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Abstract—Coupling mechanisms and design issues in multi-core
fibers (MCFs) for space division multiplexing are described in this
paper. For uncoupled MCFs, a design procedure that considers
random structural perturbations and effects of correlation length
and birefringence beat length on inter-core crosstalk are presented
based on coupled mode theory. Further, for coupled MCFs, a
numerical estimation method of modal dispersion is described, and
the method to enhance random mode mixing is presented.

Index Terms—Coupled-mode theory, coupled-power theory,
few-mode fiber, multi-core fiber, space division multiplexing.

I. INTRODUCTION

TRANSMISSION capacity has been increasing at a rate of
40% per year, which is equivalent to about 100,000 times

the capacity in 35 years, since the introduction of the first optical
communication system. Various technologies such as time di-
vision multiplexing, wavelength division multiplexing, optical
amplification, and digital coherent technology have been intro-
duced into commercial systems for increasing the maximum
transmission capacity of the single-mode fiber (SMF). With the
development of 5G services and the Internet-of-Things (IoT), the
current system capacity is expected to increase steadily, and in
the 2020s, Peta-b/s class large-capacity systems will be required.
However, the maximum transmission capacity of SMF is limited
to about 100 Tb/s because of the maximum fiber input power
limit, amplifier bandwidth limit, and nonlinear Shannon limit
[1]. Space division multiplexing (SDM) is proposed as a next
generation technology to extend transmission capacity beyond
the limits of conventional SMFs [2]; it is a signal multiplexing
technique that utilizes the spatial degree of freedom in an optical
fiber.

SDM transmission systems transmit multiple different signals
simultaneously by providing multiple spatial paths within an
SDM fiber. Fig. 1 illustrates the classification and character-
istics of SDM fibers to realize an SDM transmission system.
From an optical fiber perspective, there are two approaches for
introducing multiple spatial paths into a fiber. The first approach
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is utilizing several different modes propagating in a fiber; such a
fiber is called a few-mode fiber (FMF). The FMF is a promising
scheme in terms of spatial density, which represents the number
of spatial channels per unit area, because the number of spatial
channels can be scaled up theoretically to more than a few
dozen modes within a standard cladding diameter of 125 μm
[3]. The second approach for SDM fibers is introducing multiple
separate cores in a single fiber; this is known as a multi-core
fiber (MCF). The MCFs increase the number of spatial channels
by simply increasing the number of cores accommodated in a
fiber. In both FMFs and MCFs, multiplexed spatial channels
interfere (couple) with each other in the transmission line to
some extent. Coupling occurs because of structural perturba-
tions either between modes in FMFs or between adjacent cores
in MCFs.

Such SDM fibers can be distinguished by whether each spa-
tial channel is weakly coupled or strongly coupled with other
channels. Those that suppress the coupling between different
spatial channels as low as possible are classified as uncoupled
(or weakly coupled) fibers, and those that allow coupling be-
tween spatial channels are classified as coupled (or strongly
coupled/randomly coupled) fibers. Weakly coupled FMFs are
designed to suppress intra-core mode coupling between different
mode groups [4], which results in low complexity multi-input
multi-output (MIMO) digital signal processing (DSP) at the
receiver to recover the signals. Their refractive index profiles are
usually simple step index profiles; however, the upper limit of the
channel count is not high. On the other hand, strongly coupled
FMFs are designed to reduce differential mode group delay
(DMGD) using graded-index profiles. Complex MIMO signal
processing is required at the receiver; however, their scalability
of the number of channels is high [5]. Similarly, uncoupled
MCFs are designed to suppress inter-core mode coupling be-
tween adjacent cores [6], which results in no need for MIMO
signal processing to compensate for inter-core crosstalk. The
channel count can be scaled up by increasing the number of cores
while maintaining the sufficiently large core-to-core distance;
however, their cladding diameters tend to become larger than
125 μm [7]. In contrast, coupled MCFs are designed to support
several different super-modes by intentionally decreasing the
core-to-core distance, which results in high spatial density. Cou-
pled MCFs are a type of FMFs, but the most important difference
from single-core FMFs is their modal dispersion characteristic.
Modal dispersion in single-core FMFs tends to be proportional
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Fig. 1. Classification and characteristics of SDM fibers.

to the propagation distance, whereas that in coupled MCFs with
appropriate core-to-core distance is proportional to the square
root of the propagation distance [8].

From the viewpoint of the scalability of the number of spatial
channels among the SDM fibers, it becomes difficult to con-
trol mode-dependent characteristics in FMFs as increasing the
number of modes because of structural fluctuations during fiber
fabrication. MCFs can combine mode and core multiplexing. If
the number of core multiplexing in the fiber is N and the number
of mode multiplexing for each core is M, the number of spatial
multiplexing is N×M. Therefore, even if the number of modes
M is limited, it is possible to realize an SDM fiber with more
than 100 spatial channels using MCFs [9].

In this paper, we focus on MCFs for a long-distance SDM
transmission. It is indispensable to understand the basic propa-
gation characteristics to estimate the scalability or potential of
MCFs; therefore, we describe coupling mechanisms and design
issues in MCFs for SDM. The effect of random perturbations
on the inter-core crosstalk in uncoupled MCFs and the modal
dispersion in coupled MCFs are discussed based on the coupled
mode theory (CMT). For uncoupled MCFs, we review how to
consider random structural fluctuations in the transmission line,
and we discuss the effect of correlation length and birefringent
beat length on inter-core crosstalk. For coupled MCFs, we
review how to estimate the modal dispersion numerically and
enhance random mode mixing; we discuss the challenging issues
in designing coupled MCFs.

II. COUPLING MECHANISMS IN UNCOUPLED MCFS

A. Coupled Mode Theory Without Random Perturbations

Firstly, an MCF with Core m and Core n shown in Fig. 2(a)
is considered, wherein the MCF is assumed to have no struc-
tural perturbations such as bending and twisting. The coupling
characteristics can be described using coupled mode equations
given as

dan(z)
dz = −jβn (z) an (z)− jκnm (z) am (z), (1)

Fig. 2. Schematics of MCFs (a) without structural perturbation and (b) with
bending and twisting perturbations.

where am(z) and an(z) represent the mode amplitudes in Core
m and Core n, respectively, βm(z) and βn(z) represent the
propagation constants in Core m and Core n, κnm(z) denotes
the coupling coefficient from Core m to Core n, and z represents
the propagation direction. In loss-less MCFs, the coupling coef-
ficients should be symmetric, κnm = κmn, to guarantee power
conservation [10].

The propagation constants and coupling coefficients are un-
changed along the MCF without structural perturbations. When
the Core m and Core n are identical (βm = βn), which is the
case for the homogeneous MCF, the inputted power in Core m
changes as shown in Fig. 3(a), where the inputted power in Core
m is maximally coupled to Core n after the propagation of the
coupling length Lc given by [11]

Lc =
π

2
√

κ2
nm+(Δβmn/2)

2
, (2)

where Δ βmn = βm − βn. When each core has different prop-
agation constants (βm �= βn), i.e., a heterogeneous MCF, the
maximum power conversion F is greatly suppressed as shown
in Fig. 3(b), where F is given by [11]

F = κ2
nm

κ2
nm+(Δβmn/2)

2 . (3)
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Fig. 3. Mode coupling behavior in the MCF without structural perturbations
for (a) homogeneous (βm = βn) and (b) heterogeneous (βm�βn) cores.

In both cases βm = βn and βm �= βn, when MCF has no
structural perturbations, the inter-core crosstalk changes peri-
odically, wherein the inter-core crosstalk (XT) is defined by the
ratio of the output power Pn(L) in Core n after propagation along
an MCF length L and input power Pm(0) in Core m as

XT = Pn(L)
Pm(0) . (4)

These are well known textbook-based coupling behaviors
[11].

An MCF with structural perturbations such as bending and
twisting as illustrated in Fig. 2(b) is considered, wherein R
denotes the bending radius, θ denotes the twisting angle from
the initial horizontal direction, and the distance from the fiber
center to the core center of Core m or Core n is assumed to be
D. The equivalent propagation constant βeq,n in Core n is given
by using the bending radius R and twisting angle θn as [6]

βeq,n (z) = βn

{
1 + D

R cos θn (z)
}
. (5)

Here, we define the equivalent propagation constant differ-
ence between Core n and Core m as

Δβeq,nm (z) = βeq,n (z)− βeq,m (z) . (6)

Using thisΔβeq,nm(z), the coupled mode equations in MCFs
with bending and twisting perturbations can be rewritten as [12]

dAn(z)
dz = −jκnm (z)Am (z) exp {jΔφnm (z)} (7)

with

an (z) = An (z) exp {−jφn (z)} , (8)

φn (z) = ∫z0 βeq,n (z
′) dz′, (9)

Δφnm (z) = φn (z)− φm (z) = ∫z0 Δβeq,nm (z′) dz′.
(10)

When Δβeq,mn(z) becomes 0, the phase matching condition
between Core m and Core n is satisfied. At this phase matching
point, XT increases rapidly similar to the case shown in Fig. 3(a).
In other words, we can expect that XT is suppressed except for
this phase matching point, and it is similar to the case shown in
Fig. 3(b). For example, if there is only one phase matching point
along the propagation direction, the XT increase occurs only
once as shown in Fig. 4(a). Similarly, the XT increase occurs
ten times as shown in Fig. 4(b) if there are ten phase matching
points, where this XT evolution occurs only for a specific MCF
and is shown for conceptual comparison with Fig. 4(a). These

Fig. 4. Relationship between equivalent propagation constant variation along
the propagation direction and inter-core crosstalk increase in MCF with bending
and twisting perturbations when there are (a) one and (b) ten phase matching
points.

Fig. 5. Schematic of MCF with random structural perturbations.

coupling behaviors are straightforward; however, in a real MCF
design, random structural perturbations should be considered.

B. Coupled Mode Theory With Random Perturbations

An MCF with random structural perturbations such as micro-
bending and fabrication fluctuations in addition to macro-
bending and twisting perturbations is considered, as shown in
Fig. 5. Random perturbations in MCFs can be considered by
introducing a random phase function into (7), and the coupled
mode equations are given as [10]

dAn(z)
dz = −jκnm (z)Am (z) exp {jΔφnm (z)} fn (z) ,

(11)
where fn(z) denotes the random phase function in
Core n. The random phase function is expressed as
fn (z) = exp{jφrnd(z)}, where φrnd(z) denotes the random
phase noise at the z position. The random phase noise in
each core attributed to random structural perturbation can
fluctuate randomly along the propagation direction. Here, it
is assumed that the random process of fn(z) is characterized
by an autocorrelation function and correlation length ds. The
autocorrelation function is an unknown function; however,
it has been reported that, if the exponential autocorrelation
function is assumed, the experimentally measured results of XT
in the MCFs fit the analytical ones well [10]. In the following,
the random process of fn(z) is modeled by the exponential
autocorrelation function [10] as

Rff (z) = exp
(
−|z|

ds

)
, (12)
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Fig. 6. Comparison between XT without random phase noise and that with
random phase noise.

where ds is the correlation length of random phase function. To
obtain the exponential autocorrelation function with the corre-
lation length of ds, a Wiener process is generated by numerical
integration of zero mean white noise with a power spectral
density of 2/ds. The statistical accuracy of the simulated random
process fn(z) was validated by comparing its autocorrelation
function obtained by simulation with the theoretical expression
of (12) [10], [13]. The random phase noise φrnd(z) is applied
independently to all cores, i.e., fn(z) and fm(z) are two inde-
pendent random processes in Core n and m, respectively. The
correlation length ds is a varying parameter for controlling the
randomness and it should be sufficiently smaller than the total
propagation length L.

Fig. 6 shows a comparison between XT without random phase
noise and that with random phase noise, where Δβeq,nm(z) is
assumed to become 0 periodically with a constant twisting rate
γ along the propagation direction shown in the upper figure in
Fig. 6; XT evolution is an example for a specific MCF. When
there is no random phase noise, XT increases constantly with an
increase in the propagation distance. On the other hand, when
we consider random phase noise, the XT changes randomly.
The phase offsets between Core n and Core m are different
for each phase-matching point, and therefore, the XT in Core
n increases when the phase offset fn(z) is in-phase; it decreases
when fn(z) is out-of-phase [6]. Consequently, it is suppressed
compared with the case of no random phase noise. The XT
considering random phase noise is a stochastic quantity, and
XT evolution is changed at every simulation. Further, when the
autocorrelation function of the random process is changed, the
stochastic characteristics of the XT are changed. However, the
averaged value of XT in Fig. 6 converges to a constant value
when the number of simulations is large; the averaged XT can
be derived analytically for the autocorrelation function of (12).

When we define the local propagation constant difference at
z = z’ as Δβ′

eq,nm(z′), Eq. (11) is approximated near z = z’ as
[10]

dAn(z)
dz =−jκnm (z)Am (z) exp

{
jΔβ′

eq,nm (z) z
}
fn (z).

(13)
Although (13) is valid near z = z’, we approximate that it can

be extended for arbitral z. This is a good approximation except
for the case of a long correlation length and very large structural
perturbations. The solution of the mode amplitudeAn(z) in (13)

with a random phase function fn(z) is given by

An (z)
= −j ∫z0 κnm (ζ) exp

{
jΔβ′

eq,nm (z) ζ
}
fn (ζ)Am (0) dζ.

(14)
Then, the averaged crosstalk XTμ in Core n after the propa-

gation of z can be expressed as [10], [14]

XTμ (z) = z × κ2
nm ∫+∞

−∞ exp
{
jΔβ′

eq,nm (z) ζ
}
Rff (ζ) dζ,

(15)
where Rff (ζ) is the autocorrelation function of the random
process of fn(ζ). As mentioned earlier, the exponential autocor-
relation function is adequate for fitting experimentally measured
results to numerical ones [10]. By using the exponential autocor-
relation function expressed as (12), the averaged crosstalk XTμ

after the propagation of z can be obtained using the Lorentzian
function as

XTμ (z) = z × 2κ2
nmds

1+Δβ′2
eq,nm(z)d2

s
= z × h (z) , (16)

where the Lorentzian function,h(z), denotes the power coupling
coefficient at the z position, which is the amount of XT per unit
length. The averaged XTμ given by (16) is based on the coupled
power theory (CPT) [10], [14].

Fig. 7 shows the mean XTμ as a function of R in two core
MCFs with several different values of ds, where we assume that
the MCF is bent at a constant radius and twisted continuously
at a constant twisting rate γ = 0.1π rad/m; the wavelength is
1550 nm. Green, blue, and red results represent the averaged
XTμ for correlation lengths of 10 m, 1 m, and 0.1 m, respectively.
The solid curves are results evaluated from the averaged power
coupling coefficient h based on (16), where h(z) is averaged
over a twisting period. For comparison, the solid circle plots
are presented, and they are obtained by directly solving the
coupled mode equations of (11), where XTμ is calculated from
the average of 100 calculation results. Fig. 7(a) shows the results
for an ideal homogeneous MCF (βm = βn) with a = 4.5 μm,
Δ = 0.35%, and Λ = 45 μm. The refractive index of the
cladding is nclad = 1.45. When the bending radius is smaller
than 10 m, the averaged XTμ almost does not depend on the
correlation length and linearly increases with an increase in R.
This relation is well approximated as [6]

h = 2κ2
nmR
βnΛ

. (17)

When R is very large like in an almost straight fiber, the
averaged XTμ decreases with a decrease in the correlation length.
Thus, XT can be reduced by simply shortening ds in the MCFs
with a very large R. However, this is not the case in real scenarios.
Because in an actual MCF, there will be different fabrication
errors for each core even if it is fabricated as a homogeneous
MCF. Fig. 7(b) shows the results for heterogeneous MCFs
(βm�βn) with a small fabrication error in each core, where
a = 4.5 μm, Λ = 45 μm, and it is assumed that each core
has a core Δ = 0.35 ± 0.001%. The refractive index of the
cladding is nclad = 1.45. Contrary to the homogeneous MCFs,
XTμ decreases with an increase in the correlation length in
heterogeneous MCFs when R is larger than the critical bending
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Fig. 7. Mean XTμ in MCFs with a = 4.5 μm and Λ = 45 μm as a function
of bending radius R evaluated from the averaged power coupling coefficient h
(solid curves) and the coupled mode equations (circle plots) for (a) homogeneous
MCFs (βm = βn) with Δ = 0.35% and (b) heterogeneous MCFs (βm�βn)
with Δ = 0.35 ± 0.001%, where the twisting rate is assumed to be γ = 0.1π
rad/m and nclad = 1.45.

radius, Rc, where Rc is given by using the averaged propagation
constant of βave = (βn + βm)/2 and intrinsic propagation
constant difference between cores of |βn − βm| as [6]

Rc =
βaveΛ

|βn−βm| . (18)

If the bending perturbation is dominant, i.e., R < Rc, XT is
determined by phase matching between cores, and therefore, the
averaged XTμ is weakly dependent on the correlation length. On
the contrary, when the bending perturbation is weak, i.e., R>Rc,
there is no phase matching point along the propagation direction,
and XT strongly depends on the correlation length. Therefore, in
heterogeneous MCFs with non-phase matching region, the cor-
relation length should be increased, i.e., “randomness” should
be decreased to as good as possible for decreasing XT.

These results indicate that both CMT results (circle plots)
obtained via (11) and the CPT results (solid curves) obtained
using (16) are in good agreement in most cases when we consider
the same autocorrelation function of random processes, as shown
in Fig. 7. Further, Eq. (16) yields a reasonably correct estimation
of the averaged XTμ. However, Eq. (13) is an approximated
expression of (11), and it has been recently reported that the
averaged XTμ obtained by (16) may result in a difference of
more than 6 dB compared to the rigorous estimation based on

Fig. 8. Probability density distribution calculated by using (11) for an MCF
with a = 4.5 μm, Δ = 0.35%, Λ = 45 μm, nclad = 1.45, ds = 1 m, γ = 0.1π
rad/m, and R = 140 mm at λ = 1550 nm. The solid circle plots indicate results
obtained using Monte Carlo simulations with (11) over 10,000 repetitions, where
the horizontal axis is normalized by the variance σ2

2 .

(11), especially in the case of a large twisting rate and large
correlation length [13]. In Fig. 7(a), the difference between CMT
and CPT becomes larger than 5 dB for very small R (R<50
mm) with a large ds of 10 m. This difference is originating
from the approximated (13) in CPT. In [13], a more rigorous
analytical expression was reported for evaluating the power
coupling coefficient and the averaged XTμ in uncoupled MCFs.

Thus far, it was shown that the power coupling coefficient
h(z) in (16) can be used to estimate the reasonably accurate mean
XTμ in uncoupled MCFs in most practical cases; however, XT is a
stochastic quantity and changes to some extent by time variation
or wavelength change. The probability density distribution of XT
can be easily obtained by repeating numerical simulation. Fig. 8
shows the numerically obtained probability density distribution
of the inter-core XT for an MCF with a = 4.5 μm, Δ = 0.35%,
Λ = 45 μm, and nclad = 1.45. Further, R = 140 mm, λ = 1550
nm, ds= 1 m, and γ = 0.1π rad/m. The solid circle plots indicate
results obtained using Monte Carlo simulations with (11) over
10,000 repetitions, where the horizontal axis is normalized by
the variance σ2

2 . We see that it looks like Chi-square distribution
with 2 degrees of freedom. The solid line in Fig. 8 shows the
fitting curve of the Chi-square distribution with 2 degrees of
freedom, f2(XT ), which is expressed as [15]

f2 (XT ) = 1
2σ2

2
exp

(
−XT

2σ2
2

)
. (19)

The dotted results obtained by CMT are well fitted by the
solid curve. This Chi-square distribution with 2 degrees of
freedom is attributed to the fact that the complex field An(z)
in (11) has two components: its in-phase (real) and quadrature
(imaginary) components. Based on the central limit theorem,
the probability density function of each component converges
to a normal distribution. Therefore, the total probability density
distribution results in a Chi-square distribution with 2 degrees
of freedom, where the variance σ2

2 in the phase matching region
is expressed using the propagation distance L as [15]

σ2
2 = κ2

nm

βn

R
ΛL. (20)
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In the actual fibers, the field in each core has two polarization
components and they are randomly coupled with each other.
When we assume that optical power is distributed to two po-
larization modes in equal probabilities, the power is distributed
to in-phase and quadrature components of the two polarization
modes [15]. Therefore, the probability density distribution of
XT in actual MCFs becomes a Chi-square distribution with 4
degrees of freedom [15]–[18] and (11) is insufficient to fully
simulate the mode coupling phenomenon in MCFs.

C. Coupled Mode Theory With Polarization Mode Coupling

In the coupled mode equations shown in (11), we consider the
scalar field in each core, i.e., only the scalar coupling between
each core is considered. However, in a real scenario, polariza-
tion mode coupling also exists in each core. A new term for
polarization mode coupling can be introduced into the coupled
mode equations to consider polarization mode coupling for MCF
design as [19]

dAn(z)
dz

= −jκnm (z) exp {jΔφnm (z)}
[
fxn (z) 0

0 fyn (z)

]
Am (z)

−j bn(z) · σ
2 An (z)

(21)
with

An (z) =
[
Axn (z) Ayn (z)

]T
, (22)

where the second term on the right side in (21) represents
polarization mode coupling, field amplitude in Core n becomes
vector An(z), and T represents the transpose. Axn(z) and
Ayn(z) are the horizontal (x) and vertical (y) components of
the field amplitude, respectively. fxn(z) and fyn(z) represent
the x and y components of the random phase function in Core
n, where it is assumed that each component has independent
random processes with the same autocorrelation function shown
in (12). bn(z) denotes the birefringence vector in Core n, and σ
represents the well-known three Pauli matrices given by

σx =

[
1 0
0 −1

]
, σy =

[
0 1
1 0

]
, σz =

[
0 −j
j 0

]
. (23)

bn(z) has three components of bxn(z), byn(z), and bzn(z);
however, in telecommunication fibers, the third component,
which describes circular birefringence, is negligible. Therefore,
it is assumed that the third component of the birefringence
vector is zero, i.e., bzn (z) = 0 [19]. This model is known as
the random modulus model (RMM) [20]. The first and second
components of the birefringence vector are modeled by indepen-
dent Ornstein-Uhlenbeck random processes with a correlation
function Rbn(z) given by [19], [20]

Rbn (z) = 1
2

(
2π
LB

)2

exp
(
−|z|

dp

)
, (24)

where LB denotes the beat length of the fiber birefringence and
dp denotes the correlation length of the birefringence vector.
The correlation length ds of the random phase noise and the
correlation length dp of the random birefringence vector are
independent parameters.

Fig. 9. Mean XT as a function of propagation distance for an MCF calculated
by using (21) (a) without considering random phase noise and (b) without
considering polarization mode coupling, where a = 4.5 μm, Δ = 0.35%, Λ =
45 μm, nclad = 1.45, λ = 1550 nm, the fiber is assumed to have no bending
perturbation, and XT is obtained from the average of 100 calculation results.

The averaged crosstalk XTμ in Core n after propagation of
z considering polarization mode coupling can be approximated
by

XTμ (z) = zκ2
nm

×∫+∞
−∞ exp

{
jΔβ′

eq,nm (z) ζ
}
Rn (ζ)Rff (ζ)Rm (ζ) dζ,

(25)
where Rn(ζ) and Rm(ζ) are autocorrelation functions describ-
ing the polarization mode coupling effect in Core n and m,
respectively [19].

In the following, we numerically evaluate the mode coupling
characteristics in uncoupled MCFs using CMT with a polariza-
tion mode coupling term given as (21), and it is assumed that the
birefringence vector is characterized by the same statistics in all
cores, i.e., Rbn (z) = Rbm (z). The components of the birefrin-
gence vector from different cores are independent processes and
the exponential autocorrelation function shown in (24) is used.

Fig. 9 shows the mean XT as a function of the propagation
distance for an MCF, where a=4.5μm,Δ =0.35%,Λ =45μm,
nclad = 1.45, λ = 1550 nm, and the fiber does not have bending
perturbation, i.e., the fiber is assumed to be straight. XT was
calculated from the average of 100 calculation results. Fig. 9(a)
shows the results for several different values of the birefringence
beat length LB calculated using (21) without considering the
random phase noise, wherein dp is assumed to be equal to LB

as an example. We see that XT decreases with a decrease in
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Fig. 10. Mean XT as a function of propagation distance for an MCF calculated
by using (21) (a) without considering random phase noise and (b) without
considering polarization mode coupling, where a = 4.5 μm, Δ = 0.35%, Λ =
45 μm, nclad = 1.45, λ = 1550 nm, γ = 0.1π rad/m, the fiber is assumed to be
bent with R = 140 mm, and XT is obtained from the average of 100 calculation
results.

LB. For comparison, Fig. 9(b) shows the results for several
different values of ds, calculated using (21) without considering
the polarization mode coupling term. Similar results as shown in
Fig. 9(a) are obtained by changing ds, even if we do not consider
polarization mode coupling.

Similarly, Fig. 10 shows the mean XT as a function of prop-
agation distance for an MCF, where a = 4.5 μm, Δ = 0.35%,
Λ = 45μm, nclad = 1.45, λ = 1550 nm, and the fiber is assumed
to be bent with R = 140 mm and γ = 0.1π rad/m. The XT was
calculated from the average of 100 calculation results. Fig. 10(a)
shows the results for several different values of LB calculated
using (21) without considering random phase noise, where dp
is assumed to be equal to LB, which is the same as that in
Fig. 9(a). Fig. 10(b) shows the results for several different values
of ds calculated using (21) without considering the polarization
mode coupling term. We confirm that both approaches shown
in Figs. 10(a) and (b) yield similar XT behaviors. In Fig. 10(a),
constant (intrinsic) bending and twisting perturbations as well
as random polarization coupling perturbation are considered
in the phase matching region. In this case, the XT change
occurs almost discretely at the phase matching point even if
the long birefringent beat length and long correlation length of
the random polarization coupling perturbation are considered.
Therefore, the XT curves in Fig. 10(a) are similar to those in
Fig. 10(b). However, the probability density distribution of XT

Fig. 11. Probability density distribution calculated using (21) for an MCF
with a = 4.5 μm, Δ = 0.35%, Λ = 45 μm, nclad = 1.45, LB = dp = 1
m, γ = 0.1π rad/m, and R = 140 mm at λ = 1550 nm. Solid circle plots
represent results obtained via Monte Carlo simulations with 10,000 repetitions
and the solid line represents the fitting curve of the Chi-square distribution with
4 degrees of freedom, where the horizontal axis is normalized by the variance
σ2
4 .

in Fig. 10(a) may be different from that in Fig. 10(b). Because,
in Fig. 10(b), when x-component (Axm(0)) or y-component
(Aym(0)) is inputted at z = 0, the power is distributed to only
x- or y-component, respectively.

Fig. 11 shows numerically obtained probability density dis-
tribution of XT with the polarization mode coupling for an MCF,
where a = 4.5 μm, Δ = 0.35%, Λ = 45 μm, and nclad = 1.45.
Here, R= 140 mm, λ = 1550 nm, γ = 0.1π rad/m, and LB = dp
= 1 m. The solid circle plots represent results obtained via Monte
Carlo simulations using (21) with 10,000 repetitions, where the
horizontal axis is normalized by the variance σ2

4 . It appears like
Chi-square distribution with 4 degrees of freedom. The solid line
in Fig. 11 shows the fitting curve of the Chi-square distribution
with 4 degrees of freedom, f4(XT ), which is expressed as

f4 (XT ) = XT
4σ4

4
exp

(
−XT

2σ2
4

)
, (26)

where the variance σ2
4 in the phase matching region is expressed

using the propagation distance L as [15]

σ2
4 = 1

2
κ2
nm

βn

R
ΛL. (27)

The dotted results obtained by the CMT with the polarization
mode coupling are well fitted by the solid curve; they are
consistent with the measured probability density distribution of
XT in actual MCFs [15].

Next, the bending radius dependence of the mean XT in MCFs
with the polarization mode coupling effect is considered. Fig. 12
shows the mean XT as a function of R with several different
values of LB calculated using (21), where the fiber is an ideal
homogeneous MCF with a = 4.5 μm, Δ = 0.35%, and Λ =
45 μm, and γ = 0.1π rad/m. The mean XT is calculated from
the average of 100 calculation results at λ = 1550 nm and dp is
assumed to be equal to LB. Green, blue, and red results represent
the mean XT for beat length of 10 m, 1 m, and 0.1 m, respectively.
When the bending radius is smaller than 10 m, the mean XT
does not depend on the beat length LB , and it linearly increases
with an increase in R. In this bending perturbation dominant
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Fig. 12. Mean XT as a function of R with the fiber beat length LB = 10 m,
1 m, and 0.1 m, where the fiber is an ideal homogeneous MCF with a = 4.5
μm, Δ = 0.35%, Λ = 45 μm, and nclad = 1.45, and it is assumed to have the
constant twisting rate of 0.1π rad/m.

Fig. 13. Mean XT in a two core MCF with small fabrication error as a function
of bending radius R with the fiber beat length LB = 1 m, 0.3 m, and 0.1 m, where
a = 4.5 μm, Λ = 45 μm, nclad = 1.45, the constant twisting rate γ = 0.1π
rad/m, and it is assumed that each core has the core Δ= 0.35 ± 0.001%.

region, the mean XT does not depend on whether LB = dp or
LB �= dp. On the other hand, when the bending radius is very
large like in an almost straight fiber, the mean XT decreases
with a decrease in the beat length LB . In this weak bending
perturbation region, the mean XT does not depend on dp when
dp ≥ LB , whereas it increases as decreasing dp when dp < LB

[19]. Thus, XT can be decreased by decreasing LB in MCFs with
very large R. However, this is not the case in a real scenario. In
an actual MCF, even if it is fabricated as a homogeneous MCF,
each core has different fabrication errors. In this case, the result
shown in Fig. 12 is changed.

Fig. 13 shows the mean XT in a two core MCF with a small
fabrication error as a function of R with several different values
of LB calculated using (21), where a = 4.5 μm, Λ = 45 μm,
nclad = 1.45, γ = 0.1π rad/m, and it is assumed that each core
has the core Δ = 0.35 ± 0.001%. The mean XT is calculated
from the average of 100 calculation results at λ = 1550 nm
and dp is assumed to be equal to LB. Green, blue, and red
results represent the mean XT for LB of 1 m, 0.3 m, and 0.1
m, respectively. When R > Rc, the mean XT increases with a
decrease in the beat length. Therefore, in the non-phase matching

Fig. 14. Cross-sectional view of fabricated heterogeneous two-core MCFs of
(a) 2CF-A and (b) 2CF-B, which were reported in [21]. Both fibers have almost
the same core parameters with (c) a step-index profile with low-index trench;
however, the cladding diameter in 2CF-A is 134 μm and that in 2CF-B is 229
μm.

TABLE I
CORE PARAMETERS FOR CORE 1 AND CORE 2 [22]

region, “randomness” should be decreased to as good as possible
for decreasing XT.

Thus, it is possible to compare the experimentally measured
XT and numerically evaluated one by considering dp and LB

as fitting parameters; therefore, the correlation length and beat
length in the fabricated MCFs can be estimated. Fig. 14 shows
the cross-al view of the fabricated heterogeneous two-core
MCFs (2CF-A and 2CF-B), reported in [21]. Both MCFs have
almost the same core parameters of the effective mode area
Aeff ≈78 μm2; however, the cladding diameter of 2CF-A
(Fig. 14(a)) is 134 μm and that of 2CF-B (Fig. 14(b)) is 229
μm. Each core has a step-index profile with a low index trench
as shown in Fig. 14(c). The fiber parameters of Core 1 and Core
2 are listed in Table I [22]. The core-to-core distance Λ is 29.9
μm and 29.7 μm in 2CF-A and 2CF-B, respectively [21]. The
MCF with a larger cladding diameter will have lower random
fluctuations because of perturbations such as micro-bending,
which results in lower XT. In [21], the XT was measured by
changing the winding tension with R = 155 mm. When the
winding tension is varied from 0 to 250 gf, the range of the
measured XT was −68 dB/km to −52 dB/km in 2CF-A with a
cladding diameter of 134 μm, while it was −74 dB/km to −65
dB/km in 2CF-B with cladding diameter of 229μm. The increase
in the winding tension results in an increase in the randomness,
which consequently increases the inter-core XT in the non-phase
matching region. Fig. 15 shows the numerically evaluated mean
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Fig. 15. Numerically evaluated mean XT in 2CF-A and 2CF-B shown in Fig. 15
[21] by varying dp and LB, where R = 155 mm, the constant twisting rate is
assumed to be γ = 0.1π rad/m, and the mean XT is calculated from the average
of 100 calculation results at λ = 1550 nm.

Fig. 16. (a) Design parameters of MCFs and (b) graded index profile with low
index trench.

XT in 2CF-A and 2CF-B by varying dp and LB, where R = 155
mm, the twisting rate is assumed to be γ = 0.1π rad/m, and
the mean XT is calculated from the average of 100 calculation
results at λ = 1550 nm. R = 155 mm corresponds to the value
experimentally used in [21]. The two arrows in Fig. 15 represent
the range of experimentally measured XT in [21]. As expected, a
smaller beat length and/or correlation length increases random-
ness, which results in an increase in the inter-core XT. LB can
be estimated to be around 50 mm by comparing the range of
the measured XT [21]; further, dp seems to be on the order of
LB. From this result, the polarization mode dispersion (PMD)
coefficient in the fabricated MCF [21] is estimated to be in the
order of sub ps/

√
km, which is consistent with the recently

reported findings [23]. This is not a general conclusion, but a
fabricated MCF tends to have a shorter birefringence beat length,
namely larger PMD, compared with that of SMFs, because of
the difference in the fabrication process.

III. SCALABILITY AND DESIGN ISSUES IN UNCOUPLED MCFS

Fig. 16(a) shows the design parameters of MCFs. The refrac-
tive index profile is determined based on the Aeff, DMGD, and
cutoff wavelength in each core. The core-to-core distance Λ is
determined based on the allowable XT level between cores. The
clad thickness (CT), which is the distance from the clad edge
to the core center of the outermost core, is designed such that
the confinement loss is at a sufficiently low level of about 10−3

dB/km [24]. The number of cores and the core arrangement

TABLE II
PARAMETERS FOR 2LP-, 4LP-, 6LP-, AND 9LP-MODE CORES

Fig. 17. Bending loss in 2LP-, 4LP-, 6LP-, and 9LP-mode cores as a function
of CT at λ = 1565 nm, where R = 140 mm.

are related to spatial density, and the upper clad diameter (CD)
is determined based on mechanical reliability [25] and fiber
productivity.

We estimate the scalability of the spatial density in uncoupled
MCFs with the combination of core multiplexing and mode
multiplexing considering these design requirements. When de-
signing uncoupled MCFs wherein multiple modes propagate
in each core, a graded index profile with low index trench
shown in Fig. 16(b) is widely used for index profile in each
core [26]–[30]. If the inter-core XT is sufficiently small, each
core can be used for coupled FMF independently. The graded
index core is suitable for reducing DMGD in each core and
the low index trench is effective in reducing inter-core XT and
bending loss. Table II summarizes typical structural parameters
for 2LP-mode (3-mode), 4LP-mode (6-mode), 6LP-mode (10-
mode), and 9LP-mode (15-mode) cores [26]–[30], where the
graded index shape factor α is assumed to be 2.0. Each core
profile is designed to have the Aeff of approximately 80 μm2 for
the fundamental mode (LP01 mode) at a wavelength of 1550 nm
and the maximum DMGD of less than a few hundred ps/km in
the entire C-band. The trench width W is determined to maintain
the cutoff wavelength below 1530 nm, where the relative trench
width W/r1 must be reduced as the number of modes is increased.

The required CT can be estimated by evaluating the bending
loss of the outermost core. Fig. 17 shows calculated bending
losses for LP11, LP02, LP21, and LP03 modes as a function of
CT at a wavelength of 1565 nm in the 2LP-, 4LP-, 6LP-, and 9LP-
mode cores, respectively, wherein the core parameters listed in
Table II were used; R = 140 mm, and the vector finite element
method (FEM) [31] was used for calculations. The CT must be
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Fig. 18. Mean XT between LP11 (XT11-11), LP02 (XT02-02), LP12

(XT12-12), and LP03 modes (XT03-03), in the 2LP-, 4LP-, 6LP-, and 9LP-mode
cores, respectively, as a function of core-to-core distance at λ = 1565 nm.

TABLE III
CT AND Λ FOR 2LP-, 4LP-, 6LP-, AND 9LP-MODE MCFS

increased with an increase in the number of modes, and to keep
the bending loss below 10−3 dB/km at λ= 1565 nm; at least CTs
of 32.7 μm, 36.7 μm, 41.6 μm, and 47.5 μm are required for
2LP-, 4LP-, 6LP-, and 9LP-mode operation, respectively. If the
bending loss is lower than 10−3 dB/km, the contribution to the
total transmission loss can be considered to be at a sufficiently
small level.

The required core-to-core distance Λ can be estimated by
evaluating the mean XT between neighboring cores. Fig. 18
shows the mean XT between LP11 (XT11-11), LP02 (XT02-02),
LP12 (XT12-12), and LP03 modes (XT03-03) as a function of Λ
at a wavelength of 1565 nm in the 2LP-, 4LP-, 6LP-, and 9LP-
mode cores, respectively, calculated by using (16), where core
parameters summarized in Table II are used, R = 140 mm, and
ds = 50 mm. XT11-11, XT02-02, XT12-12, and XT03-03 provide
the worst-case XT in 2LP-, 4LP-, 6LP-, and 9LP-mode MCFs,
respectively, because the higher-order mode has a relatively large
Aeff compared to that of the LP01 mode, and the confinement
of higher-order modes is weaker than that of the LP01 mode
[32]. Λ needs to be increased as the number of modes increases
to achieve a similar XT level. For example, if the allowable XT
between two cores is −35 dB/100 km, the required Λ for 2LP-,
4LP-, 6LP-, and 9LP-mode operation are at least 35.4 μm, 40.2
μm, 44.0 μm, and 47.9 μm, respectively. The mean XT of −35
dB/100 km between two cores corresponds to the worst-case
crosstalk XTworst of −27 dB/100 km when considering six
adjacent cores; it is for realizing the 1000 km transmission of
QPSK signals with a power penalty of less than 1 dB [33].

Table III summarizes the designed parameters of CT and Λ
for uncoupled MCFs with 3–15 propagation modes in each core.
Based on these design parameters, the scalability of relative
spatial density in uncoupled MCFs as a function of CD is shown
in Fig. 19, wherein the relative spatial density is defined by

Fig. 19. Scalability of relative spatial density in uncoupled MCFs as a function
of CD, where hexagonally arranged 3, 7, 12, 19, and 27 cores are assumed.

Fig. 20. Maximum MDL at splicing point at λ = 1550 nm as a function
of number of cores for 2LP-, 4LP-, 6LP-, and 9LP-mode MCFs, where the
rotational misalignment is assumed to be 0.5 degree without transverse offset.

the channel density per unit area normalized by that of the
standard SMF, and hexagonally arranged 3, 7, 12, 19, and 27
cores are assumed. The spatial density is drastically increased
by increasing the number of modes in each core. Thus, it is
preferable to increase the number of modes in each core than
increase the number of cores. Because when the number of
modes in each core is kept constant and the number of cores
is increased, the spatial density (channel density per unit area)
is almost unchanged under the condition that the core-to-core
distance is constant (XT level is kept constant). Fig. 19 indi-
cates that about 50 times larger spatial density can be achieved
compared with that of the SMF under a condition of CD < 250
μm using a 9LP-mode 12-core fiber with a channel count of
180. In theory, a further increase in spatial density is possible by
increasing the number of modes M and/or cores N; however, the
mode dependent loss (MDL) degradation at a splicing point will
be problematic [30] because of the rotational misalignment.

In MCF splicing, the rotational misalignment angle is 0.6
degree on average [34], which results in different values of the
offset for the inner and outer cores. Fig. 20 shows the numerically
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Fig. 21. Mode mixing and GDS in (a) a single-core FMF and (b) a coupled
MCF.

evaluated maximum MDL at a splicing point at λ = 1550 nm as a
function of number of cores for 2LP-, 4LP-, 6LP-, and 9LP-mode
MCFs, wherein the rotational misalignment is assumed to be
0.5 degree without the transverse offset and the fiber parameters
are listed in Tables II and III. The MDL is evaluated using the
complex transmission matrix Tc between the input mode field
vector φin and the output mode field vector φout at the splicing
point, where φout = T c φin. The MDL (in dB unit) is defined
as

MDL = 20 log10 (λmax/λmin) , (28)

where λmax and λmin represent the maximum and minimum
singular values of Tc obtained by singular value decomposition
[35]. Fig. 20 indicates that the maximum MDL for the 2LP-
mode MCF is moderately small; however, the MDL reaches
an unacceptable level when the number of modes is increased.
Therefore, for long distance transmission using uncoupled few-
mode MCFs where each core supports several different spatial
modes, the mitigation of MDL degradation at the splicing point
is expected to become an important technology.

IV. COUPLING MECHANISMS IN COUPLED MCFS

A. Coupled Mode Theory for Modal Group Delay Analysis

Coupled MCFs are considered a type of few-mode/multi-
mode fibers. In multi-mode transmission, the complexity of
MIMO DSP is proportional to the group delay spread (GDS)
attributed to modal dispersion [36], and therefore GDS reduction
is highly required. The GDS in single-core FMFs increases in
proportion to the transmission distance, which results in the
limitation of the transmission distance or number of modes.
The GDS in the coupled MCFs with the strong mode mixing
state is proportional to the square root of the transmission
distance [37], which allows the long-distance mode-division
multiplexing (MDM) transmission. The strong mode mixing in
coupled MCFs was first reported in [8], and several long-distance
MDM transmission experiments using coupled MCFs have been
reported since then [38]–[43].

Fig. 21 shows the difference between a single-core FMF and
a coupled MCF. In the single-core FMF, as shown in Fig. 21(a),
the difference in the effective index, neff, between different

mode groups is large and does not change along the propagation
direction even if the fiber has bending and twisting perturbations.
Therefore, mode coupling between different mode groups is not
strong, and this results in a linear increase in the GDS with an
increase in the propagation distance. In the coupled MCF, as
shown in Fig. 21(b), the difference in the neff between coupled
modes is small and changes along the propagation direction if
the fiber has bending and twisting perturbations. Then, mode
coupling between the coupled modes becomes strong, and group
delays in different modes are averaged, which results in a GDS
increase proportional to the square root of the propagation
distance.

The mode mixing and GDS in coupled MCFs can be evaluated
by CMT. The coupled mode equation for the waveguide mode
system with the number of modes of N (e.g., single-mode
coupled N cores) is expressed as [44]

dan(z)
dz = −jβn (z) an (z)− j

N∑
m �=n

κnm (z) am (z) , (29)

where an(z) and βn(z) represent the complex mode amplitude
and propagation constant of the n-th guided mode, and κnm(z)
denotes the coupling coefficient between the n-th and m-th
guided modes. Not only the field amplitude but also the phase
must be fully considered for treating the change in the modal
group delay attributed to perturbations [45]. The solution of (29)
after the propagation of distance z is given using a column vector
a(z) as

a (z) =

⎡⎢⎣ a1 (z)
...

aN (z)

⎤⎥⎦ = T (ω)a (0) , (30)

where T(ω) denotes the total transmission matrix and ω rep-
resents the angular frequency. Using T(ω), the group delay
operator GDO(ω) is defined by [46]

GDO (ω) = jT (ω)−1 dT (ω)
dω , (31)

and GDS is expressed using the eigenvalue of GDO(ω) as [47],
[48]

GDS =

√
1
N

N∑
i=1

τ2i , (32)

where τ i represents the i-th eigenvalue of GDO(ω) and is nor-
malized as

∑
τi = 0. The derivative of the total transmission

matrix with respect to the angular frequency in (31) is numeri-
cally calculated by

dT (ω)
dω ≈ T (ω+Δω)−T (ω−Δω)

2Δω , (33)

where Δω represents a sufficiently small angular frequency
difference from the central ω. The fiber length L is divided into
small segments of length ΔL to obtain the total transmission
matrix T(ω) considering structural perturbations. If ΔL is suf-
ficiently small, the structure can be assumed to be uniform in
each segment, and in each segment, Eq. (29) can be re-written
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Fig. 22. Schematic of the perturbation of Δθ applied in each segment, where
ΔL denotes the segment length.

as

da(z)
dz = −j

⎡⎢⎢⎢⎣
β1 κ12 . . . κ1N

κ21

...

β2

. . .

κ2N

...
κN1 . . . κNN−1 βN

⎤⎥⎥⎥⎦a (z)

= −jC−1

⎡⎢⎢⎢⎣
β̃1 0 . . . 0
0
...

β̃2

. . .

0
...

0 . . . 0 β̃N

⎤⎥⎥⎥⎦Ca (z) ,

(34)

where βn represents the propagation constant of the coupled
core mode (super-mode), β̃n denotes the propagation constant
of the discrete core mode, and the matrix C represents the butt
coupling coefficient matrix between the discrete core mode and
coupled core mode. β̃n is randomly perturbed in each segment
and changes to β̃′

n by considering structural perturbations such
as bending and twisting, which is given as

β̃′
n (z) = β̃n

[
1 + Dn

R(z) cos {θn (z)}
]
, (35)

where Dn represents the distance from the fiber center to the
core center of Core n, R(z) denotes the bending radius in
the fiber at the z position, and θn(z) represents the twisting
angle in Core n at the z position. The perturbation of β̃′

n(z)
results in the coupling coefficient perturbation, which enhances
mode coupling between different modes. Therefore, the larger
the perturbation, the more enhanced is the mode mixing in the
coupled MCFs.
R(z) and θn(z) in each segment are expressed as

R (z +ΔL) = R (z) + ΔR (z) , (36)

θn (z +ΔL) = θn (z) + Δθ (z) , (37)

where ΔR(z) and Δθ(z) represent the bending radius change
and twisting angle change from the previous segment, respec-
tively. In the following, R(z) is assumed to be constant bending
radius of R andΔR (z) = 0, for simplicity. If the R is sufficiently
small to induce a strong mode mixing, there is no essential
difference in the averaged GDS with or without considering
the random ΔR(z) for ΔR(z) 	 R [49]. For Δθ(z), it is
assumed that each segment has randomly generated twisting
rate γ(z) and the twisting angle Δθ(z) relative to the previous
segment is given by γ(z)ΔL as shown in Fig. 22. Further,
γ(z) is assumed to have Gaussian distribution with the mean
value of γave and the standard deviation of σγ , wherein γ(z)
is constant in each segment and it changes from segment to
segment. The introduction of the random twisting rate is not

Fig. 23. Schematic of coupled 4-core fiber with the bending radius R, where
the twist rate γ is assumed to change randomly following a normal distribution
with the mean value γave and standard deviation σγ .

Fig. 24. GDS after 1 km propagation as a function of core-to-core distance
Λ in a coupled 4-core fiber with a = 4.5 μm, Δ = 0.35%, and R = 140 mm
for several different values of γave, where the standard deviation of twist rate
following a normal distribution is σγ = 0.01 rad/m.

mandatory for GDS evaluation; however, if the twisting rate is
constant, there will be eigen states propagating in a uniformly
twisting waveguide. The weak random twisting is considered to
avoid such unrealistic states. The accuracy of the final solution
of (34) depends on the size of ΔL, and to obtain a reasonably
converged value of the averaged GDS, ΔL = 0.1 mm is used
hereafter.

B. Group Delay Spread in Coupled MCFs

As an example, the GDS change attributed to twisting pertur-
bation in a coupled 4-core fiber with the constant R as shown in
Fig. 23 is considered, wherein the core radius is a, the relative
refractive index difference between core and cladding is Δ, and
the core-to-core distance is Λ. Fig. 24 shows the GDS after 1 km
propagation as a function of Λ in the coupled 4-core fiber with
a = 4.5 μm, Δ = 0.35%, and R = 140 mm for several different
values of γave, wherein the σγ = 0.01 rad/m and the GDS is
calculated from the average of 100 calculation results at λ =
1550 nm. When the averaged twisting rate γave is 0, the GDS
is several hundred picoseconds, whereas the GDS is decreased
with an increase in the averaged twisting rate. The increment
in the twisting perturbation results in a decrement in the modal
dispersion. In Fig. 24, we assume that all cores have the same
core parameters, and therefore, the GDS is decreased with an
increase in the core-to-core distance. This is an ideal case, but it
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Fig. 25. GDS after 1 km propagation as a function of core-to-core distance Λ
in a coupled 4-core fiber with small fabrication error in each core, where a =
4.5 μm, Δave = 0.35%, R = 140 mm, γave = 0.5π rad/m, and σγ = 0.01
rad/m.

is not realistic. In addition, Fig. 24 does not clarify the location
of the weak or strong mode coupling region.

Next, a coupled 4-core fiber with small fabrication error in
each core is considered, wherein each core is assumed to have
the core Δ following a normal distribution with the mean value
of Δave and standard deviation σΔ. Fig. 25 shows the GDS after
1 km propagation as a function of the core-to-core distance in
the coupled 4-core fiber with a = 4.5 μm, Δave = 0.35%, R
= 140 mm, γave = 0.5π rad/m, and σγ = 0.01 rad/m. The
GDS is calculated from the average of 100 calculation results
at λ = 1550 nm. The red, green, and blue curves represent the
results for σΔ = 0, 0.0001, and 0.001%, respectively. Assuming
a very small core Δ error of σΔ = 0.001%, the GDS curve is
minimal at a core-to-core distance of about 25 μm and the GDS
cannot be lower than a few picoseconds. This is because when the
core-to-core distance Λ is larger than 30 μm, the mode mixing
effect is weak and the GDS is dominated by the difference in
the group index between the cores attributed to the difference in
the introduced intrinsic core Δ. In this case, it cannot be used
as a coupled MCF. Further, if Λ is less than about 20 μm, the
GDS is dominated by the group delay difference between the
super-modes of the coupled cores, and the fiber is used as a
conventional multimode fiber such as a single-core FMF. When
Λ is set moderately, e.g., Λ = 25 μm, the GDS is reduced by
the strong mode mixing effect. This appropriate core-to-core
distance is slightly changed by the twisting rate. The GDS tends
to decrease and the appropriate core-to-core distance shifts to
the smaller side when the twisting rate is increased. When the
twisting rate is decreased the GDS tends to increase and the
appropriate core-to-core distance shifts to the larger side. Fig. 26
shows the GDS in the coupled 4-core fibers as a function of
propagation distance at λ = 1550 nm, where a = 4.5 μm, Δave

= 0.35%, σΔ = 0.001%, γave = 0.5π rad/m, σγ = 0.01 rad/m,
and R = 140 mm. Red and blue lines are results for Λ = 25 μm
and 35 μm, respectively. The red line is roughly proportional to
the square root of propagation distance L after several kilometers
of propagation, wherein the black dashed line is a fitting line of√
L-proportion behavior. The blue line shows a linear increase

Fig. 26. GDS in coupled 4-core fibers as a function of propagation distance
for Λ = 25 μm and 35 μm, where a = 4.5 μm, Δave = 0.35%, σΔ = 0.001%,
and R = 140 mm.

Fig. 27. GDS dependence on core parameters in coupled 4-core fibers, where
a = 4.5 μm, γave = 0.5π rad/m, σγ = 0.01 rad/m, and R = 140 mm. The blue,
red, and green curves represent the GDS results after 1 km propagation for the
averaged core Δ of Δave = 0.3%, 0.35%, and 0.39%, respectively, wherein the
standard deviation of random core Δ error is assumed to be σΔ = 0.001%.

with propagation distance. This result indicates the core-to-core
distance in the coupled MCFs must be appropriately selected to
enhance the mode mixing effect [50]–[52].

If fiber parameters are fixed, changing the averaged bending
condition R does not change the appropriate (optimal) core-to-
core distance for strong mode mixing; instead, the optimal core-
to-core distance can be shifted by changing the core parameters
and/or the core index profile. Fig. 27 shows the GDS dependence
on the core parameters in coupled 4-core fibers, wherein a = 4.5
μm, γave = 0.5π rad/m, σγ = 0.01 rad/m, and R = 140 mm.
The blue, red, and green curves represent the GDS results after
1 km propagation for the averaged core Δ of Δave = 0.3%,
0.35%, and 0.39%, respectively, wherein the standard deviation
of the random core Δ error is assumed to be σΔ = 0.001%.
The optimal core-to-core distance for the strong mode mixing is
shifted by changing the core parameters, and it can be decreased
by increasing the normalized frequency (V-parameter).

Thus far, the bending radius of the fiber is fixed at R =
140 mm for the GDS evaluation as an example; however, the
GDS depends on the bending conditions. Fig. 28 shows the
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Fig. 28. GDS dependence on the bending radius R in coupled 4-core fibers,
where a= 4.5μm,γave = 0.5π rad/m, andσγ = 0.01 rad/m. The blue, red, and
green curves represent the GDS results after 1 km propagation for the averaged
core Δ of Δave = 0.3%, 0.35%, and 0.39%, respectively, wherein the standard
deviation of random core Δ error is assumed to be σΔ = 0.001%.

GDS dependence on the bending radius R in coupled 4-core
fibers, wherein a = 4.5 μm, γave = 0.5π rad/m, and σγ =
0.01 rad/m. The blue, red, and green curves represent the GDS
results after 1 km propagation for the averaged core Δ of Δave

= 0.3%, 0.35%, and 0.39%, respectively, wherein the standard
deviation of random core Δ error is assumed to be σΔ =
0.001%. For Δave = 0.3%, 0.35%, and 0.39%, the core-to-core
distance is set to Λ = 27 μm, 25 μm, and 24 μm, respectively,
as the optimum values for the enhancing mode mixing. GDS
decreases with an increase in the R up to about 1000 mm. The
black circle plots represent the reported measured GDS in a
coupled 4-core fiber for three different bending sizes [52]; they
have a similar tendency with the numerically evaluated results.
Further, the GDS is quickly increased when the bending radius is
too large. Because when the effective index variation attributed
to the bending perturbations is larger than the effective index
difference between different modes, a larger bending radius
is preferable to reduce the averaged group delay difference
between different mode, which results in the GDS reduction
for a larger bending radius. When the bending radius is too
large, the bending perturbations do not induce mode mixing,
which results in a quick increase in the modal dispersion for
a larger bending radius. From these results, it is estimated that
the minimum achievable GDS in the coupled MCFs without
intentional twisting control will be about a few ps/

√
km.

The GDS may be controlled by changing the number of cores
in the coupled MCFs. Therefore, the GDS dependence on the
number of cores in coupled MCFs is considered. Fig. 29 shows
the GDS dependence on the number of cores in coupled MCFs
with core-to-core distances of 20 μm, 22 μm, and 24 μm after
1 km propagation, wherein a = 4.5 μm, Δave = 0.35%, σΔ =
0.001%, γave = 0.5π rad/m, σγ = 0.01 rad/m, and R = 140
mm. The GDS is calculated from the average of 100 calculation
results at λ = 1550 nm. Fig. 29 indicates that if the core-to-core
distance is the same, the level of GDS does not change con-
siderably regardless of the number of cores because even if the
number of cores is changed, the core-to-core distance remains

Fig. 29. GDS dependence on the number of cores in the coupled MCFs with
core-to-core distances of 20 μm, 22 μm, and 24 μm after 1 km propagation,
wherein a= 4.5μm,Δave = 0.35%, σΔ = 0.001%, γave = 0.5π rad/m, σγ =
0.01 rad/m, and R = 140 mm.

Fig. 30. Comparison of the effective index variation caused by bending and
twisting perturbations in (a) a single-mode coupled MCF and (b) a few-mode
coupled MCF, where each core in the few-mode coupled MCF is assumed to
support two LP modes, LP01 and LP11.

the same, and the maximum effective index difference between
the nearest non-degenerated modes becomes similar. Therefore,
a drastic GDS change is not expected when changing the number
of cores in the coupled MCFs with a fixed core-to-core distance.

V. POSSIBILITY FOR FEW-MODE COUPLED MCFS

When each core of a coupled MCF is a single-mode core,
the GDS can be reduced by setting the core-to-core distance
appropriately. However, if each core of a coupled MCF is a multi-
mode core, it becomes difficult to achieve strong mode mixing.
Fig. 30 shows a comparison of the effective index variation
attributed to bending and twisting perturbations in a single-mode
coupled MCF and a few-mode coupled MCF, wherein each core
in the few-mode coupled MCF is assumed to support two LP
modes of LP01 and LP11 modes. In the 2LP-mode coupled
MCF, LP01 mode group and LP11 mode group exist as shown in
Fig. 30(b). In the same mode group, strong mode mixing can be
obtained by gentle bending perturbation, which is the same as
in the single-mode coupled MCF. A large bending perturbation
is required to enhance mode coupling between different mode
groups because the effective index difference between different
mode groups is considerably larger than that between modes in
the same mode group. Further, the group velocity of the LP01

mode group and that of LP11 mode group are different, and
therefore, strong mode mixing is not obtained even if strong
bending perturbation is introduced. Therefore, in coupled few-
mode MCFs, the following two conditions need to be satisfied for
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Fig. 31. Averaged DMGD along the propagation direction between the LP01

and LP11 mode groups in a bent and twisted 2LP-mode coupled 4-core fiber as
functions of core-to-core distance and core radius, where Δ = 0.3% and R =
100 mm.

strong mode mixing. The first one is strong bending perturbation,
which indicates the tight bending condition. The second one is
that all mode groups should have similar group velocity, namely
averaged DMGD between different mode groups should be low.
For 2LP-mode N-core fiber, the averaged DMGD (DMGDave)
is given by

DMGDave =
1
c

(
1
N

N∑
i = 1

ngave,i − 1
2N

3N∑
i = N+1

ngave,i

)
,

(38)
where c denotes the speed of light in vacuum and ngave,i

represents the averaged group index of the i-th super-mode
along the propagation direction under the bending and twisting
perturbation. The first term on the right side in (38) represents the
averaged group delay of the LP01 mode group per unit length
and the second term represents that of the LP11 mode group.
ngave,i can be obtained by averaging the group index over one
twisting period with constant R, and it is obtained by

ngave,i =
1
lγ

∫z+lγ
z ng,i (z) dz, (39)

where ng,i(z) denotes the group index of the i-th super-mode
at the z position and lγ represents the twisting period. ng,i(z) is
numerically calculated by using FEM [31].

Fig. 31 shows the averaged DMGD along the propagation
direction between the LP01 and LP11 mode groups in a bent
and twisted 2LP-mode coupled 4-core fiber as functions of
core-to-core distance and core radius, respectively, wherein the
refractive index profile is assumed to be a step index with a
core Δ of 0.3% as an example and R = 100 mm. The black
solid line represents DMGDave = 0 ps/km and the dashed
contour lines are 200 ps/km intervals. In the bent and twisted
2LP-mode 4-core fiber, the averaged DMGD can be reduced by
appropriately setting the core-to-core distance and core radius.
The low GDS is expected in the 2LP-mode coupled 4-core fiber
with a tight bending perturbation when using the low DMGD
region. In Fig. 31, a step-index profile in each core is assumed as
an example. One can expect that a graded-index profile in each
core can be used for controlling DMGD between the coupled
LP01 and LP11 mode groups [53]. However, in the case of strong
bending perturbation, fine control of index-α value in each

Fig. 32. GDS at λ = 1550 nm for the 2LP-mode coupled 4-core fiber as a
function of the propagation distance, where Λ = 21.5 μm, Δ = 0.3%, γave =
0.5π rad/m, σγ = 0.01 rad/m, and R = 100 mm.

Fig. 33. GDS in the 2LP-mode coupled 4-core fiber as a function of the
propagation distance for R = 50, 150, 300, and 500 mm, where a = 6.5 μm,
Δ = 0.3%, Λ = 21.5 μm, γave = 0.5π rad/m, σγ = 0.01 rad/m, and λ =
1550 nm.

core does not have any considerable impact. Fig. 32 shows the
numerically calculated GDS at λ = 1550 nm for the 2LP-mode
coupled 4-core fiber as a function of the propagation distance,
where the core-to-core distance Λ = 21.5 μm, Δ = 0.3%,
γave = 0.5π rad/m, σγ = 0.01 rad/m, and R = 100 mm. The
blue and red lines represent results for the core radius of 6.7 μm
and 6.5 μm, respectively. The red line is roughly proportional
to the square root of the propagation distance, whereas the
blue line increases linearly with an increase in the propagation
distance. These results indicate that the core parameters (a, Δ)
and core-to-core distance need to be carefully determined to
enhance mode mixing for all modes.

Finally, the GDS in the 2LP-mode coupled 4-core fiber as a
function of the propagation distance for some different bending
conditions is shown in Fig. 33 to confirm the effect of the amount
of bending perturbation on the mode mixing, where a = 6.5 μm,
Δ = 0.3%, Λ = 21.5 μm, γave = 0.5π rad/m, σγ = 0.01 rad/m,
and λ = 1550 nm. A tight bending condition is preferable in
few-mode coupled MCFs to introduce strong bending perturba-
tion, which results in strong mode mixing between the different
mode groups. In actual fiber cables, the bending condition is
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not constant; however, a low GDS few-mode coupled MCF is
realized if the averaged bending condition can be controlled
in a cable. Recently, a controlling technology of the bending
condition in a fiber cable has been reported [54] for reducing the
GDS in coupled MCFs, and by using this approach, few-mode
coupled MCFs with low GDS in actual fiber cables will be
achieved.

VI. CONCLUSION

Coupling mechanisms in uncoupled and coupled MCFs for
SDM transmission have been described using CMT. For de-
signing uncoupled MCFs, random structural fluctuations can be
considered by introducing random phase noise and/or random
polarization mode coupling. In uncoupled MCFs, when the
bending perturbation is dominant, i.e., phase matching between
neighboring cores randomly occurs many times along the propa-
gation direction, the averaged inter-core XT is determined by the
coupling coefficient between cores, whereas when the bending
perturbation is weak, random structural fluctuations play an
important role in determining the XT, and the randomness should
be reduced for decreasing XT. The transmission capacity can be
increased by two orders of magnitude by combining mode and
core multiplexing in uncoupled MCFs; however, the degradation
of mode dependent characteristics at the splicing point must be
mitigated. Further, in coupled MCFs, the core-to-core distance
need to be carefully determined to enhance mode mixing. Larger
structural perturbations result in lower modal dispersions in
the coupled MCFs. Strong mode mixing is relatively easily
obtained in single-mode coupled MCFs; however, in few-mode
coupled MCFs with bending and twisting perturbations, two
design conditions, i.e., the smaller bending size of the cable and
the lower averaged DMGD between different mode groups, are
required for strong mode mixing. The development of few-mode
coupled MCFs with high SDM channels and low GDS will
enable extreme SDM fibers with high spatial density for large
capacity long distance transmissions.

Finally, after the proposal of MCFs for overcoming the ex-
pected capacity crunch of conventional SMFs [2], it has now
been over 10 years and research on MCFs have been moving
from the R&D stage to the practical application stage. The
application area in near future will be expected to relatively
short distance (less than 100 km) point-to-point transmission
without using optical amplifiers, such as, data centers and in-
terconnections. In this stage, the development of a lower cost
system is highly desired in comparison with the parallel SMF
transmission system. Then, the other application area would be
long-distance transmission with an efficient optical amplifier,
such as in a submarine system. In further long-term range, MCFs
are expected to be installed on terrestrial network to replace
SMFs, and at this stage, international standardization regarding
MCFs in addition to economic benefits will be desired.
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