], [293].

Hybrid photonic platforms constitute an alternative to mono-
lithic resonators on the account of the possibility to use bulk
diamond. These devices (see Fig. 4(b)) combine single-crystal
diamond with waveguides and resonators fabricated from a
high-index material [294], [295]. Evanescent coupling of NV
centers to waveguides [278], [296] and microcavities [277],
[297] has been demonstrated on various platforms based on
GaP [279]. However, one drawback of these hybrid devices
is the difficulty in positioning the color center close to the
field maxima of the guided mode [278]. Furthermore, evanes-
cent coupling requires near-surface NV centers, which, as dis-
cussed above, suffer from inhomogenous linewidth broaden-
ing [91]. Nevertheless, hybrid photonic devices offer a viable
route to integrate color centers in diamond with large-scale
photonic integrated circuits [298], [299]. The state-of-the-art ex-
periment demonstrated a 128-channel ‘quantum microchiplet’,
a diamond waveguide array containing highly-coherent SiV
and GeV centers interfaced with an integrated AlN photonic
circuit [211].

In recent years, planar-concave open Fabry-Perot microcav-
ities (see Fig. 4(c)) have emerged as a compelling alternative
to the monolithic and hybrid optical resonators discussed above
[124], [286], [287]. These cavities are formed from a highly-
reflective planar distributed Bragg-reflector (DBR), to which a
diamond membrane is bonded. A second highly-reflective DBR
mirror, with micron-sized concave indentations fabricated using
FIB milling [282], [300] or CO2 laser ablation [301], [302],
[303], concludes the cavity. The Gaussian-shaped indentations
facilitate efficient coupling of the cavity mode to single-mode
external detection optics [304], [305]. The open microcavity
offers the possibility to incorporate micron-sized single-crystal
diamond membranes [306], thus preserving the optical coher-
ence of NV centers [287], while maintaining a large Q/V -ratio
[261]. Furthermore, with the use of piezoelectric nanoposition-
ers, the open microcavity platform offers full in situ tunability
and control of both the cavity resonant frequency and the relative
position of the color center with respect to the cavity mode [124].
Resonant coupling of a single NV center to an open microcavity
has demonstrated enhancement of the fraction of ZPL photons to
∼ 46% [124]. Finally, the incorporation of a diamond membrane
with a small thickness gradient has demonstrated full in situ
control of both the resonant frequency, and the relative frequency
spacing of adjacent cavity modes [307], thus providing a plat-
form for tunable nonlinear optics.

VI. SENSING AND METROLOGY

Quantum sensing and metrology involve the detection and
measurement of physical quantities using quantum properties
such as coherence and entanglement, with the goal of reaching

fundamental limits in the measurement [6], [8]. A variety of such
sensors have been developed in the past several decades [8].
Among solid-state platforms, spins in diamond have emerged
as versatile sensors for a variety of physical quantities, both
classical and quantum [308]. The NV center outperforms other
emitters in diamond primarily due to its excellent spin (e.g. long
coherence times) and optical (e.g. photostability, brightness)
properties.

A. NV Center-Based Sensing

The NV center’s electron spin has proven to be an exquisite
probe for measuring several physical quantities, both external
and internal to the host diamond, like electric and magnetic
fields [8], [309], temperature [310], [311], pressure [312], strain
[313], rotation [314], and charge [315] with high sensitivity
(see Fig. 5). Diamond based sensing has been intensely pursued
and is rapidly progressing owing to the potentially immediate
commercial and fundamental interests in physics, chemistry,
biology and clinical research [8], [308], [309].

One added advantage of the NV center spin as a sensor is
its atomic size, which provides extremely high spatial resolu-
tion, outperforming any other sensors developed to date [316].
Depending on the application in question, NV-based sensors
have been realized using ensembles or single NV centers in
diamond nano-, micro-, or bulk crystals [308], [309]. One area
where the NV sensors have made a profound impact is the
realization of nanoscale nuclear magnetic resonance (NMR)
spectroscopy [317] and magnetic resonance imaging (MRI) at
ambient conditions and moderate bias magnetic fields [318],
[319]. NMR using NV centers has addressed the concerns of the
low sensitivities associated with traditional NMR methods [320]
and the complexities associated with advanced methods like
magnetic resonance force microscopy (MRFM) [321]. Recent
advances in NV nano-NMR methods have placed NV centers
at the forefront of molecular-scale NMR with unprecedented
spectroscopic [317] and structural resolution [322].

For magnetic resonance based methods to work at the level
of a single target molecule or atom, the probe has to have
sufficient sensitivity to individual spins as well as possess fine
spectral resolution. In this regard, NV centers have shown to
be sensitive to individual molecules and spins external to the
diamond surface. An NV center spin, being an atomic scale
probe, is capable of measuring NMR signals from target spins
in about (5 nm)3 sample volumes [323], [324] with a sub-
Angstrom spatial resolution [322], [325] at ambient conditions.
In comparison, traditional NMR requires nanoliter sample vol-
umes and the spatial resolution is limited to μm-scale [320],
excluding their application to the level of single living cells, for
instance. Recent advancements in NV sensing protocols have
also allowed the achievement of finer spectroscopic details of
the target sample. These approaches include utilizing long-lived
nuclear spin lifetimes [326] and quantum heterodyne methods
[317], [327], [328] to achieve several orders of magnitude
improvement in spectral resolution, effectively bypassing the
standard limits set by the T2 and T1 times of NV spin. The
demonstrated sensitivities are sufficient to resolve subtle chem-
ical signatures in picoliter sample volumes [317]. In addition,
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Fig. 5. Diamond-based quantum sensing with spins as multi-modal sensors:
(a) Diamond NV centers for sensing biomagentic fields, like those from, for
example, neuronal action potential from an organism at ambient conditions.
(b) NV centers as temperature sensors with high sensitivity (mK/

√
Hz) and

spatial resolution [311]. (c) Realization of NV spins as rotation sensor with an
aim of miniaturized high precision quantum gyroscope. The schematic is of an
experiment that compares sensor performance with a standard rotation sensor
[314]. (d) All-diamond nanopillar housing a single NV defect as the scanning
probe for high spatial resolution magnetic imaging. Left panel, green and red
arrows indicate NV and target spins, respectively. Right panel is the SEM image
of the scanning probe. (e) NV centers in diamond on top of an infinitely long
magnon waveguide for magnon-mediated spin-spin entanglement. Panel (a) is
reprinted with permission from J. F. Barry et al., PNAS, 113(49)14133-14138,
2016. Panel (b) is reprinted with permission from P. Neumann et al., Nano Lett.
201313 (6), 2738-2742. Copyright 2013 American Chemical Society. Panel (c)
reprinted with permission from V. V. Soshenko et al., Phys. Rev. Lett. 126, 197702
(2021), Copyright 2021 by the American Physical Society. Panel (d, left) is
adapted with permission from P. Maletinsky, Quantum Sensing Lab, University
of Basel. Panel (d, right) is reprinted from P. Appel et al., Rev. Sci. Instrum. 87,
063709 (2016), with the permission of AIP Publishing. Panel (e) is reprinted
with permission from M. Fukami et al., Phys. Rev. X Quantum 2, 040314 (2021)
licensed under the terms of the Creative Commons Attribution 4.0 license.

NV centers have shown to be promising sensors in condensed
matter [329] and biomagnetism [308], [330], and considerable
attempts have been made in using NVs for detecting dark
matter [331].

Magnetometers are ubiquitous in many areas of application.
For instance, magnetoencephalography (MEG) [332] and mag-
netocardiography (MCG) [333] are important non-invasive med-
ical diagnostic tools. The current state-of-the-art magnetometers
are based on superconducting quantum interference devices
(SQUIDs) [334], [335] and optically pumped magnetometers
(OPM) [336] offer the highest sensitivities to bio-magnetic
fields and dominate these biomedical applications (MEG and
MCG). However, while the sensitivities (order of fT) of these

magnetometers are almost similar, they offer modest spatial
resolution (mm-scale) limiting their application to larger scale
tissues. In the case of SQUIDs, the requirement of cryogenic
cooling drives the cost of their deployment relatively high,
limiting their widespread installation. While OPMs have the
advantage of operating at ambient conditions, the requirement
of a shielded environment to cancel out the stray magnetic fields
of the surroundings makes the technique cumbersome besides
limiting their dynamic range. NV magnetometers have a decisive
advantage over SQUIDs and OPMs in most of these key areas
[109], [308]. Since the sensor size can be miniaturized and
owing to the excellent bio-compatibility of the diamond, the
sensor-specimen stand-off distances can be significantly reduced
[330], [337] potentially achieving higher spatial resolution. Cru-
cially, the NV sensors operate at ambient conditions without
requiring a shielded environment and thereby extending the
dynamic range [338]. Using NV sensors, a robust and easy
reconstruction of the vector magnetic field profile of the spec-
imen over a broadband of frequencies is also possible [339],
thus providing additional information that may prove valuable
for medical applications. NV based sensors are beginning to
be employed in biomedical imaging [330], [337], [340] but
are in an earlier stage of development compared to SQUIDs
and OPMs. One of the main obstacles for NV centers in these
applications is their associated sensitivities, which are about a
few orders of magnitude worse [309] than the aforementioned
competing techniques. Furthermore, most demonstrations of NV
sensors are confined only to bulky experimental setups and
there is a need and potential to develop portable chip-scale
sensors.

Progress in NV-magnetometers, in general, over the last
decade has proven to be promising, however, some key chal-
lenges remain to be addressed [308], [309]. The primary chal-
lenge is that the sensitivities achievable with NV magnetometers
are worse than the theoretical predictions by at least three orders
of magnitude [8], [309]. This is mainly due to inefficient NV spin
readout methods and limited coherence times. For a diamond
sample with N number of NV sensors per volume (N=1 for a
single NV center), the magnetic field sensitivity, ηB, scales as
[341], [342]

ηB ∝ 1

C ′
1√
N.T ′ , (3)

where C ′ is the readout fidelity, and T ′ is the interrogation time
(here, the spin initialization and readout times are neglected).
C ′ is determined by the PL photon collection efficiency and the
contrast of the spin states, both of which are far below unity,
thus rendering C ′ 
1. ηB is limited primarily by the photon
shot noise since the readout is performed optically [309], and
ultimately by the quantum projection noise, ηBp, so that ηB =
ηBp /C

′ [8]. Several approaches have been explored to improve
C ′ beyond the limits of standard optical readout by employing
non-PL based readout schemes. However, some key challenges
remain for all these methods in terms of optimizing the overhead
(spin initialization and readout) times, added experimental com-
plexities, and limited readout fidelities. As an alternative to PL
detection schemes, cavity-enhanced readout methods, based on
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the IR absorption by the NV center singlet state [343] and inter-
action between NV and microwave photons in a resonator [344]
have been demonstrated. While these methods have substantially
enhanced the fidelity C ′ (and hence ηB) by achieving near unity
IR light collection efficiency [343] and unity contrast [344], the
overall ηB is still short of reaching the ηBp. Further miniaturiza-
tion of the sensor in these cavity-based systems for high spatial
resolution remains challenging due to their mm-lengthscale. In
this context, diamond microcavities could fill this gap given their
sub-μm size, and appreciable Qo /V ratio (see Section V-B)
[212], thus potentially enabling stronger interaction between
spins and cavity fields, leading to better ηB. However, it is impor-
tant to understand the charge state dynamics of the NV centers
under extreme optical powers in microcavities as they strongly
affect C ′.

The next critical factor influencing ηB is T ′: ηB improves
with longer T ′. The nature of the signal that can be probed
depends on the characteristic timescales of the sensor spins: their
inhomogeneous dephasing time (T ∗

2 ) and spin coherence time
(T2). Short-lived T ∗

2 times allow for the detection of only static
or slowly varying target B-fields such as those in biological
samples [330] or condensed matter [329]. On the other hand,
long-lived T2 times can probe AC fields or fast oscillations
like those from the spins inside [345] and outside diamond
crystal [323], [324]. Engineering qubits with maximum T ∗

2

and T2 directly affects quantum sensing strategies involving
phase accumulation, and is therefore currently one of the major
material fabrication challenges.

The remaining parameter influencing ηB is N . However,
arbitrarily increasing N degrades the T ∗

2 and T2 times due to
enhanced dipolar interaction among the sensing spins (NV-NV)
and with substitutional nitrogen spins [346]. Another drawback
of sensing using a large N is the compromise of a key advantage
of the NV center spin: its atomic spatial resolution. Currently,
the best-reported ηB are in the range of µT (for DC) [341] and
nT (for AC) [96], [347] for a single NV, and about pT (DC and
AC) for an ensemble NV sensor [309], [348].

In summary, a crucial challenge to realize diamond as a
robust quantum sensor performing at its fundamental limits
lies in achieving unity readout fidelities and engineering high-
quality, affordable, diamond samples with prolonged coherence
times. From a material engineering point of view, a com-
plete understanding and mitigation of the undesired surface-
induced noise sources are essential for sensing target sig-
nals. Ongoing investigations on the novel color centers in di-
amond may overcome the challenges posed by NV centers as a
sensor.

B. Hybrid Diamond-Magnetic Sensors

A related area of research that could benefit from the
properties of diamond constitutes the development of nano-
optomechanical torque sensors, which have demonstrated en-
hanced sensitivities to mechanical torque [15], [349], [350].
They naturally respond to the fundamental interaction of
magnetic moments with an external field–the magnetic torque–
at a magnitude proportional to the total magnetization [351]
providing insight into the dynamics of nanomagnetic structures.

The coupling of magnetic and mechanical systems has en-
abled observation of the Barkhausen effect from nanoscale
magnetic defects [352], [353] and spin resonances in
nanomagnets [354]. A longstanding goal for these devices is
the demonstration of strong coupling of magnetic torques to
mechanical degrees of freedom, granting coherent information
transfer between the two systems [355]. A more ambitious target
would be the realization of torque sensitivities on the order of
∼ 10−29Nm/

√
Hz, corresponding to the torque generated by a

single Bohr magneton under a field of 1 A/m. In some ways,
analogous to single-spin detection achieved nearly two decades
ago using magnetic force microscopy [356], the observation of
pure magnetic torque remains elusive.

To date, diamond-based nano-optomechanical sensors of
magnetic torque have yet to be realized. Their development
would welcome increased torque sensitivities based on dia-
mond’s favourable mechanical and optical properties compared
to previously developed silicon-based sensors (see Secs. III
and VIII). From a device performance point of view, while
it is possible to engineer good mechanical devices in silicon at
low temperatures [357], the performance of these devices is, in
general, limited by coupling to surface defects; a problem that is
difficult to circumvent [358]. However, diamond exhibits much
lower mechanical dissipation, and it is therefore expected that the
mechanical properties of diamond will surpass those of silicon.
In addition, the detection sensitivities can be further enhanced
by operation at high optical powers, thanks to diamond’s large
optical bandgap and excellent thermal properties [167]. The
challenge of affixing magnetic material to the sensor without
detrimentally affecting its optomechanical coupling and the
suppression of unwanted noise remains.

Recent diamond quantum sensing efforts are directed to-
ward creating hybrid quantum technologies involving magnetic
excitations. Magnons are quantized spin waves in magnetic
materials. NV center based magnetic resonance has been used
to detect and image the stray fields generated by spin waves
with nanometer-scale spatial resolution. This has enabled time-
domain imaging of their coherent transport, dispersion, and
interference [359] and has been shown to have the sensitivity
needed for imaging static magnetization in monolayer van der
Waals materials [360]. Magnons have also been proposed as
mediators of quantum information [361], [362], [363] and as
a means for quantum control and enhanced readout of spin
qubits due to their strong local magnetic fields [364]. The long
coherence length of spin waves has enabled coherent control of
color centers over distances of 200μm [365]. An appealing op-
portunity exists for long-range spin qubit entanglement schemes
mediated by magnons (a schematic is shown in Fig. 5(e)), with
predicted cooperativities exceeding unity for NV-NV coupling
at low temperature [366].

VII. QUBIT-PHOTON INTERFACE

As described at the outset of this review, the realization
of quantum networks requires the interconnection of remote
network nodes [5]. Recently, two distant superconducting qubits
housed in separate cryostats were connected using a cryogeni-
cally cooled microwave waveguide [367]. Room-temperature
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Fig. 6. Development of qubit-photon interfaces: Cartoons of different canon-
ical interfaces. (a) Qubit-photon interface based on cavity QED, (b) spin-
mechanical interface, and (c) cavity optomechanical qubit-photon interface.
Schematic of the experimental setup used for (d) a spin-photon interface using a
cavity QED system [42], [376], (e) a spin-mechanical interface as a step towards
cavity optomechanical spin-photon interfaces [147]. (f, left) Diamond cavity
optomechanical interface between spin and telecommunication photons [75].
(f, right) Spin-photon interface based on optomechanical crystal cavities with
phononic shields can reach Csm > 100 and Com > 1. These next-generation
spin-photon interfaces can be realized with current state-of-the-art devices. Panel
(d) is reprinted with permission from C.T. Nguyen et al., Phys. Rev. Lett. 123,
183602, Copyright 2019 by the American Physical Society. Panel (e) is adapted
with permission from P. Maletinsky, Quantum Sensing Lab, University of Basel.

optical links have been used to efficiently distribute quantum
states over long distances at room temperature, owing to the
small interaction cross-section of photons with the environment
[34]. However, a major hurdle toward the realization of a large-
scale quantum network is the development of efficient interfaces
between stationary qubits and optical photons [161].

Coherent qubit-photon coupling is inherently limited by the
weak light-matter interaction [18]. However, as depicted in
Fig. 6(a), cavity quantum electrodynamics (QED) provides a
promising route to overcome this hurdle by strong confinement

of light inside optical resonators, thus enhancing the qubit-
photon interactions [368]. In principle, solid-state emitters em-
bedded in nanophotonic cavity QED devices offer scalable fabri-
cation [369], on-chip photonic routing [211], and electronic- and
mechanical control [65], [370]: key requirements for integrated
network nodes in large-scale quantum networks.

For quantum network applications, the spin-photon interface
has to operate in a regime where a single photon coherently
and reversibly couples to a spin qubit. In general, the coupling
between two different quantum systems is characterized by the
cooperativity parameter C, defined as [18]

C =
4g2

γ1γ2
, (4)

where g is the coupling rate between the systems and γ1,2 are the
energy decay rates of each system. The conditionC > 1 enables
coherent interaction between the two quantum systems, despite
their internal decoherence, and has been demonstrated for a
variety of systems, including, but not limited to, atoms [371],
superconducting resonators [372], molecules [373], [374], and
semiconductor quantum dots [368]. However, the optical co-
herence of solid-state emitters is strongly influenced by the
host material [241], [375]: interactions with the local environ-
ment leading to the inhomogeneous broadening of the optical
linewidth and consequently loss of photon coherence. The effect
of inhomogeneous broadening (with rateγ∗) can be incorporated
by introducing the coherence cooperativity [161], [241], where
γ2 → γ2 + γ∗ in Eq. (4) [261].

Remote entanglement protocols relying on two-photon quan-
tum interference require a high flux of coherent indistinguishable
photons. In the Barrett and Kok protocol [377], successful entan-
glement events are heralded by the detection of two independent
ZPL photons. The overall success rate of this protocol scales with
1
2η

2
ZPL, where ηZPL is the probability of detecting a ZPL photon

and the factor 1
2 accounts for the need to detect two photons

per successful entanglement event. As discussed in Section V,
ηZPL can be drastically enhanced by utilizing the Purcell effect
in cavity QED devices.

To date, all experiments demonstrating remote entanglement
of color centers in diamond [46], [47] have been conducted
using native NV centers and SILs [240]. Reversible spin-photon
coupling requires Csp > 1, a condition that cannot be satisfied
using SILs. In practice, NV centers embedded in cavities
typically suffer from inhomogeneous linewidth broadening
[124], manifested by compromised photon indistinguishability
and Csp 
 1. While recent results using native NV centers in
nanopillars are promising [378], for network nodes using NV
centers, the long-term optical stability remains a significant
hurdle. On the other hand, nanoscale positioning of SiV centers
in nanocavities, depicted schematically in Fig. 6(d), shows
remarkable properties; Csp > 100 [42], enabling spin-state
dependent photon reflection and single-shot spin-state readout
with fidelity > 99.9%, combined with a fiber collection
efficiency surpassing 90% [190] have been demonstrated.
However, at the time of writing, entanglement of remote SiV
centers, or any other group-IV defects, remains to be reported.
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A. Strategies for a Universal Qubit–Photon Interface

It is likely that future long-distance quantum networks will
make use of existing low-loss fiber infrastructure. However, to
date, most cavity-spin systems operate at wavelengths resonant
with the spin optical transition, usually in the visible range
where fiber loss is high relative to loss at telecommunication
wavelengths. Coherent entanglement preserving quantum fre-
quency down-conversion from visible to telecommunication
wavelengths is therefore required to minimize losses in the fiber
links [73], [379], [380], [381]. However, cavity QED systems
with subsequent frequency down-conversion, while promising,
come with limitations. First and foremost, for this approach
to work, the qubit system must exhibit well-defined intrin-
sic spin-conserving optical transitions, a feature absent from
some popular qubit platforms such as gate-defined quantum
dots and superconducting resonators. Second, differences in the
local environment leads to spectral wandering, rendering pho-
ton emission from two cavities distinguishable. At the time of
writing, cavity-enhanced entanglement of remote color centers
in diamond has yet to be demonstrated.

An active area of research to tackle these challenges at a fun-
damental level involves using mechanical systems. Mechanical
degrees of freedom are central to many quantum technologies
[382], thanks to their ability to couple to a wide range of
fields–electrical, magnetic, optical, and gravitational–through
device engineering [383]. Nanomechanical systems can be
naturally integrated with solid-state quantum systems by on-chip
fabrication, providing a universal platform to interface a variety
of solid-state qubit systems. For example, phonons have been
used to mediate quantum gates between trapped ions [384],
to coherently connect superconducting qubits [385], and to
manipulate quantum dot single-photon sources [386], [387].
Inspired by these successes, the last decade has seen significant
experimental effort towards coupling spin qubits and mechanical
motion [154].

Spins can be coupled to mechanics via induced strain in their
host crystal or an oscillating magnetic moment [388], and can
be modeled using the canonical system shown in Fig. 6(b). In
recent experiments, coupling between piezoelectronically actu-
ated mechanical motion and electronic spins has been realized
for color centers in bulk diamond and SiC [389], [390], [391],
[392], in hybrid nanowire [393], [394] and cantilever mechanical
resonators (see Fig. 6(e)) [147], [395], [396], [397]. However,
combining these spin-mechanical devices with a coherent opti-
cal interface remains challenging owing to the weak interaction
between photons and mechanical motion.

Cavity optomechanical devices provide a platform to en-
hance the spin-phonon-photon interaction by integrating me-
chanical resonators within optical cavities (See Section III). In
a cavity optomechanical system, resonant optical recirculation
extends the photon-phonon interaction time, and a parametric
enhancement of the optomechanical coupling rate, gom =√
ncavg0, proportional to the square root of the intracavity photon

number can be exploited. A cavity optomechanical device can
be designed to support optical modes in the telecommunication
wavelength range, while simultaneously supporting mechanical

modes resonant with the qubit spin transitions. To maximize
the spin-phonon and photon-phonon coupling rates, the devices
can be engineered to minimize mechanical and optical mode
volumes, respectively [396]. Nanoscale cavity optomechanical
devices such as optomechanical crystals [78] and microdisks
[77] typically support mechanical modes in the gigahertz fre-
quency regime, which can be cooled to their quantum ground
state [162], [214], [398] in a dilution fridge.

The operating principle of a spin-optomechanical interface
based on spin-strain coupling is twofold, see Fig. 6(c): radiation
pressure from photons in an optical mode coherently excites the
vibrations of a mechanical mode. This vibrational motion creates
a microscopic stress field oscillating at the mechanical reso-
nance frequency, which can interact with embedded spin qubits.
The optomechanical interaction can be tuned for reversible
photon-phonon conversion, and can operate at any wavelength
resonant with a low-loss mode of the optical cavity. Recently,
a proof-of-principle realization of a room-temperature cavity
optomechanical spin-photon interface was demonstrated using
a diamond microdisk resonator [75]. In this work, a photonic
coherent state in the 1,550 nm telecommunication wavelength
band was used to manipulate the electronic spin of an ensemble
of NV centers. Crucially, the resulting spin-photon interface
does not rely on the intrinsic optical transitions of the color
centers, thereby mitigating the aforementioned problems with
spectral stability [75]. Moreover, this approach is completely
generic, and can be applied to color centers in other host ma-
terials [399], [400], [401], [402], [403], alongside providing a
method to control optically inactive qubits [404], [405].

B. Universal Optomechanical spin-photon Interface:
Challenges and Solutions

As previously discussed, quantum network applications re-
quire operation in a regime where a single photon coherently
and reversibly couples to a spin qubit. In optomechanical de-
vices, coherent spin-phonon interaction can be reached provided
both the optomechanical and the spin-phonon cooperativityCom

and Csm, respectively, exceed the thermal phonon number nth.
Cooling of the mechanical resonator to near the mechanical
ground state ensures nth 
 1 – and the following discussion
will therefore ignore nth. Assuming both the photon-phonon
and the spin-phonon couplings are always ‘on’, the transduction
efficiency ηsp of such a two-interface system is given by [79]:

ηsp =
4CsmCom

(1 + Csm + Com)2
. (5)

A near-unity transduction efficiency is achievable in the limit
Csm = Com  1 [79]. However, recent proposals lift the above
restriction by employing temporal control of the coupling rates
[82], [406].

The condition Com > 1 has routinely been demonstrated in
diamond optomechanical devices (see Section III). However, an
outstanding technical challenge is to perform coherent photon-
phonon conversion in a device cryogenically cooled to near
its mechanical quantum ground state, without heating due to
optical absorption. Ground-state cooling, recently demonstrated
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in silicon optomechanical quantum memories [162], [163], will
be aided by diamond’s low nonlinear absorption and excellent
thermal properties [167].

To date, realizing Csm > 1 has been hindered by the intrin-
sically weak spin-phonon coupling for the NV center ground
state [75]. However, in principle, reaching the coherent trans-
duction regime is possible using already demonstrated diamond
cavity optomechanical devices coupled to spin states with higher
stress-sensitivity. For example, using SiV centers in microdisk
resonators allows forCsm ∼ 1, owing to their 105-fold enhanced
sensitivity to strain compared to the NV center ground state
[154]. Embedding SiV centers in optomechanical crystals will
further increase gom on the account of smaller mechanical
mode volume and a lower damping rate. Upon doing so, the
regime Csm > 100 can be reached using already demonstrated
spin qubits and devices [75], [78], [192], [357]. Incorporating
phononic shields can drastically reduce γm, potentially enabling
Csm > 104, paving the way for deterministic quantum state
transfer between single telecom photons and single spins [75]
and the use of phonons as on-chip quantum information carriers
[407], [408]. Working with SiV centers necessitates operation
at mK temperatures. However, the NV center ground-state spins
coupled via a phonon-assisted optical Raman process can reach
similar high cooperativities at 8 K [390], although stabilizing
the optical transition of NV centers in nanostructures presents a
formidable challenge.

VIII. DIAMOND NANOFABRICATION

Advances over the last decade in the fabrication of nanostruc-
tures from single-crystal diamond have accelerated the devel-
opment of components necessary for fully integrated quantum
photonics platforms. These components, engineered to enhance
light-matter interactions, play a crucial role in the fields of cavity
optomechanics (see Section III and IV), nanophotonics (see
Section V), and qubit-photon interfaces (see Section VII). They
include, but are not limited to, single-photon sources based on
color-centers [93], wave-guiding structures [272], optical [194],
[274] and mechanical resonators [77], [192], and optical fiber-
based/free-space couplers [190], [247], [248]. In this section,
the challenges of SCD nanostructuring are briefly introduced,
followed by discussions of top-down fabrication methods for
bulk diamond, as well as methods for creating color centers in
these structures.

A. Single-Crystal Diamond Fabrication Challenges

In addition to diamond’s ability to host color centres, its
allure for nanophotonic and nanomechanical applications de-
rives from the advantageous material properties of diamond
introduced above (see Section III-A). The unit cell of SCD
consists of two diagonally inter-penetrating face-centered cubic
lattices where each carbon atom is purely covalently-bonded
to its four nearest-neighbours with tetrahedral symmetry. This
atomic structure grants diamond its unique mechanical, thermal,
and optical properties, including its wide transparency window
and chemical inertness [167].

Although these properties make SCD an excellent material for
integrated photonic devices, they also provide significant chal-
lenges in nanostructuring. Traditional top-down nanofabrication
approaches rely on lithographic patterning of masking material,
and subsequent etching steps to define photonic and mechanical
components. The high chemical inertness of diamond limits
etching chemistries to processes involving oxygen plasma, while
the strong bonding nature of the carbon atomic lattice makes
physical etching, such as focused ion beam milling, difficult.
Currently, high-quality SCD in thin-film form, where a refractive
index contrast confines light within the film thickness, is not
commercially available, although recent progress has been made
in hetero-epitaxially grown films on various substrates [409].
Though polycrystalline thin-films are readily available, they
might not be suitable for hosting quantum emitters due to the
presence of dopants and grain boundaries [167], [410].

For optical cavities, the quality factor is a key figure of merit
that needs to be optimized, as discussed in Section III and
Section V. The total quality factor, Qtot, is given by 1/Qtot =∑

i 1/Qi, where Qi is the Q-factor associated with the various
loss channels, such as radiation, scattering and absorption. In
diamond optical cavities, radiation and absorption loss do not
often limit the optical Q-factor due to diamond’s high refrac-
tive index and large bandgap, respectively. At present, surface
scattering, and associated Qss, is the dominant loss mechanism
limiting Qtot [200]. The dependency of Qss with wavelength,
Qss ∝ λ3

0/ σ
2
r [411], [412], [413], makes fabricating the cavities

at shorter wavelengths even more challenging. Here, σr is the
standard deviation of the surface roughness. Therefore, reducing
the optical losses due to surface scattering, i.e. reducing σr, by
improved fabrication processes is of paramount importance.

Several paths have been taken in order to overcome the
aforementioned challenges, both in etch mask development and
through the use of different SCD precursor materials, ranging
from thinned membranes to bulk substrates.

B. Creating Suspended Structures in Bulk Diamond

High-quality, commercially available SCD in bulk form,
grown on diamond templates via chemical vapour deposition
(CVD), is a popular precursor material for diamond nanos-
tructuring. Both optical and electronic grade forms of CVD
diamond, with the latter having less than 10 parts per billion
in residual nitrogen density, are available down to millimeter-
scale substrate form. The substrate surfaces are mechanically
polished (a specialized procedure that is often outsourced) to
sub-nanometer RMS surface roughness. Initial cleaning of the
substrates typically uses a boiling piranha solution (3:1 ratio
of sulfuric acid and hydrogen peroxide) for approximately 15
minutes, followed by a rinse in water and drying with a nitrogen
gun. These steps can be supplemented with a combination of a
hydrofluoric acid dip for 5 minutes and sonication in acetone
and or methanol [414]. Optical microscopy inspection of the
substrate post-cleaning should yield a clean surface, absent of
graphitic or other residues, often evident as dark spots. If not,
the cleaning process should be repeated. In cases where the
substrates have been treated with high-temperature annealing or
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Fig. 7. Single-crystal diamond nanostructuring: (a) Process flow of nanofabrication via quasi-isotropic etch undercut. The resist, which sits on the top of the
anti-charging layer, silicon nitride (Si3N4) hard mask, and single-crystal diamond (SCD) stack is exposed using electron beam lithography (EBL), such that the
pattern can be transferred through the hard mask via inductively coupled plasma reactive ion etch (ICPRIE). An oxygen ICPRIE further defines the pattern into
diamond. A sidewall protection hard mask consisting of Si3N4 through plasma enhanced chemical vapour deposition (PECVD) or alumina (Al2O3) by atomic
layer deposition (ALD) is anisotropically etched, removing the bottom surface. A quasi-isotropic oxygen etch undercuts the device, releasing the optomechanical
device. The residual hard mask is removed using hydrofluoric acid (HF). Color centers can be implanted in the device through methods such as localized ion
irradiation, and vacancy diffusion can be promoted through high temperature annealing. Representative devices fabricated through this method are shown in (b)
as a microdisk capable of containing whispering gallery optical modes coupled to radial and wine glass-like mechanical modes and in (c) as a nanomechanical
beam with an integrated 1D photonic crystal cavity defined by air holes through the beam thickness (inset). (d) An array of diamond nanopillars defined on a
〈111〉-oriented SCD substrate substrate via ICPRIE etch using EBL-defined cylindrical etch masks. Panel (d) is reprinted from E. Neu et al., Appl. Phys. Lett. 104,
153108 (2014), with the permission of AIP Publishing.

ion irradiation, the induced graphitic or pyrolytic carbon residue
can be etched in a tri-acid cleaning solution (a boiling mixture
of nitric, sulfuric, and perchloric acids), though care should
be taken with the associated risks in this potentially volatile
process.

Perhaps the most challenging aspect of diamond nanostruc-
turing lies in identifying a mask material with sufficiently high
selectivity to oxygen-based plasma etching, in order to withstand
pattern transfer into the substrate. Polymer resists commonly
used in electron beam (or photo-) lithography are not sufficient,
and therefore an additional hard mask layer is required. A com-
mon choice for a hard mask is silicon nitride (Si3N4) deposited
by plasma-enhanced chemical vapor deposition (PECVD) with
a thickness of about 250 nm for anisotropic etches into diamond
of several micrometers [184], [191], [200], [212], [274]. The
process flow is schematically outlined in Fig. 7(a). After hard
mask deposition, a thin (∼5 nm) conductive film is deposited
onto the substrate in order to provide a charge compensating
layer during the electron beam lithography (EBL). This is re-
quired due to the highly insulating nature of diamond. There
are several options for use as the anti-charging layer including
evaporated amorphous carbon, titanium, and niobium, with the
latter two providing secondary functionality as an adhesion layer
between the diamond and the resist [415]. After spin-coating and
baking the resist, patterning is performed with EBL followed by
resist development. In the case of positive-tone resists (such
as PMMA or ZEP 520A) where scission of polymer chains

occurs during development, cooling of the developer to around
−10◦C will yield improved pattern and line edge resolution
[416]. The pattern in the developed resist is transferred to the
silicon nitride layer using an inductively coupled plasma reactive
ion etch (ICPRIE) with C4F8/SF6 chemistry, followed by an
anisotropic oxygen plasma etch to transfer the pattern to the
diamond substrate. Alternatively, negative-tone HSQ electron
beam resists can be patterned directly on the diamond. Patterned
HSQ has an oxide-like nature that is resistant to oxygen plasma
etching [415].

Quasi-isotropic diamond undercut etching can then be used to
create suspended diamond devices. This technique, which was
inspired by the silicon SCREAM fabrication process [417], has
been adopted in numerous studies [191], [200], [269], [270],
[418]. It requires the sidewalls of the diamond nanostructure
to be protected. A conformal layer of silicon nitride deposited
using a similar procedure as in the application of the initial hard
mask, or an Al2O3 layer created by atomic layer deposition
[197], has been used for sidewall shielding. The horizontal
surfaces of the protective layer are removed preferentially using
an anisotropic ICPRIE etch, leaving the sidewalls covered while
exposing the diamond surfaces to be etched. The undercutting
of the devices uses a zero DC-bias quasi-isotropic oxygen etch
[212] at elevated temperatures of 200–300◦C to increase the
vertical and horizontal etch rates, which are dependent on the
diamond crystal facet orientations in the bulk substrate. Fi-
nally, the residual resist and the hard mask are removed in a
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hydrofluoric acid wet etch. Representative devices fabricated
using this process in the geometries of a microdisk and one-
dimensional photonic crystal cavity beam are shown in Figs. 7(b)
and 7(c), respectively.

Two alternative approaches for creating free-standing struc-
tures from bulk single-crystal diamond are reactive ion beam
angled etching (RIBAE) [415], [419] and Faraday cage angled
reactive ion etching [420]. In RIBAE, an incident beam normal
to the substrate surface defines the depth of the nanostructure
through a lithographically patterned mask. The substrate is then
tilted, such that the ion beam is at an acute angle to the substrate
surface and etching occurs under rotation, yielding suspended
nanostructures with a triangular cross-section. In Faraday cage
angled etching, a Faraday cage surrounding the sample is used
to redirect the RF field driven ions in the plasma.

C. Color Center Fabrication

A common feature for the color centers discussed in Section II
is the presence of an impurity atom combined with adjacent
lattice vacancies. However, for many quantum applications, a
high-quality diamond with a low concentration of impurities
is desired to mitigate electric- and magnetic noise caused by
impurity ions. Both the impurity atom and the vacancies can
be introduced in various ways. For example, vacancies can
be introduced by irradiation of high-energy particles, such as
electrons, neutrons, and ions, or via intense, ultrafast laser pulses
(see the last panel, Fig. 7(a)) [421], [422], [423], [424]. High-
temperature annealing (T ≥ 800 ◦C) provides sufficient thermal
activation energy for the vacancies to diffuse. During this diffu-
sion process, the vacancies can combine with impurity atoms,
forming color centers. The annealing is usually carried out in
a high vacuum or in an inert atmosphere to avoid the etching
of the diamond surface and the formation of a graphitic surface
layer [289]. The bombardment of particles during irradiation
leads to crystal damage–a potential source of paramagnetic noise
adversely affecting the spin and optical properties of the color
centers. In principle, annealing mitigates these noise sources by
repairing the crystal damage [425].

For the integration of color centers in devices such as pho-
tonic cavities [124], [274] and all-diamond scanning probes
[254], precise control of the lateral and vertical position of
the color centers with respect to the relevant fields involved
is of paramount importance. In principle, this can be accom-
plished by deterministically fabricating the devices around the
color centers–a challenging task with the current state-of-the-art
fabrication techniques. Another way to remedy this problem
is to introduce impurity ions via δ-doping. This technique has
been successfully demonstrated for nitrogen-vacancy centers
by introducing nitrogen gas during the CVD diamond growth
process [426], [427]. The depth of the doping layer is controlled
by the subsequent diamond overgrowth [426], [428]. The afore-
mentioned irradiation and thermal annealing techniques can then
be used to form NV centers in δ-doped diamond.

Contrary to nitrogen, silicon is rarely found in natural dia-
mond [427]. However, silicon doping is readily achievable dur-
ing diamond growth, for example by the incorporation of SiO2

or SiC into the growth chamber [127] or by introducing silane
(SiH4) gas during the growth process [429], [430]. Similarly,
the introduction of germane (GeH4) gas allows the formation of
GeV centers [431].

Alternatively, impurity ions can be incorporated into the dia-
mond post-growth via ion implantation. Here, the implantation
aids the formation of vacancies, which, during thermal anneal-
ing, can form color centers [424]. Ion implantation has been
successfully used to create NV centers [432], [433], SiV centers
[434], [435], GeV centers [436], SnV centers [437], [438],
[439] and PbV centers [440], [441]. However, the large size
of the heavy group-IV atoms leads to greater lattice damage and
larger strain in the crystal after thermal treatment [442]. Shallow
implantation and subsequent diamond overgrowth [443] allows
for the creation of deep group-IV defects while maintaining a
crystalline environment.

For ion-implanted samples, spatial positioning can, in prin-
ciple, be achieved by implanting through an AFM tip [196],
[444], by the use of lithographically defined masks [103], [445]
or using focused ion beam [446], [447]. Furthermore, the ion
implantation energy can be adjusted according to the desired
target depth, allowing for the creation of color centers at a
depth ranging from a few to several tens of nanometers. In
particular, the use of FIB allows for high-precision implantation
into pre-fabricated photonic structures, such as photonic crystals
[448] and nanobeam cavities [41], [128], [447]. However, the
creation of deeper color centers requires the use of high-energy
ions. These ions lose energy in collision with electrons and
atomic nuclei in the lattice, thereby leading to a trail of lattice
damage along the trajectory [240]. Furthermore, the collision
with nuclei causes deviation from the designated path, thereby
reducing the spatial accuracy.

Vacancy generation using tightly focused, ultrafast laser
pulses constitutes a promising alternative to ion implantation
for the creation of NV centers deep in the diamond [449],
[450]. In this process, vacancies are formed as a consequence of
optical breakdown caused by tunnelling or multiphoton absorp-
tion [451]. The highly nonlinear nature of this process confines
the lattice damage within the focal volume of the excitation
laser [452]. Relying on the natural occurrence of nitrogen in
electronic grade diamond ([N] < 5 ppb), laser writing and sub-
sequent annealing has led to the formation of highly stable NV
centers [449], [453], [454]. The creation of stable SiV centers has
been demonstrated by coating the diamond surface with silicon
nanoballs followed by fs laser illumination [455].

For quantum sensing applications (see Section VI), it is
necessary to have the probe spin in close proximity to the
target spins [316], [318], [319]. The reason is twofold: firstly,
magnetic dipolar coupling of probe spin with the nearby tar-
get spins scales as 1/r3, where r is the probe-to-target spin
distance [456]. Consequently, only r in the nanometer range
can provide sufficient coupling strengths. Secondly, for imaging
applications the spatial resolution is determined by the minimum
r, thus demanding close proximity of the probe and target spins,
which is even more critical since the targets often lie exterior
to the diamond surface. Clearly, only probe spins located a
few nanometers below the diamond surface are useful for such
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applications. However, these so-called shallow spins are also
extremely sensitive to various unwanted noise sources present
on the surface, thereby severely degrading their spectral and spin
properties [91], [457], [458], [459], [460], [461], [462], [463].
In this regard, engineering robust sensing qubits is an ongoing
endeavour.

D. Surface Termination and Charge State Control

Dangling bonds and defects at the diamond surface can act
as a source of electric noise [461], [463], thus necessitating the
need for surface preparation. Surface engineering of diamond is
a difficult task – the hardness makes polishing nontrivial, while
the chemical inertness renders surface termination challenging
[464]. Nevertheless, in recent years, advances in the surface
treatment of diamond have demonstrated improved spin coher-
ence times [464], [465], optical coherence [466] and charge state
stability [121], [467], [468].

The charge state of a color center depends on the position
of the Fermi level with respect to the charge transition level;
the energy required for the color center to take up or lose
an electron [468]. Moving the Fermi level above this charge
transition level causes a switch in the dominant charge state.
For example, terminating the diamond surface with hydrogen
leads to the formation of a two-dimensional hole gas at the
surface, consequently lifting the conduction and valence bands
to higher energies [467], [469], [470]. As a result of this up-
ward band bending, the Fermi level close to the surface shifts
below the charge transition level of shallow NV centers, causing
ionization from NV− to NV0 [459], [471], [472] and further to
a non-fluorescent state, associated with a positive charge state,
NV+ [468], [473]. In hydrogen terminated diamond, the relative
position of the Fermi level can be shifted using electrical gates,
thus enabling controlled switching between the different charge
states of the NV center [468], [473], [474]. On the other hand,
oxygen [456], [459], [464], [475] or fluorine [470], [476], [477]
termination of the diamond surface leads to downwards band
bending [471], [478], [479], consequently favoring NV− [459],
[480].

In addition to stabilizing the charge state, oxygen termination
has demonstrated improved T2 times [456], [464], [481], and is
therefore commonly used for quantum applications based on NV
centers [482]. For completeness, charge state control via surface
termination was recently demonstrated for the SiV center, where
oxygen and hydrogen termination stabilized the negative and
neutral charge state, respectively [121].

IX. OUTLOOK: ENABLING QUANTUM NETWORKS WITH

DIAMOND INTEGRATED PHOTONICS

Developments in diamond photonics have advanced tremen-
dously over the years. However, to realize a fully functional
quantum network, and for related quantum technologies to
reach their maximum potential, there are numerous obstacles
to overcome. A roadmap highlighting imminent challenges and
future objectives in relation to quantum hardware elements is
presented in Fig. 8. The following discussion is centered around

TABLE II
OPTICAL PROPERTIES OF GROUP-IV COLOR CENTERS IN DIAMOND

addressing these challenges within the context of integrated
diamond photonics.

A. Robust Qubits

For quantum networking protocols using NV centers [40],
[47], [48], [49], scalability is limited by the low flux of coherent
photons. While, in principle, resonant coupling to a cavity en-
hances the photon flux [124], NV centers embedded in nanopho-
tonic cavities typically suffer from inhomogeneous linewidth
broadening [274], compromising photon indistinguishability
and limiting achievable entanglement rates, thus necessitating
tuning and stabilizing of the ZPL transition [299], [483]. On
the contrary, environment-insensitive color centers, such as SiV,
perform excellently in nanophotonic resonators [42]. However,
the SiV center experiences heating-induced spin decoherence
manifesting in slow and low-fidelity coherent microwave control
[131], [268]. These limitations motivate the investigation of
novel color centers.

As discussed briefly in Section II-A, careful control of defect
concentration and boron doping stabilizes the neutral SiV center,
SiV0 [120]. With a S = 1 ground-state, SiV0 combines the
excellent spin properties of the NV center (T2 ∼ 900ms at 4 K
[120]) with the favourable optical properties of SiV− [120],
[484]. Research on SiV0 is still in the early stages, largely limited
by the Fermi level pinning required to stabilize the charge state
[120].

For the negatively charged group-IV color centers, the
ground-state splitting ΔGS is found to increase with atomic
number, owing to stronger spin-orbit interactions [489]. As a
consequence, phonon-assisted population transfer between the
orbital ground-states is suppressed, leading to prolonged spin
coherence times at elevated temperatures [113], [486], [490].
Table II summarizes and compares the key physical properties
of group-IV color centers. Note that research on the PbV center
is still in the early stages and key parameters remain to be
determined with consistency [488].

B. Nanofabrication

The performance of integrated quantum photonic systems
relies fundamentally on the engineering and nanofabrication of
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Fig. 8. Roadmap to the realization of a large-scale quantum network with diamond: The objectives have been broadly categorized into six categories, each section
discussed briefly in the text. The route highlights some of the imminent challenges and the interconnection between various quantum hardware elements required
for a large-scale quantum network. The subjective difficulty of each challenge/category is represented by the color of the coins/cherries, with green being the easiest
and red being the hardest.

their key components. Significant progress has been made in the
nanostructuring of single-crystal diamond since the demonstra-
tion of nanowire antennas [249] and microring resonators [274],
[277] over a decade ago to the recent realization of complex
spin-photon interfaces and waveguides in large-scale platforms
[211]. The lack of wafer-scale single-crystal diamond, though,
limits the scalability of integrated photonic architectures and is a
significant impediment to the realization of scalable fabrication
analogous to what is achieved in the semiconductor industry.

A key challenge in diamond nanostructuring is the miti-
gation of surface roughness that arises from the transfer of
lithographically defined mask edge defects and mask erosion
during plasma etching, as well as imperfections inherent to the
diamond surface which have evolved from inhomogeneities on
the seed substrate during CVD growth [492]. This roughness can
lead to degradation of both optical and acoustic (both bulk- and
phononic-mode) quality factors, affecting the coupling between
the two systems and hindering the transmission of information
over long distances required for quantum communications appli-
cations. The fabrication of devices with dimensions required for
smaller optical mode volumes is also affected by the prevalence

of defects. Efforts for surface roughness abatement prior to
nanofabrication processes have included fine mechanical, chem-
ical, and plasma-based smoothing [464], though the mechanisms
for the anisotropic wear along different crystal facets during pol-
ishing are not yet well understood and therefore results can vary
significantly based on methods [493]. There is also a necessity
for the development of more robust, higher resolution electron
beam resists with improved adhesion, as well as the optimization
of hard masks and diamond plasma etching conditions.

The creation of color centers with long coherence times at
the surface or subsurface (within a few tens of nanometers) of
diamond devices is an ongoing endeavor. Lattice defects induced
by ion implantation as well as those inherent at the diamond
surface create charge potentials that couple to the dipole moment
of the spin [494], leading to dephasing between the two charge
states and resulting in optical linewidth broadening compared
to what is exhibited in the bulk [91], [291]. Several approaches
have been made to understand and lessen the impacts of ion
implantation, such as exposure through lithographically defined
masks to minimize scattering [495] and post dosage annealing,
though these methods have not been perfected. Surface and
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subsurface damage removal has been accomplished through
oxygen termination of the diamond surface post-annealing, im-
proving optical linewidths and spin coherence by an order of
magnitude [464].

C. Spin-Photon Interface

The realization of a quantum network hinges on the inter-
connection of remote network nodes [5]. Cavity QED devices
offer an ideal platform to interface stationary spin qubits with
photons on account of the enhanced light-matter interactions
[18]. These devices need to combine a large photon extraction
efficiency [42] with the capability of tuning the emission fre-
quency via on-chip application of electrical [46] or mechanical
[370], [496] fields and microwaves for spin control. In addition,
efficient on-chip frequency down-conversion from visible to
telecommunication band is required to mitigate losses in the
photonic links. Heralded entanglement schemes rely on quantum
interference of indistinguishable photons. Quantum frequency
down-conversion provides a method for interfering photons
from spectrally distinguishable emitters, by detuning the pump
laser to compensate for the spectral difference [497]. Alterna-
tively, coherent photon-phonon and spin-phonon coupling in an
optomechanical cavity provide a way to realize a spin-photon
interface operating directly at telecom wavelengths [75], [84],
[388].

D. Quantum Processor

A universal quantum processor consists of numerous qubits
with long coherence times while supporting conditional and
unconditional quantum gates [85]. The realization of such a
multi-qubit processor requires quantum gates to individually
address the memory qubits, without introducing cross-talk af-
fecting the coherence of the remaining spin-register [99]. Using
dynamical-decoupling sequences [112], [498], [499], [500] and
selective coupling to 13C nuclear spins, a ten-qubit spin register
based on the NV center has successfully been demonstrated [99].
While coupling to 13C nuclear spins has been demonstrated for
the SiV center [42], [268], extending these results to multi-qubit
registers remains challenging, owing to the spin-half nature of
both the SiV and 13C spin systems that requires extended decou-
pling times [241], [268]. Nevertheless, a two-qubit network with
integrated error detection has recently been demonstrated using
SiV centers [44]. Scaling towards multi-qubit registers based
on SiV or other group-IV color centers requires experimental
effort to mitigate the aforementioned problem with heating-
induced spin decoherence as a result of the applied microwave
pulses.

E. Hybrid Integrated Devices

Hybrid integrated devices combine the strengths of disparate
quantum systems to build complex quantum architectures. While
individual monolithic diamond spin-photon interfaces have been
realized with excellent performance [190], wafer-scale device
fabrication remains elusive [211]. Interfacing diamond with

well-established photonic materials, such as AlN and GaP, pro-
vides a path towards incorporating diamond in photonic inte-
grated circuits for on-chip photon routing [211]. Furthermore,
using materials with strong χ2-nonlinearities enables on-chip
frequency conversion [501], [502], [503]. In addition, frequency
shifting of single photons using electro-optical modulators paves
the way for the entanglement of spectrally distinguishable quan-
tum emitters [504].

Finally, piezo electric materials have been proposed as a
phononic interface between superconducting qubits and quan-
tum memories based on color centers in diamond [406]. In
this transduction scheme, a microwave photon is converted to a
phonon via the piezoelectric effect, which further interacts with
the quantum memory via spin-phonon coupling [505]. Quantum
interference of the emitted photons thus enables entanglement of
remote superconducting circuits. An advantage of this quantum
memory-based transduction scheme over direct microwave-to-
optical-photon conversion is a potential reduction in heating of
the cryostat on account of the lower laser power required, which
might preserve the coherence of the superconducting resonators
[505].

F. Error Correction and Scalability

Quantum systems are inherently noisy: interactions with the
environment lead to decoherence, inevitably manifested by the
emergence of errors [110]. Correcting errors is therefore a
necessity. Quantum error correction protocols have been demon-
strated on spin registers based on NV centers in diamond [85],
[110], [111], [506]. These protocols harness the weak coupling
between the electron spin and the surrounding nuclear spins.
Recently, this development was pushed one step further by
the demonstration of fault-tolerant operations on a diamond
quantum processor [36]. While in the early stages, the successful
implementation of fault-tolerant operations has the potential to
bring diamond to the forefront of quantum information process-
ing based on solid-state spins.

At the time of writing, the scalability of diamond as a plat-
form for quantum information processing is limited in part
by challenges in nanofabrication and large-scale growth of
single-crystal diamond [507]. A tremendous experimental effort
is being invested to advance the state-of-the-art in diamond
fabrication [200], [508], and the aforementioned hybrid plat-
forms provide a promising route to realize scalable photonic
platforms [211]. In parallel, new techniques [509] are being
pursued to increase the quality [510] and size [409], [511]
of synthetic diamonds. However, despite this progress large-
scale synthetic growth of single-crystal diamond wafers remains
elusive.

Concluding Remarks: Research in the field of diamond inte-
grated quantum photonics is vibrant and fast-moving, owing to
diamond’s unique combination of physical properties and ability
to host robust spin qubits. In this article, we have reviewed the
current state-of-the-art in the field, with particular emphasis
on advances and outstanding challenges in nanofabrication,
cavity optomechanics, and the development of qubit-photon
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interfaces. To conclude, we provided a road map illuminat-
ing the path towards the realization of a universal quantum
network.
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