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Abstract—The CMOS industry has been expecting silicon pho-
tonics to provide photonic and electro-photonic integrated circuits
based on the CMOS processes and infrastructures for scalability
of incumbent technology evolutions and creation of novel technolo-
gies. However, the compatibility with the legacy CMOS has been
compromised with the development convenience of early silicon
photonics in that the specialty silicon-on-insulator substrates have
been widely used as integration platforms. Since this specialty
substrate may hinder the photonics integration with legacy volume
products later, a legacy-friendly integration platform with a generic
bulk-silicon substrate has been developed for better compatibility.
This paper overviews the bulk-silicon photonics platform born for
DRAM integration, upgraded with III/V-on-bulk-Si lasers, and
transplanted to LiDAR applications requiring the virtuous cycle
of cost and volume. The photonics integration with DRAM was to
resolve the speed-capacity trade-off in the DRAM interconnects,
and technical feasibility as well as lessons learned from the inte-
gration attempt are reviewed. The bulk-silicon device performance
approaches that of silicon-on-insulator devices with the thermal
advantage of ~40-% lower thermal impedance and the optical
disadvantage of ~0.4-dB/mm higher waveguide loss. In the LIDAR
applications, detection performance up to ~20 m at 20 fps by a
single-chip scanner integrating tunable laser, semiconductor opti-
cal amplifiers, and optical phased array are presented with future
outlooks.

Index Terms—DRAM, heterogeneous integration, LiDAR, opti-
cal interconnect, silicon photonics.
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Fig. 1. Conceptual illustration of the rationale behind Si photonics and
I1I/V-on-Si photonics. (a) Minimum dictates the overall performance or cost.
(b) Volume-cost curves for assembly, III/V, and Si technologies.

1. INTRODUCTION

ROM the industry perspective, silicon(Si) photonics has
begun to fabricate photonic integrated circuits(PICs) and
electro-photonic integrated circuits(EPICs) using the exist-
ing complementary-metal-oxide-semiconductor(CMOS) pro-
cess facilities and production infrastructures [1]-[9]. By doing
80, it has been expected that photonics could enjoy the transistor
revolution that took place in the mid-20th century in electronics
[10], [11]. Fig. 1 illustrates the industry expectations on Si
photonics and III/V-on-Si photonics. In most modern systems
combining Si semiconductors, III/V compound semiconductors,
and discrete assemblies, the volume costis mostly dictated by the
assembly first and the III/V next, due to the current differences
of the industrial production scales. While the Si semiconductor
had reduced its volume cost down to the lowest level thanks
to the transistor revolution and the subsequent CMOS evolu-
tion, the photonics has just begun to reduce its volume cost
entering the 21% century with the advent of Si photonics [1],
[4]. As the cost of the photonics assembly has been reduced by
the Si photonics, the III/V has become the next cost bottleneck
to overcome. Since the III/V cost primarily comes from its
smaller production scales, the III/V-on-Si photonics combining
the ITI/Vs to the established bigger-scale Si production processes
has attracted great industrial interest, and has paved the way for
commercialization [2], [6], [8].
Beyond intra-photonics integration, by integrating the PICs
into the electronics, it has been also expected to cope with
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Fig. 2. The first attempt to integrate photonics into legacy VLSI. (a) Memory
module trend in ~2010. (b) Concept of DRAM photonic I/O in ~2010.

technical problems that are difficult to solve with electrical
engineering only [5], [7]. One example is the speed-capacity
trade-off in the dynamic random access memory(DRAM) in-
terconnects as depicted in Fig. 2(a) [12]. Around 2010, the
traditional multi-drop memory bus architecture confronted the
technical problem that the input-output(I/O) speed and the mem-
ory module count cannot increase independently. It was due to
the increasing complexity of the electrical impedance matching
over increasing I/O speeds in the multi-module configurations.
Since this electrically complicated problem becomes virtually
a single-frequency problem in the optical domain, the bold
research-level attempt embedding PICs into DRAM was made
around 2010 [12]-[24]. Note that the on-chip integration was
chosen because of the tight cost expectation of the commodity
DRAM. This was the first attempt to integrate photonics directly
into the legacy very-large-scale integration(VLSI) technology
on the generic platform, and to the best of authors’ knowledge,
it is still the only one so far.

From the industrial background of the photonic and electro-
photonic integrations, it is quite important to ensure compatibil-
ity with existing CMOS infrastructures, and for this purpose, Si
photonics is required to inherit the existing CMOS technology as
much as possible. However, the initial development of Si photon-
ics has been relying on less compatible specialty substrates such
as silicon-on-insulators(SOIs) mainly due to the convenience of
waveguide formation, whereas most volume CMOS products
use the generic bulk-Si(BS) substrate. It is interesting to note
that this substrate preference originates from the fundamental
difference between electrons and photons, which are fermions
and bosons, respectively. While delivering fermionic electrons
without leakage to the substrate can be easily done by controlling
dopants or using metal lines, delivering bosonic photons without
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the substrate leakage needs a wavelength-thick dielectric under-
clad layer. Because of this underclad layer, the SOI platform
has been established as the dominant integration platform for Si
photonics so far. Redeveloping Si photonics on the generic BS
substrate required challenging process and device developments,
but it could promise many merits including low substrate cost,
backward compatibility to volume products, flexible underclad
structure, and efficient heat dissipation. The compatibility ad-
vantage of the BS platform was demonstrated in the DRAM
integration attempt as shown in Section II. Moreover, the thermal
advantage was also verified in the on-chip laser development as
shown in Section III.

Fig. 3 illustrates the photonics integration schemes over pos-
sible generations for legacy-free and legacy-driven applications.
For legacy-free applications, the integration scheme is flexible
and application-dependent. However, for legacy-driven applica-
tions which are of more interest from the CMOS industry, critical
difference exists in high and low ends. In the performance-
centric high ends, one can adopt the specialty SOI platform and
the single-chip integration with legacy could be optional. In the
cost-sensitive low ends, the generic BS platform is preferred to
avoid any constraints from photonics on legacy, which makes the
final single-chip integration to be confirmed first. This was the
rationale behind the BS platform development for future DRAM
applications.

This paper consists of 5 sections each on introduction, DRAM
application, III/V-on-BS platform, solid-state light detection
and ranging(LiDAR), and future application possibilities. In
the DRAM application section, we review the key process of
the BS platform and the photonics integration into DRAM
with succinct feasibility summary. Lessons learned from the
DRAM attempt are also presented in high level. Then, the BS
device library including ITI/V-on-Si lasers and SOI-BS platform
comparison are summarized in the III/V-on-BS platform sec-
tion. The solid-state LiDAR section presents the motivations
for LiDAR applications, initial results from III/V-on-BS optical
phased arrays(OPAs), BS-to-SOI library conversion under pro-
cess environment change, up-to-date progresses of OPA-based
LiDAR chip and module, and future LiDAR outlooks. Finally,
future application possibilities using the IT1I/V-on-Si technology
are discussed in the final section.

II. DRAM APPLICATION

There have been a series of reports on the BS photonics and
its application to DRAM [12]-[24]. In Section II, we review
the key results and summarize lessons learned from the DRAM
integration.

A. SPE Process

Fig. 4(a) illustrates the cross-sections of the SOI and BS
platforms. Whereas the SOI platform has the global underclad
layer, that is more friendly to PICs, the BS platform has the
local underclad, that is more friendly to CMOS ICs. It should be
stressed that this substrate change is not simple starting material
change but directly affects several subsequent steps in the entire
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process flow and overall device and circuit performances, re-
sulting in the platform change as shown in Section III. Fig. 4(b)
illustrates the SPE process for crystallizing the amorphous Si
layer deposited on top of the local underclad through carefully-
controlled thermal annealing processes. Note that the crystal-
lization starts from the crystalline surface of the BS substrate,
and laterally propagates over the local buried oxide(BOX). The
lateral epitaxial fronts propagated from both sides collide in the
middle, inevitably forming the coalescence boundary with poor
crystallinity on top of the BOX center. In the SPE development,
the process parameters including temperature and time were
optimized as in Fig. 4(c), and the structure parameters including
the BOX width and the offset position of the waveguide(WG)
were optimized as in Fig. 4(d). Note that the WG is offset from

of the SPE can be found in the previous reports [13]-[15].

B. Process Flow and Chip Structure

The process flow to embed the PIC into DRAM is briefed in
Fig. 5(a). The photonics processes were integrated into the 12-
inch 65-nm DRAM periphery process with the DRAM capacitor
process skipped at the initial attempt. Except the photonics
underclad layer formed before the shallow trench isolation(STI)
of DRAM, most photonics devices were processed after the
source/drain activation of DRAM transistors to minimize pro-
cess perturbation to DRAM. The main process integration prob-
lems included heat budget, step height, and boundary treatments,
and the resultant process overhead was less than 20% in 2010.
For SOI-based legacy applications, there has been an integration
approach to combine the SOI-based photonics and BS-based
electronics all on the SOI substrate [25].

The lateral and vertical structures of the fabricated chip are
summarized in Fig. 5(b) and (c). The PIC was embedded in
the DRAM periphery section along with its EIC driver. The area
overhead of the EPIC was calculated to be less than 1%. The PIC
included 3 modulators, 3 photodiodes(PDs), 15 grating couplers
for optical fiber, passives, and WGs, but no on-chip laser at that
time. The modulator was a PIN-type Mach-Zehnder modulator.
The PD was a butt-coupled PIN-type Ge PD. The EIC included
2 4:1 serializers and 2 1:4 deserializers for (de)multiplexing the
8 electrical signals to 2 optical signals, 2 modulator drivers, 2
trans-impedance amplifiers(TTAs) and limiting amplifiers(LAs)
for 2 PDs, and clock tree circuit. Details of the EPIC can be found
in the previous reports [19], [21], [24]. In short, the PIC and
EIC were physically integrated side-by-side, but not chemically
because of design rule conflicts at the moment. It was all due
to maturity difference between the photonics and electronics
around 2010.

C. Feasibility

In the co-fabrication of the DRAM and PIC, the main concern
was whether the DRAM transistors and photonic devices attack
or degrade each other. Fig. 6(a) shows the DRAM periphery
transistor performance before and after the photonics integra-
tion. Whereas the NMOS transistor remained in the target range,
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the PMOS transistor moved out of the range. The degradations
were mostly due to diffusion problems, which were corrected in
following lots. Fig. 6(b), (c), and (d) show the performances of
the co-fabricated modulators, which were similar to PIC-only
ones. On the other hand, the co-fabricated PDs showed the
bandwidth degradation from 20 Gbps to ~6 Gbps as shown in
Fig. 6(e), (), and (g), mainly due to diffusion problems. The low
PD responsivity was due to the grating coupler loss of ~7 dB
from unoptimized cladding layers at the moment. Despite the PD
bandwidth degradation, the co-fabricated PIC functioned well
for the DRAM interconnect designed to operate at 6.4 Gbps.
Summarizing the device-level feasibility, the photonic devices
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and DRAM transistors were not very friendly to each other, but
not very hostile either.

The grand vision was the DRAM optical interconnects with
the on-chip PIC. Although the device-level feasibility was
achieved, the system-level demonstration was significantly more
complicated with packaging and control difficulties. Thus, we
started with memory modules with off-chip optical memory
buffers(OMBs), which were the periphery sections separated
from the co-fabricated DRAM chip. The OMB consisted of
the EIC co-fabricated with DRAM, and PIC fabricated from
photonics-only processes with a larger size to accommodate a
fiber array block for optical packaging. Fig. 7 summarizes the
system-level feasibility achieved with the co-fabricated OMBs.
In the demonstration, the optical memory link interconnected 1
memory controller and 4 memory modules in a single memory
channel, which was not possible with a copper-based memory
link around 2010. The memory controller was emulated by
the field programmable gate array(FPGA)-based system shown
in Fig. 7(b). The 1:4 multi-drop memory bus was emulated
by an optical fiber splitter. The memory chip was 1600-MT/s
double-data-rate3(DDR3) DRAM. The OMBs were in between
the controller and 4 DRAM modules delivering the high-speed
data optically without the aforementioned speed-capacity trade-
off. The electro-photonic conversion was from 8 x 1.6 Gbps
electrical signals to 2 x 6.4 Gbps optical signals bi-directionally.
Fig. 7(c) shows that 32-bit data patterns were written to the
DRAM, the controller sent the read command to the DRAM,
and the return data were verified at the controller. Details of the
system feasibility can be found in the previous reports [22], [24].

D. Lessons Learned

A decade has passed since the DRAM integration attempt
around 2010, and 5 key lessons have been learned from the
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experience. The first one was about the light source. In 2010,
we built the custom external light source as shown in Fig. 8(a)
and (b). Since there were 1 processor and 4 memory modules,
the light source had 5 wavelength-tunable laser diodes(TLDs)
against PIC deviations. There were also 4 optical amplifiers to
compensate PIC optical losses at that time. Therefore, there
were 9 polarization controllers, messy optical routing, and many
ribbon fiber connections. The resultant size of the external light
source was 31 x 27 x 7 cm, which was considered impractical
for future DRAM applications. This experience made authors
realize that the light source better goes on-chip especially for
low-end products like DRAMs, and it became the rationale for
the on-chip laser development in Section III. The second lesson
was about the industrial eco-system. Since there were little
eco-systems available for Si photonics around 2010, we tried to
internally build the development environments for simulation,
test, and packaging which turned out to be very challenging
and inefficient. For example, the wafer-level tester had been
internally developed to reduce the test time of Si-photonics
wafers as shown in Fig. 8(c). The tester was decent, but often
limited beyond initial research activities. This gave authors the
second lesson that the electro-photonic integrated eco-system
is critical for PICs and EPICs. The third lesson was about
timing for volume applications. The DRAM-related efforts made
authors learn that the application timing of integrated photonics
in volume is likely to depend on the CMOS evolution rather
than on photonics itself. The fourth lesson was about application
itself. It turned out that replacing existing electrical options
with photonics is very challenging, and photonics should be
inevitable in the target applications. The fifth lesson was about

3141
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Fig.8. Challengingissues confronted in DRAM interconnect development. (a)
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interconnect. The PLC was a custom silica-based planar lightwave circuit for
optical routing. (b) Internal structure of the external light source. (c) Chip-level
and wafer-level in-house testers built for Si photonics.

scalability. CMOS-like scalability is needed to go along with
CMOS. From the conventional shrinkage perspective, photonics
has the fundamental scalability limit imposed by its wavelength,
so that it is required to secure scalabilities in other dimensions
such as wavelength division multiplexing(WDM).

II1. III/V-ON-BS PLATFORM

Starting with the basic devices originally developed for the
DRAM integration, the BS platform has been continuously
upgraded by adding new devices, and finally transitioned to the
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and in nm, respectively.

III/V-on-BS platform with the on-chip laser and amplifier. In
Section III, we summarize the vertical structure, process flow,
up-to-date device performances, and thermal analyses of the
III/V-on-BS platform

A. Vertical Structure of I1I/V-On-BS Platform

In the III/V-on-Si devices, the optical mode resides in the
III/V-Si interface, where the III/V section amplifies or absorbs
the mode and the Si section filters or reflects the mode. In the
vertical structure, the key parameters are the thicknesses of
the various III/V and Si layers as illustrated in Fig. 9(a). The
III/V structure is basically an inverted separate confined hetero-
structure(SCH) including the multiple-quantum-well(MQW)-
based active layer, electron blocking layer, cladding layer, and
contact layers. The exemplary band diagram of the ITI/V layers
is shown in Fig. 9(b). In the III/V-on-Si platform, the ITI/V-Si
co-design is critical, so that the Si thickness should be optimized
according to the III/V structure and vice versa. Despite the
challenging process development of crystallization, the BS plat-
form provides a flexible Si thickness, which has been especially
effective in the ITI/V-Si co-design. Fig. 9(c) illustrates the optical
confinement factors(OCFs) depending on the WG width, WG
height, and the III/V SCH. The QW and Si OCFs indicate
the optical mode distribution over the III/V and Si sections,
respectively. Since the optimal mode distribution depends on
devices, the Si thickness of the platform should be carefully
designed in consideration of key devices and coupling loss be-
tween III/V-on-Si and Si-only devices. In most PICs, top device
priorities are usually on lasers or amplifiers. The Si thickness of
the III/V-on-BS platform in Samsung has been 350 nm through
design-process-test iterations [33].

B. Process of I1I/V-On-BS Platform

Fig. 10(a) and (b) compare the process flows of the III/V-on-
SOI and ITI/V-on-BS platforms to disclose the added steps for
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the BS platform. The underclad and crystallization differences
in the step 2, 3, and 4 have been discussed in Section II, and the
differences in the step 6 and 7 are from the wafer bonding for
early research and the chip bonding for matured production. For
the chip bonding, the patterned Si surface should be protected
by the passivation in the step 6, and the bonding regions should
be selectively open in the step 7. Fig. 10(c) shows the fabricated
bonding interfaces. Note that it is the direct bonding without any
intermediary layer between III/V and Si. The bonding on the air
trench has been used for research, and the bonding on the oxide-
filled trench has been also tried to prepare future production.
Fig. 10(d) shows the poor bonding yields on the BS platform so
far. The bonding yield has been unstable yet, and been sensitive
to pattern and process changes, presumably because the surface
flatness of the SPE Si has been worse than that of SOI Si, which
remains to be improved by further process developments. The
pattern-dependent yield instability may imply that the flatness of
the patterned silicon prior to the SPE process affects the bonding
yield. Further process details can be found in the previous reports
[33], [34], [37].

C. Performance of I1I/V-On-BS Platform

Fig. 11 summarizes the performances of the 12 devices in the
II1/V-on-BS platform so far. The first 4 devices are III/V-on-BS
devices, and the other 8 devices are BS devices. Overall, the
BS device performances are approaching the SOI device perfor-
mances [26]-[31]. However, the BS WG loss is relatively higher
than that of the SOI WG, because of the imperfect crystallinity
of the SPE Si. In addition, the nonlinearities of the BS WG
could be of concern for high-power applications, and remain to
be analyzed further. Fortunately, the WG loss and nonlinearity
can be reduced with rib WGs. The electrical resistance also
marginally increases due to the imperfect crystallinity of the
SPE Si. However, the resistance increase and its impact to the
device speed have been insignificant as shown in the 25-Gbps
lasers, modulators, and photodiodes successfully developed on
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Fig. 11.  Performance summary of III/V-on-BS platform. The operating wave-

length band of each device is indicated. The O and C means the wavelength
bands around 1.31 gm and 1.55 pm. The fourth row is typical device size. The
sixth and seventh rows are the key performances of BS and SOI devices. The
SOI performances are not from the state of art results, but from devices with
similar structures.

the BS platform. Details on the Si-only BS devices can be found
in the previous reports [13], [14], and this section focuses on the
III/V-on-BS devices, which have been recently added to the BS
device library after the DRAM integration. The operating wave-
length band of the ITI/V-on-BS devices has been the O band. This
wavelength has been originally chosen for short-range Datacom
applications, where low-cost uncooled packaging is preferred.
The O band is also well suited for the LiDAR applications in
Section IV, where the eye safety and ambient light rejection are
critical.

The 1-A LD is a distributed feedback(DFB) laser featuring
wall plug efficiency(WPE) of 8% at 70 °C, side mode suppres-
sion ratio(SMSR) of 45 dB, direct modulation up to 25 Gbps
at 17 °C, and mean time to failure(MTTF) of 46,000 hours at
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70 °C. The TLD is based on the Vernier effect in a dual-ring
cavity, and it features wide tuning range of 42 nm and SMSR
of 30 dB. The 60-nm tuning range has been also reported by
the same TLD design on the III/V-on-SOI platform [48]. The
optical amplifier is basically the gain section embedded in the
TLD, and it features optical gain of 15 dB at an input power of 4
dBm and maximum output power of 19 dBm. Further analysis on
noise figure and spectral ripple remains. The III/V-on-Si PD is a
reverse-biased optical amplifier with optimized length and width
of the Si WG, and it features responsivity of 0.75 A/W and dark
current of 150 nA at bias voltage of —1 V. Further analysis on
the modulation bandwidth remains. Details of the III/V-on-BS
devices can be found in the previous reports [33], [34]. The last
missing key device for the library is the optical isolator, which
allows the optical transmission in only one direction and prevents
unwanted optical reflections [35]. From an industry point of
view, the III/V-on-BS device library is still immature. This is
mostly due to the low yields of the process, lack of numerical
models for III/V-on-Si devices, uncertain material database for
II1/V, and overall immaturity in the ITII/V eco-system. The III/V-
on-Si technology is a promising approach to raise the production
scale of III/V to the Si level, but industry-scale efforts should
be made to reduce the industrial maturity gap between III/V and
Si.

D. Thermal Analysis on III/V-On-BS Platform

The DFB Laser converts electrical energy to optical energy
with typical efficiencies around 10% and the remaining 90% of
the energy is wasted as heat, so heat dissipation is critical for
the laser. In the SOI, the global BOX blocks heat flow from the
laser to the substrate. On the other hand, the local BOX in the
BS allows efficient heat flow to the substrate, allowing the laser
operates at higher optical power levels. This thermal advantage
originates from the 100-times higher thermal conductivity of
crystalline Si compared to oxide [32]. Fig. 12(a) shows a thermal
simulation confirming that the operating temperature is lower
in the BS platform than in the SOI in the same operating
condition. This thermal advantage was quantified by the thermal
impedance, that was measured by the thermal wavelength shift
of the on-chip laser as shown in Fig. 12(b). In the BS platform,
the thermal impedance was measured to be about 40% lower
than in the SOI, and Fig. 12(c) shows that this translates to
52% higher optical powers at 70 °C. Details of the thermal
analyses can be found in the previous reports [36]—-[38]. Overall,
the III/V-on-BS platform has the optical disadvantage of the
higher WG loss, but has the thermal advantage of the lower
thermal impedance, providing competitive advantage over the
SOI platform in temperature-sensitive applications.

IV. SOLID-STATE LIDAR

From the lessons learned from the DRAM experience in
Section II, it was recognized that small-scale commercialization
of legacy-free applications could be a prerequisite for future
commercialization of large-scale legacy-driven applications by
bridging the industry maturity gap between the PIC and EIC.
In Section IV, we summarize the motivation, single-chip OPA



3144
@[ wvonsor  mvonss |B) 4334 dAdP (CW)
£ ot
=
<
1331
Power(w) 3

Oxide

dA/dT (Pulse)

Thermal conductivity
149 W/m°C

1.4 W/me°C
(Electrical Power = 1.3W) 20 Temp3?deg.) 40
() TBs +Thin sub. 50| +T. shunt sol
~/15 &
52
1.8dB 10 %
&
=

2
Zt*cm (K/W*cm)

Fig. 12.  Thermal analyses. (a) Thermal simulation. (b) Thermal impedance
measurements. The wavelength shifts over power and temperature were mea-
sured by continuous and pulsed operations, respectively. (¢) Thermal analysis
with BS data and SOI simulation.

Cost estimation (ballpark)
~+-32ch OPA -#-64ch OPA

(a) Virtuous cycle (b)
. possibility -
128ch OPA

S

1000

Year

1.E+03

1
1.E+02

. Mechanical| MEMS | Solid state 1.E+04 1.E+05
ol Assembly | Hybrid | Integration Monthly capacity (12inch)
Fig. 13.  Motivation of solid-state LiDAR. (a) Possible scenario of LiDAR
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architecture, chip-level and module-level performance, and out-
look of the Si-photonics-based solid-state LiDAR.

A. Motivation of Solid-State LiDAR

Among legacy-free opportunities, the solid-state LiDAR ap-
pears destined for PICs, because it has been delayed by the
cost and manufacturability that Si photonics was born for [39]—
[47]. Fig. 13 illustrates the cost reduction capability of the
Si-photonics-based LiDAR. From the cost reduction by sim-
plifying the complex assembly with the PICs, the virtuous cycle
of volume and cost may begin and infrastructure investments in
the PICs may be justified. Fig 13(b) is the OPA cost estimation
over volume with an assumption that a new 12-inch III/V-on-Si
fabrication line is dedicated for the OPA production. In this
estimation, the main cost factors are volume, chip size, and
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Fig. 14.

(a) OPA architecture. (b) Principle of solid-state beam scan.

III/V material cost. When the volume is not high enough, mixed
production at depreciated facilities might be considered.

B. Single-Chip OPA Architecture

There have been various architectures competing for LIDAR
applications without clear commercial winners yet, and multiple
architectures may co-exist depending on applications [47]. The
LiDAR wavelength has been also unsettled, because the eye
safety and ambient light rejection prefer longer wavelengths,
and the industry eco-system and high-temperature requirement
prefer shorter ones. In the III/V-on-BS platform in Section III,
the only available wavelength is 1.3 um at the moment, and we
believe this wavelength is also well suited for LIDAR as it strikes
the right balance of the wavelength issues. Fig. 14 shows the
III/V-on-Si-based OPA architecture and beam-scanning princi-
ple. From the radio detection and ranging(RADAR) benchmark,
the OPA and pulse time-of-flight(TOF) scheme have been cho-
sen for initial development. The OPA includes 1 TLD, 36 semi-
conductor optical amplifiers(SOAs), 32 phase shifters(PSs), and
32 optical antennas. The combination of the TLD and 1 dimen-
sional(D) OPA realizes the horizontal scan by the phase control
over the OPA and the vertical scan by the wavelength control
over the TLD. The antenna spacing is either periodic, random,
or chirped. Details of the LiDAR chip design can be found in
the previous reports [48]—-[53].

The III/V-on-BS platform is well suited for the high-power
OPA thanks to its low thermal impedance. However, the I1I/V-
on-BS OPA implementation has been challenging due to its
low device yield. Fig. 15(a) shows the imperfect performance
of the III/V-on-BS OPA without the on-chip TLD. The OPA’s
line-shaped beam pattern was supposed to focus on a single point
via phase control as shown in Fig. 15(c), but did not achieve a
single point as only some of the 32 channels survived. Fig. 15(b)
shows the beam pattern from the III/V-on-BS OPA with the
on-chip TLD, where the multiple horizontal lines indicate that
the TLD operated in a multi-mode with poor mode selectivity.
While struggling with this yield challenge, the BS process be-
came unavailable, and the III/V-on-BS platform was inevitably
transferred to the SOI platform. Confronting the process envi-
ronment change, the III/V-on-BS device library was converted
to the ITI/V-on-SOI one by skipping the BS-related process steps
and mask layers. For example, the mask change of the TLD test
structure is illustrated in Fig. 15(d). It should be stressed that
this conversion is one way only, and not vice versa.
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Fig. 15. (a) Imperfect beam pattern of BS OPA without on-chip TLD.
(b) Imperfect beam pattern of BS OPA with on-chip TLD. (c) Beam pattern
of SOI OPA with on-chip TLD. (d) Mask conversion from IT1I/V-on-BS platform
to SOI platform.

C. LiDAR Progress

Fig. 16 summarizes the chip-level and module-level pro-
gresses so far. The photonic integration is ongoing toward
the single chip as shown in Fig. 16(a). In the proof of con-
ceptl(POC1), the LiDAR chip was Si-only, and the SOA, TLD,
PD were all external, bulky, slow, and expensive [48]. In the
POC2, it became III/V-on-Si, and the SOAs were on-chip [49]. In
POC3, the SOAs and TLD were on-chip [50]. The POC4 having
everything on-chip is under development. The LIDAR module is
getting smaller as shown in Fig. 16(b), but the module progress
will be expedited after the LiDAR chip settles down. In the
module POC1, it was a set-up rather than a module [48]—-[50]. In
the module POC2, it became the module in a table-top size [51].
In the module POC3, it became a palm-top size [53]. The module
POC4 may adopt application-specific ICs(ASICs) to serve as a
commercial prototype.

The imaging performance of the LiDAR module cannot
compare to that of the mechanical LiDAR products yet, but
meaningful progresses have been made as shown in Fig. 16(c).
In the POCI1, the 3D image had a relatively good resolution and
field of view(FOV) thanks to a relatively large antenna count of
128, but its frame rate was slow due to its weak optical power
requiring heavy accumulation of repeated measurements. In the
POC2, the 3D real-time imaging had the frame rate of 2 fps,
which was limited by the slow external TLD having mechanical
tuning mechanism inside. Whereas the detection range was
enhanced by the on-chip SOAs, the FOV was reduced by small
antenna count of 32 and narrow wavelength window of the
grating coupler for connecting the external TLD to the chip. In
the POC3, the 3D real-time imaging frame rate was 20 fps thanks
to the on-chip TLD, and the frame rate was limited by a signal
accumulation count. Then, real-road trials having the modules
on top of a real vehicle are ongoing. The detection ranges have
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been up to 20 m mainly due to limited OPA output powers, and
range extension is ongoing as the device yield improves in the
OPA. It should be emphasized that the outdoor range is hardly
degraded compared to indoors, thanks to the wavelength of 1.3
pm. Progresses on the module architecture including the receiver
and signal processing will be published elsewhere [53].

The commercialization of OPA-based LiDAR has many chal-
lenges in terms of scan speed, scan angle, frame rate, range,
power consumption, and etc. As most of the challenges are
interrelated, it is expected that the frequency modulated continu-
ous wave(FMCW)-based range extension or multi-beam-based
frame rate enhancement could address some of the challenges
[47]. The system-level solutions such as 3D-2D fusion could
be adopted as well [53]. In those efforts, the opportunities and
challenges of the BS platform will be the high-temperature
advantages thanks to the low thermal impedance, and the low
device yields of the SPE Si, respectively.

D. LiDAR Outlook

Good references to anticipate the LiDAR technology evo-
lution are RADAR and Telecom, each sharing a similar pur-
pose and common enabling technology as LiDAR, respectively.
Fig. 17(a) illustrates implications from the RADAR and Telecom
evolutions. The RADAR started from early 20 century with
the pulse scheme, but ended up with the FMCW scheme [54].
It was mainly due to the burden of the radio frequency(RF)
power amplifier development. When the Telecom started from
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1970s, the coherent scheme was initially active, partially due to
the RADAR influence. Then, it shifted to the intensity scheme,
because of the well-known innovation of Erbium-doped fiber
amplifiers(EDFAs) [55]. However, the coherent scheme came
back for better performances, and they currently co-exist. For the
LiDAR, the pulse scheme is currently ahead, and the lead may
get prolonged if the on-chip amplifier is matured, but eventually
it is more likely that the pulse and FMCW co-exist again. If
this is true, it is important to make the platform prepared for
both of the pulse and FMCW. So far, the III/V-on-BS(SOI)
platform seems to provide all the necessary devices for the pulse
scheme except the isolator, but this is not the case for the FMCW
scheme, where FMCW-grade LDs with a narrow linewidth of
around 100 KHz remain to be added. Fig. 17(b) illustrates the
long-term LiDAR outlook consisting of the 3 generations(Gens).
The Genl is the intensity LiDAR, and its up-to-date progresses
are presented in this paper. The Gen2 is the coherent or FMCW
LiDAR, and there have been several industrial frontiers with
decent feasibilities mostly with assembly approaches. The Gen3
could be the quantum LiDAR, and some academic frontiers
are discussing its possibilities. It seems that the III/V-on-Si
platform takes industry at least to the Gen2, and it would be
very interesting if it could lead us to the Gen3 in the future.

V. FUTURE APPLICATION POSSIBILITY

The transistor revolution and volume-cost virtuous cycle of
the CMOS technology have shaped the landscape of the modern
electronics. The photonic version of the transistor revolution
and virtuous cycle hold the potential to fundamentally change
the landscape of the modern photonics, and probably extend
to re-shape the landscape of the modern electronics as well.
However, this requires a killer application where integrated pho-
tonics can overcome the high barriers to entry for industry-scale
investments: the well-known chicken and egg situation. When
industries are trapped in this situation, often breakthroughs have
come from non-commercial drivers, which could also apply to
the III/V-on-BS platform as well, especially in the high-power
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Fig. 18.

Typical reticle and 12-inch wafer of BS platform.

laser applications [56]. In the well-known coherent beam com-
bining(CBC) approach to the high-power lasers, scaling to a
larger number of lasers with stable phase controls is required
[57]. Fig. 18 shows the typical reticle and 12-inch wafer of the BS
platform. The exemplary reticle contains ~1200 LDs, and there
are ~120 reticles on the wafer, giving a total of ~144,000 LDs
on the wafer. For simplicity, we may assume that a single LD or
SOA produces an optical power of ~100 mW like the III/V-on-
BS SOA in Fig. 11. If all LDs or SOAs on a single wafer can be
coherently synchronized to combine all optical beams on a single
point, the optical output can ideally reach KW-class power. This
level of CBC has been elusive for fiber-based systems due to
non-uniformity and fluctuation in optical path length. However,
the large-scale CBC might be achievable with the Si-WG-based
OPAs where the optical path lengths are uniform and stable
even on the optical wavelength scale. The high-power optical
beam combined with the solid-state high-speed steering may
find future applications in the non-commercial sector. Note that
higher device densities are possible using vertical cavity surface
emitting lasers(VCSELSs), but they are not suitable for the CBC.
The nonlinearity in the light-matter interaction typically places
upper limits on the optical powers, but it can be avoided in the
distributed architecture of the OPA. Other key challenges are
thermal management, linewidth for long-range coherence, and
control complexity over a large number of LDs or SOAs. The
low thermal impedance of the III/V-on-BS platform certainly
facilitates the thermal management, and the linewidth feasibility
of sub-KHz and controls over 8192 devices have been recently
reported in Si photonics [58], [45]. It will be interesting to see
how these opportunities unfold as industry advances with the
II1/V-on-Si technologies.
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