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Robot Localization and Navigation Using Visible
Light Positioning and SLAM Fusion

Weipeng Guan , Linyi Huang , Shangsheng Wen , Zihong Yan , Wanlin Liang, Chen Yang, and Ziyu Liu

Abstract—Visible light positioning (VLP) is a promising tech-
nology since it can provide high accuracy indoor localization
based on the existing lighting infrastructure. However, existing
approaches often require dense LED distributions and persistent
line-of-sight (LOS) between transmitter and receiver. What’s more,
sensors are imperfect, and their measurements are prone to errors.
Through multi sensors fusion, we can compensate the deficiencies
of stand-alone sensors and provide more reliable pose estimations.
In this work, we propose a loosely-coupled multi-sensor fusion
method based on VLP and Simultaneous Localization and Map-
ping (SLAM), using light detection and ranging (LiDAR), odom-
etry, and rolling shutter camera. Our multi-sensor localizer can
provide accurate and robust robot localization and navigation in
LED shortage/outage situations. The experimental results show
that our proposed scheme can provide an average accuracy of
2.5 cm with around 42 ms average positioning latency.

Index Terms—High accuracy, indoor positioning, LiDAR-
SLAM, multi sensors fusion, robotics, visible light positioning
(VLP).

I. INTRODUCTION

PRECISE localization is a prerequisite for many au-
tonomous systems, such as robotics, unmanned aerial ve-

hicles, etc. Also, indoor positioning is an especially challenging
problem, where localization cannot be achieved by GPS due
to the satellite signal being greatly attenuated, while the tra-
ditional radio-based indoor positioning technologies, such as
Bluetooth, Wi-Fi, Radio-frequency Identification (RFID) and
ultra-wideband (UWB), still have some disadvantages in terms
of low accuracy, high latency, electromagnetic interference or
high hardware cost [1].
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In recent years, the localization technology based on visible
light communication (VLC), which is referred as visible light
positioning (VLP), has attracted intensive attention as it can
provide high accuracy positioning based on the existing lighting
infrastructure. Look up in almost any building and you will be
able to see multiple light fittings, demonstrating that at most
indoor locations [2]. The modulated LED broadcasts its unique
identity (ID) via switching at a high frequency imperceptible
to the human eye, but which can be recognized by photodiodes
(PD) [3]–[5] and rolling shutter effect (RSE) cameras [6]–[8].
The LED-ID can be mapped/modulated once for all since they
are normally fixed and not easily vulnerable to environmental
changes. Hence, the “Last Mile Problem” of localization is
solved via VLP and the pre-built LED landmark map. Ref.
[9]–[11] design the PD-based indoor positioning system us-
ing machine learning to provide around 10 cm positioning
accuracy. Besides, some state-of-the-art (STOA) camera-based
VLP systems can offer centimeter-level accuracy on commodity
smartphones [12], [13] or mobile robots [6], [14]. Despite the
promising performance of existing VLP systems, there remain
some practical challenges.

A. Motivation

One of the most urgent issues arises from the fact that
VLP normally requires multiple LED observations at a time
for successful positioning through trilateration or triangulation.
This is because the normal LED lights offer less usable point
features due to the lack of distinguishable appearance, e.g.,
one feature for a circular LED [15]. However, the number of
decodable LEDs in a camera view is limited by a couple of
practical factors, such as deployment density and geometry
layout of LEDs, obstruction of the LOS views, limited field-
of-view (FOV) of the camera, etc. As such, the shortage or
outage of LEDs can severely deteriorate the performance of the
camera-only method in reality. To address this problem, different
VLP-aided inertial localization methods have been proposed
[6], [15]–[17] to provide pose estimation by combining VLP
and the inertial measurement unit (IMU). In [17], An Extended
Kalman Filter (EKF)-based loosely-coupled VLP-inertial fusion
method is proposed. The presented experiments demonstrate the
functionality that the IMU helps to overcome the moments with
lack of VLP coverage. However, IMU suffers drift over time
(cumulative error) or measurement noises (biases). Therefore,
these VLP-aided inertial localization methods suffer from errors
after long-term running. To address this problem, we are moti-
vated to adopt LiDAR sensor to compensate the accumulated
error of the inertial sensors, so that the VLP-aided inertial
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& LiDAR method can achieve long-term accurate and robust
localization.

In addition, sensors are imperfect, and their measurements
are prone to errors. All of VLP, odometry, and LiDAR also have
outliers. Through multi sensors fusion, we can compensate the
deficiencies of stand-alone sensors and provide more reliable
and robust estimations. Furthermore, one of the most basic yet
important functions of intelligent mobile robots are the ability
to navigate autonomously [18]. Navigation1 denotes the robot’s
ability to determine its own position in its frame of reference and
then to plan a path towards some goal location. However, to the
best of our knowledge, most of the works in the field of VLP only
can provide discrete position (localization) and lack the ability to
navigate and tracking for moving targets, which is caused by the
limited VLP coverage range, positioning latency, and the lack of
the obstacle detection/avoidance function. The priori pre-built
LED landmark map doesn’t include any obstacle information
around the environment. Based on this point, we are motivated
to adopt LiDAR-SLAM for occupancy grid map building and
obstacle detection, adding the tracking and navigation capability
into the VLP system. Through multi-sensor fusion, we can esti-
mate quantities that are unobservable using single sensors (e.g.,
VLP cannot detect the obstacle information; LiDAR cannot
observe the global position; odometry has cumulative error) so
that we can improve robustness, and handle the sensor failures.

B. Contribution

In this work, we propose a loosely-coupled multi-sensor
fusion method for VLP and LiDAR-SLAM. Integrating multi-
sensor, including RSE-camera, LiDAR, and odometry, enables a
robot to maximize its perceptual awareness of the environment
and obtain sufficient measurements to make it promising for
robust indoor localization and navigation. More specifically,
the LiDAR is employed to detect the surroundings for obstacle
avoidance during the navigation, and compensate the cumulative
error from the odometry. While the VLP is adopted to provide
high accurate pose initialization and correction for LiDAR-
SLAM and odometry. Our multi-sensor localizer includes map-
fusion and localization-fusion, which firstly builds a map of the
previously unknown environment, and then, provide accurate
and reliable pose estimation through multi-sensor fusion. In
order to realize map-fusion, we develop a VLP-constrained map-
ping scheme based on LiDAR-SLAM (Gmapping2) to construct
the occupancy grid map based on the pre-built LED landmark
map. While for the localization-fusion, the loosely-coupled EKF
using VLP, odometry and LiDAR can provide high accuracy in-
door localization based on the previously built VLP-constrained
occupancy grid map, which is the premise of reliable navigation.

We highlight the contributions as follows:
� Map-fusion: VLP-constrained Gmapping algorithm is pro-

posed to align the occupancy grid map (SLAM-map) with
the pre-built LED landmark map, which is the premise
of the fusion between VLP and LiDAR-SLAM can be
integrated. Meanwhile, the localization result can be si-
multaneously visualized and aligned in both SLAM-map
and floorplan.

1[Online]. Available: https://en.wikipedia.org/wiki/Robot_navigation
2[Online]. Available: http://wiki.ros.org/gmapping

� Localization-fusion: Loosely-coupled multi-sensor fusion
based on the EKF is proposed to achieve high accuracy
localization using RSE-camera, LiDAR and odometry.
Through the state prediction from odometry motion and
the measurement update from LiDAR scanner and VLP,
we can relax the requirement on the minimum number
of concurrently observable LEDs for positioning to zero.
The LiDAR can compensate the cumulative error from
the odometry, the odometry contributes to smooth pose
estimation, while the VLP measurement can provide high
accuracy pose initialization or pose calibration when it is
available.

� We embedded the navigation function into our multi-sensor
fusion for VLP-SLAM. Owing to the high accuracy per-
formance of our multi-sensor fusion scheme, the robot can
provide autonomous navigation. The efficacy of the scheme
is verified in real-world experiments.

C. Organization

The remainder of this paper is organized as follows. Section II
introduces the related works. Section III explains the methodol-
ogy of our multi-sensor localizer based on VLP-SLAM, includ-
ing the VLP calculation based on single LED and odometry,
VLP-constrained Gmapping, and the loosely-coupled multi-
sensor fusion based on EKF. Section IV presents the experi-
mental evaluation and Section V is the conclusion.

II. RELATED WORK

A. RSE Camera-Based VLP

LEDs can transmit data over the air by directly modulating
the light intensity at a high frequency that is invisible to human
eyes but perceivable by camera or PD. Generally, PD is used
as the receiver to capture the signal for the VLC system. There
are many works use the PD and solar cells [19]–[21] as the
receiver of VLP. PD is not an ideal VLP device, since it is
sensitive to the light intensity variation and the diffuse reflection
of the light signal, which degrades the positioning accuracy [22].
In contrast, camera-based VLP is favored in both commerce
and industry due to the high positioning accuracy achievable
by imaging geometry, and the good compatibility with user
devices, such as mobile robots and smartphones. The pixels on
RSE-camera are exposed and read out line by line instead of
perceiving light for the whole image at a single moment. Then,
the temporally-varying intensity signals from the LED transmit-
ter are mapped to spatially-varying bright or dark strip patterns
on the captured image. For comprehensive understanding of
optical camera communication (OCC) and LED-ID decoding
for RSE-camera-based VLP, we refer readers to [23]–[28].

Camera-based VLP systems employ modulated LED luminar-
ies mounted at known locations (e.g., on the ceiling) as artificial
landmarks, associate each LED measurement with the ID coor-
dinate through RSE-based OCC, and provide information about
the camera’s relative position and rotation with respect to each
detected LED by the LOS and weak perspective projection prop-
erty. Decimeter/centimeter-level accuracy has been reported in
some RSE-camera based VLP systems [7], [8], [13], [29]–[32].
Yet, all these methods treat LED lamps as point sources without

https://en.wikipedia.org/wiki/Robot_navigation
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geometric information. Thus, multiple known LED anchors are
required at a time for trilateration or triangulation calculation.
Such approaches rely on dense deployment of LED beacons.
To reduce the number of required LEDs in VLP, Ref. [33]
no longer treats the captured LED images as a point, but as
an image whose geometric features are exploited to determine
the receiver’s orientation and location. However, this method
requires an additional marker to be placed on the LED. Another
straightforward method is to employ angular sensors to measure
the receiver’s orientation information, thus “compensating” the
missing information due to the reduced number of LED lamps.
Ref. [34] proposed single LED VLP using image and attitude
information from mobile phone to achieve an average accuracy
of 5.5 cm. Ref. [22] proposed a hybrid positioning algorithm
consisting of VLP and pedestrian dead reckoning (PDR) to
achieve decimeter-level accuracy. However, the IMU is a local
frame with arbitrary yaw at the start of each run, it is not identical
to global information (absolute measurements) which can be
directly processed with the VLP, it needs pose initialization.
Ref. [15], [16] efficiently relax the assumption on the minimum
number of simultaneously observable LEDs from three to one
through a tightly-coupled VLP and IMU localization system.
However, they still built up the experimental platform in the area
of 5 m × 4 m × 2.3 m with 23 LEDs, since their system required
more than 4 LEDs for initialization. In our previous work [17],
we proposed a loosely-coupled VLP-inertial fusion scheme,
which can relax the requirement of the observable LEDs to zero.
However, the robot has to head along the x-axis of the global
frame before running so that it can obtain the initial orientation.
Additionally, all of the proprioceptive sensors (IMU, odometry)
are subject to cumulative error. Therefore, another exteroceptive
sensors acquiring information from the robot’s environment, are
needed to handle the LED shortage/outage problem (when VLP
is unavailable) and deal with the cumulative errors from angle
sensors.

B. Simultaneous Localization and Mapping

SLAM is useful for building and updating maps within un-
known environments, while the robot maintains the information
about its location. It consists of the concurrent construction of
a model of the environment (the map) and the estimation of
the pose of the robot moving within it [35]. SLAM can be di-
vided into two categories according to the sensors: vision-based
and LiDAR-based. Compared to other distance measurement
devices, the LiDAR sensor makes measurements around itself
with a wide scanning angle and high angular resolution. Besides,
it is invariant to illumination. The high reliability and precision
make LiDAR sensor a popular option for pose estimation [36].
Cartographer SLAM [37], tinySLAM [38], FastSLAM [39],
and Hector SLAM [40] have been widely applied for LiDAR
range-finder-based mapping and localization. Gmapping SLAM
[41] is the most widely used SLAM method in robotics, it
uses the Rao-Blackwellized (RB) particle filter to process the
environment perceived by the robot, and works with the wheel
odometry to calculate the robot’s position and construct the grid
map. It uses a relatively small number of particles to represent the
SLAM posterior, and reduces the computational effort required
to perform resampling to successfully build very accurate maps.
This approach has achieved remarkable success and indeed is

able to reduce the memory consumption while producing highly
accurate grid maps. Therefore, Gmapping is more suitable for
low-cost mobile platforms where computational resource is
limited. For comprehensive understanding of Gmapping and the
RB particle filter, readers are strongly advised to the works [41],
[42].

Despite its advantage, the LiDAR sensor is not perfect and has
several shortcomings. First of all, the initial pose for LiDAR-
SLAM is an unsolved problem, since SLAM commonly suffers
from data sparsity or limited vertical FOV in real-world appli-
cations. How to bootstrap the localization without a relatively
accurate manually initial guess has not been well considered
[43]. Secondly, the features obtained from the LiDAR are lim-
ited, which is caused by the low vertical resolution and the
sparse point cloud of it. In addition, although most LiDAR offer
a horizontal FOV of 360 degrees, it receives only few usable
points from the side walls in a narrow corridor environment. In
other words, it is difficult to estimate the pose in environments
such as large spaces or long corridors without too much variety
of observations, since the depth information obtained from the
LiDAR rangefinder does not change with time and is considered
featureless. Therefore, the robot will easily get lost when the
geometry of the environment is quite simple, such as a public
space surrounded by a few long walls or circular walls [44].
Finally, the rangefinder of the LiDAR is limited, it only receives
the local information around the robot, and still cannot perceive
the global information of the whole indoor or map environment.

To tackle these problems mentioned above, we are motivated
to adopt VLP to provide the pose initialization or calibration for
LiDAR-SLAM. The VLP can be used to make the robot capable
of sensing a wide range of environments through the global
information provided by LED beacons. While the observation of
external landmarks (LED) is also useful to provide high accuracy
pose initialization for LiDAR-SLAM. We regard the localization
problem as a registration problem between local perceptual
information from the LiDAR and global coordinate information
from the VLP. It can handle the kidnapped problems3 via the
VLP observation to successfully deal with the uncertainty of the
initial guess for LiDAR-SLAM. Thus, combining with VLP and
SLAM, we can achieve more refined, accurate, robust, and global
pose estimation, which meets the intelligent robot application
demand.

III. METHODOLOGY

The proposed multi-sensor fusion for VLP-SLAM aims at
enabling sufficient environment perception (mapping), robust
and accurate localization, and autonomous navigation. In this
section, we firstly introduce the single LED VLP with odometry
(SLO-VLP). Then, the loosely-coupled multi-sensor fusion for
VLP-SLAM is introduced to show how to integrate two different
exteroceptive sensors (camera and LiDAR) information.

A. Visible Light Positioning Calculation

The time-varying VLP signals from LEDs are perceived by
the RSE-camera as spatially-varying strip patterns. Through the
VLP observation, the pose of the robot can be estimated in

3[Online]. Available: https://en.wikipedia.org/wiki/Kidnapped_robot_
problem
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Fig. 1. (a) Self-developed VLC modulator for LED with VLP-ID broadcasting
function; (b) Example results for LED-ROI extraction under background light
interference; (c) The LED-ID decoding.

time. To do so, we need to find its centroid imaging location
(also called as region-of-interest, ROI), recognize its identity
(LED-ID), and retrieve LED’s 3D position from the registered
lights databases (pre-built LED landmark map). After that we
can obtain the global 3D position and azimuth of the robot
through SLO-VLP calculation.

1) LED-ROI Detection: The RSE-camera can capture
barcode-like strip patterns from the high-frequency flashing
LED during underexposure. Natural features are not observable,
while bright objects (e.g., LED beacons, background light) can
be easily distinguished, as shown in Fig. 1(b). We are interested
in the image regions that carrying VLC information, termed
as LED-ROI [45]. We firstly binarize the grayscale image by
thresholding, and then dilate the binary image to fill the strip
gaps. After that, the match template method is utilized to locate
the LED-ROI in the captured image for subsequent LED-ID de-
coding. Since only the contour feature information is needed for
ROI detection, we do not take every pixel into the computation
but downsize the captured images with a constant scale, e.g., 6.
To avoid the errors caused by down sampling, after the boundary
of the LED-ROI is found, all the pixels nearby the obtained
LED-ROI are checked again to detect the precise boundary.
Since the number of pixels in the down-scaled image and the
double-check pixels are much less than that in the original
image, the proposed way to obtain the LED-ROI is efficient.
The effectiveness of the LED-ROI detection scheme has been
well evaluated in our previous work [46].

2) VLC-ID Coding and Decoding: For LED-ID coding, we
develop a VLC modulator for retrofitting LED lamp to transmit

Fig. 2. The transforms among the world, camera, and image coordinate
systems.

the ID information to the RSE-based camera receiver, as can
been seen in Fig. 1(a). The VLC modulator can be embedded into
commercial LEDs. Each LED lamp is assigned with a unique ID,
which is associated with its location and stored in an ID-location
database (pre-built LED landmark map). The designed ID data
packet begins with a 6-bit preamble (header, 011110), proceeded
by 8-bit and 8 kHZ-frequency OOK-coded data payload data.
The payload carries one byte of ID, labeling up to 256 LEDs. The
channel capacity is adequate for our experiment implementation
and can be extended by a larger packet length. The VLC infor-
mation is encoded by strips of varying widths. As can be seen
in Fig. 1(c), the grayscale pixels in the centering column of the
LED-ROI are selected for OOK demodulation. The thresholding
method based on local extremum and sliding window [14] is
adopted to counter the nonuniform illumination of the LEDs.
The decoding rate of our LED-ID decoding method can maintain
more than 95% at a height of 2.7 m, which had been evaluated
in our previous work [17].

3) Single LED VLP With Odometry (SLO-VLP): The pin-
hole camera model is shown in Fig. 2. For VLP calculation,
the position of the LED in the 3-D world coordinate Pi =
[Xi, Yi, Zi]

T (i = 1st , 2nd, . . . N ; i is associated with the
VLP-ID) can be obtained through LED-ID decoding. While
the LEDs mapped onto an image point pi = [xi, yi]

T can be
measured through the LED-ROI detection. For any LEDs Pi in
the world coordinate, we can model the perspective projection
model between the world coordinate and the image plane coor-
dinate pi as:

λ

⎡
⎣xi

yi
1

⎤
⎦ =

⎡
⎣ f/dx

0
0

0
f/dy
0

u0

v0
1

0
0
0

⎤
⎦ [

R T
0 1

]⎡⎢⎣
Xi

Yi

Zi

1

⎤
⎥⎦ (1)

where λ can be represented as the depth between the LED and
the camera. f (focal length), dx/dy (physical size of the pixel),
and u0/v0 (the center pixel of the image) are formed together
as Intrinsic Matrix (denoted as K). T represents the translation
vector, which is equivalent to the receiver’s position in the 3-D
world coordinate system.R is the rotation matrix from the world
coordinate system to the camera coordinate system (2) shown
at the bottom of this page, where α, β and γ is the angle along
the X, Y, and Z axis, and s refer to sin() , c refer to cos(). The

R = Rx (α) ·Ry (β) ·Rz (γ) =

⎡
⎣ cβ ∗ cγ −cβ ∗ sγ sβ

cα ∗ sγ + cγ ∗ sα ∗ sβ cα ∗ cγ − sα ∗ sβ ∗ sγ −cβ ∗ sα
sα ∗ sγ − cα ∗ cβ ∗ cγ cγ ∗ sα+ cα ∗ sβ ∗ sγ cα ∗ cβ

⎤
⎦ (2)
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three rotation angles can be estimated from the proprioceptive
sensor (such as IMU or odometry) attached to the robot. Since
the robot is moving horizontally on the floor, only the azimuth
angle γ needs to be considered, while the other two rotation
angles can be ignored as constant matrixes.

The pose of the robot moving in the 2D plane consists of
coordinates and heading orientation, therefore we work with
a four-dimensional state vector s = [Xs Ys Zs γ ]T . In this
paper, we discuss the mobile robot which moves in 2D environ-
ment, it is horizontal, and the rotation angles along the X and Y
axis are taken to 0o (Cα and Cβ are degenerate into identity
matrix). Then the Z-coordinate Zs of the positioning terminal
can be calculated by:

Zs = Zi − λ (3)

whereλ is equal as the vertical distance from center of the camera
Os to the ceiling. The LED image is no longer treated as a
point, but as an image whose geometric features are exploited
to determine Zs. Then vertical distance λ between the LED and
the lens plane can be expressed as:

λ

f
=

D

Pddpixel
(4)

where D is the physical diameter of the LED, dpixel is the
pixel distance of the LED-ROI, and Pd is the conversion of
the pixel distance and physical distance. Substituting (4) and (5)
into (1), we derive the mathematical relation between the LEDs,
[Xi, Yi, Zi]

T , and the observation values of their corresponding
imag points [xi, yi]

T , then we can obtain the position of the
camera’s center [Xs Ys Zs ]:

fD

Pddpixel

⎡
⎣xi

yi
1

⎤
⎦ = K ·

⎡
⎢⎣
cosγ −sinγ 0 Xs

sinγ cosγ 0 Ys

0 0 1 Zs

0 0 0 1

⎤
⎥⎦ ·

⎡
⎢⎣
Xi

Yi

Zi

1

⎤
⎥⎦ (5)

After estimating the coordinate of the camera’s center, the 3D
position and azimuth of the robot st = [ xt yt zt θt ]

T at time
t can be estimated through the TF transformation4 as follows:

⎡
⎢⎣
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⎥⎦ = F tf
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=
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0 ry 0 0
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⎤
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⎡
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Ys

Zs

γ

⎤
⎥⎦+

⎡
⎢⎣
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0

⎤
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where, rx , ry , rz and tx, ty , tz are the rotation and translation
coefficient from the center of the camera to the base_link5 of
the robot. However, the odometry suffers drift over time, in
which case the assumption of perfectly-known yaw information
will gradually be problematic. While observing a circular LED
without any asymmetry appearance cannot give orientation in-
formation. Therefore, this may have problems when long-term

4[Online]. Available: https://wiki.ros.org/tf
5[Online]. Available: http://wiki.ros.org/navigation/Tutorials/RobotSetup/

TF

drifts occur. In this paper, we utilize a LiDAR scan matcher com-
ponent that corrects the robot’s orientation estimated with a raw
odometry by matching LiDAR scan data with previous scans,
then the cumulative error of the odometry can be compensated:

θt = γ = yawodom + yawLiDAR→map (7)

where yawodom is the raw orientation angle from the odometry,
while yawLiDAR→map is the included angle between the output
TF of the LiDAR-SLAM and the map_frame6.

B. Multi-Sensor Fusion for VLP and SLAM

The proposed multi-sensor fusion for VLP-SLAM includes
map-fusion and localization-fusion. For the map-fusion, the
VLP-constrained Gmapping is proposed to construct the oc-
cupancy grid map7 based on the pre-built LED landmark map.
While for the localization-fusion, an EKF-based pose integration
scheme is designed to stably obtain the global poses of the robot
through odometry, LiDAR-SLAM and SLO-VLP localization.

1) VLP-Constrained Gmapping for Map-Fusion: Mapping
is the fundamental prerequisites for localization and naviga-
tion. Both LiDAR-SLAM and VLP are map-based localization
method, the localization outputs of them are corresponding to
the origin of their respective map_frame (VLP-map and SLAM-
map). As for the VLP-map, it is a pre-build LED landmark
feature map, which manually indicate the localization of the
LED and store in the registered lights databases through LED-ID
coding. While the SLAM-map is an occupancy grid map (binary
map) of navigable regions and boundary walls, which are rep-
resented through white and black (boundaries and obstacles),
respectively, for visualization purposes. The occupancy grid
map is created by obtaining the information from odometry and
LiDAR scanning.

To some extended, the SLAM-map belongs to the local map,
which is based on the starting point of the SLAM Gmapping
process (as the origin). Since the position of the obstacles in the
grid map, which is obtained from the LiDAR scanner, are related
to the odometry during the Gmapping process, while the start
position and direction of the robot is viewed as the origin and
x-axis in the odom_frame8. On the other hand, the VLP-map
is global, which is consist with the floorplan/blueprint of the
building. The origin of the VLP-map is artificially defined, which
is related to the installation coordinate of the LED luminaries.
If the origin of the VLP-map and SLAM-map are not aligned,
the integration between VLP and SLAM would be mismatched.

To overcome this problem, a VLP-constrained Gmapping
method is proposed to ensure the alignment between the SLAM-
map and VLP-map. Since the obstacle or occupancy information
detected in the SLAM-map is collected from LiDAR based on
the current pose of the mobile robot. The SLO-VLP is adopted
into the Gmapping SLAM as the initialization point. Then, the
accuracy of mileage information from the odometry and LiDAR
can be improved and constrained by fusing the SLO-VLP mea-
surement data. The output SLAM-map would be associated with

6[Online]. Available: https://www.ros.org/reps/rep-0105.html#map
7[Online]. Available: https://en.wikipedia.org/wiki/Occupancy_grid_

mapping
8[Online]. Available: https://www.ros.org/reps/rep-0105.html#odom

https://wiki.ros.org/tf
http://wiki.ros.org/navigation/Tutorials/RobotSetup/TF
http://wiki.ros.org/navigation/Tutorials/RobotSetup/TF
https://www.ros.org/reps/rep-0105.html#map
https://en.wikipedia.org/wiki/Occupancy_grid_mapping
https://en.wikipedia.org/wiki/Occupancy_grid_mapping
https://www.ros.org/reps/rep-0105.html#odom
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Fig. 3. The grip map made at the beginning of Point B; “map” coordinate
is the origin of the map. (a) The test field; (b) The occupancy grid map built
by traditional Gmapping; (c) The occupancy grid map built by the proposed
VLP-constrained Gmapping.

the LED beacons in the environment, so that the localization of
the LiDAR-SLAM can be integrated with the VLP measurement.

Without the VLP-constrained, the origin of the SLAM-map
made from traditional Gmapping is the position of the robot
at the beginning of the start-up, which may have a drift. For
example, the robot starts at Point A, then the origin of the
SLAM-map made from Gmapping is Point A, which is same
as the origin of the LED feature map (also Point A). However,
if the robot starts at Point B, then the origin of the SLAM-map
made from Gmapping is Point B, which has a drift from Point
A. As can be seen in Fig. 3, without the VLP-constrained,
the SLAM-map made from Gmapping is termed as the start
point (Point B) as the origin of the SLAM-map. While with
the VLP-constrained Gmapping, the origin of the SLAM-map
can be drifted to the same point as the origin (Point A) of the
pre-built LED landmark map. Thus, the proposed method can
align the LiDAR-SLAM results with the VLP global map, so that
the localization output of the LiDAR-SLAM can be integrated
with the SLO-VLP. After the map-fusion, the information about
a prior-unknown environment is stored as a certainty grid map,
which is a two-dimensional array of identical units that keep
their probability of being occupied by obstacles. This makes
great contributions to the navigation function for VLP system.

2) Loosely-Couple EKF for Localization-Fusion: After map
building, we adopt Adaptive Monte Carlo Localization
(AMCL9) for LiDAR-SLAM to track the pose of the robot
against the map from VLP-constrained Gmapping. AMCL is
a probabilistic localization system for a robot moving in 2D. It
uses a particle filter to track the pose of a robot against a known
map with the LiDAR scanner match and odometry. Since AMCL
is not the contribution in this paper, we would not describe the
details of it, we refer readers to the book Probabilistic Robotics10

for the concept of AMCL.
The full pipeline of the proposed multi-sensor localization fu-

sion based on EKF is illustrated in Fig. 4. Our goal is to estimate
the full 3D (x , y, and θ) pose of a mobile robot in 2D space,
and the state of the robot at time t can be represented as a vector
St = [xt yt θt ]T . The EKF is adopted for state estimation of
dynamic systems, which works as formulas (8) ∼ (12). First, the

9[Online]. Available: http://wiki.ros.org/amcl
10[Online]. Available: http://www.probabilistic-robotics.org/

Fig. 4. The pipeline of the proposed EKF-based VLP-SLAM.

current estimated state ŝt of the robot is predicted based on the
previous state st−1 with the state transition matrices F , and the
control command ut. For our application, the prediction step
is based on the motion model of the odometry measurements
and the twist.11 During the state prediction, the estimated error
covariance, P̂ t, is projected via F, and then perturbed by the
process noise covariance Qt.

ŝt = f (st−1, ut) = Fst−1 + But (8)

P̂ t = FP t−1F
T +Qt (9)

The second step is the measurement update, the EKF in-
corporates the measurements zt from the sensors, including
the camera measurements from our SLO-VLP and the LiDAR
scanning from AMCL, as input to correct its state estimation.
The EKF gain Kt can be calculated by using the observation
matrix H and the estimated error covariance P̂ t:

Kt = P̂ t H
T
[
HP̂ tH

T +Rt

]−1

(10)

where,Rt is measurement noise covariance. Finally, the gainKt

is also used to update the state vector and covariance matrix:

st = ŝt +Kt (zt −Hŝt) (11)

P t = (I −KtH) P̂ t (12)

While the cumulative error or drift from the odometry can be
estimated and compensated by the AMCL, since it can publish
a map_frame to odom_frame transform, which essentially fixes
the pose of the robot in the map frame.

IV. EVALUATION

In this section, we evaluate our system through real-world
experiments, shown in Fig. 5(a). We firstly evaluate the per-
formance of the proposed VLP-constrained Gmapping, which
shows that our VLP-constrained Gmapping can drift or align
the origin of the SLAM building map with the floorplan map.
After that, we verify the property of the proposed multi-sensor
fusion for VLP-SLAM, and show the strong performance and
the robustness of our method compared with the state-of-the-art
(SOTA) methods. Also, we embed the navigation function into
our system to present the navigation and obstacle avoidance
function, as an indication of the overall positioning and naviga-
tion performance.

11[Online]. Available: http://wiki.ros.org/navigation/Tutorials/RobotSetup/
Odom

http://wiki.ros.org/amcl
http://www.probabilistic-robotics.org/
http://wiki.ros.org/navigation/Tutorials/RobotSetup/Odom
http://wiki.ros.org/navigation/Tutorials/RobotSetup/Odom
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Fig. 5. (a) Experimental platform; (b) The computational graph for robot navigation based on our VLP-SLAM; (c) The mobile robot; (d) The indoor map (A
point is the origin of the pre-built LED landmark map, B point is selected as a random point different from the origin).

A. Experimental Settings

We setup a room-sized (around 8.4 × 4.9 m2) test field
with 4 LEDs mounted on the yellow pole with 2.2 m high.
The experiments are performed on a Raspberry Pi 3B mobile
robot (Turtlebot 3 Burger12 with Quad ARM Cortex-A53 Core
1.2 GHz Broadcom BCM2837 64 bits CPU and 1 GB RAM),
which runs an Ubuntu Mate 16.04 OS equipped with a robot
operating system (ROS13). The LEDs’ radiation surface has a
circular shape of size 18.0 cm in diameter. We control the RSE
camera sensor (MindVision UB-300) settings by minimizing
the exposure time, so as to see clear strip patterns from the
modulated LEDs. The image stream is captured at around 6
Hz with a 2048 ×1536 resolution and recorded as ROS bags.
The LiDAR sensor (HLS-LFCD-LDS14) we used is a 2D LiDAR
scanner capable of sensing 360 degrees with one-degree angular
resolution and 12 cm ∼3.5 m detection distance. The LiDAR
is connected and powered by the Raspberry Pi to collect a set
of data around the robot to use for SLAM. The odometry and
LiDAR is sampled at around 24 HZ and 5 HZ, respectively.
Yet for these sensors, hardware synchronization is not available.
Therefore, a multithreading loose synchronization framework
is used in our algorithm. We run our algorithm on a laptop
computer (Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz 2.11
GHz, Ubuntu 18.04) using the recorded bags from the robot. The
major computation is done by the computer, and the physical
components like the LiDAR sensors, RSE-camera, odometry,
etc. are interfaced through the Raspberry Pi robot, which com-
municates serially with the computer through publishing or sub-
scribing the message of the related ROS packages. The indoor

12[Online]. Available: https://emanual.robotis.com/docs/en/platform/
turtlebot3/overview/

13[Online]. Available: https://www.ros.org/
14[Online]. Available: http://wiki.ros.org/hls_lfcd_lds_driver

map of our lab (R&C lab, Innovation and Entrepreneurship
Incubation Base, SCUT) is shown in Fig. 5(d), and is changed
to the occupancy grid map so that it can be visualized in the
RVIZ.15

B. Map-Fusion Performance

In this section, we firstly study the performance of our map-
fusion. The pre-built LED landmark map is fixed and prede-
fined along with the floorplan map of the building (Fig. 5(d)).
With the proposed VLP-constrained Gmapping process, the
VLP-map and the generated SLAM map can be aligned and
integrate together, so that the fusion between the VLP and
LiDAR-SLAM is meaningful. It is worth to mention that, in
this paper, we don’t evaluate the map building accuracy, since
the Gmapping is a related accurate map building method [47],
[48]. The comparison of grid maps made through the traditional
Gmapping (beginning of Point A and Point B in Fig. 5. d), and
the proposed VLP-constrained Gmapping (beginning of Point
B) are visualized in Fig. 6, where we can see that the resulting
maps have similar structure.

Although the mapping performances among these three maps
are similar and good (fit the floorplan of our lab), the origin of
the map is different. As can be seen in Fig. 7 (visualize the robot
in Fig. 6), we visualize the robot (stays at the same Point B with
the same SLO-VLP calculation result) in RVIZ. However, in
Fig. 7(b), the position of the robot on the map drifts out of range,
which is caused by the drift or mismatch of the origin between
the VLP-map and the SLAM-map. Since the SLAM and VLP
are map-based localization method, when the origin of these two
maps is not aligned, the localization fusion between them would
be mismatched. Therefore, our VLP-constrained Gmapping can

15[Online]. Available: http://wiki.ros.org/rviz

https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://www.ros.org/
http://wiki.ros.org/hls_lfcd_lds_driver
http://wiki.ros.org/rviz


GUAN et al.: ROBOT LOCALIZATION AND NAVIGATION USING VLP AND SLAM FUSION 7047

Fig. 6. The resulting map (occupancy grid map) through traditional Gmapping
(a) start at Point A; and (b) start at Point B; (c) The resulting map through
proposed VLP-constrained Gmapping start at Point B.

align the LiDAR scan relative to the pre-built LED landmark
map. Based on Fig. 6 and Fig. 7, we can know that our proposed
VLP-constrained Gmapping has the same performance with the
traditional Gmapping, at the same time, it can drift the origin of
the occupancy grid map to the origin of the LED feature map, so
that it can realize the alignment between the localization output
of LiDAR-SLAM and VLP.

C. Localization-Fusion Performance

1) Positioning Accuracy: To evaluate the positioning accu-
racy of our multi-sensor localizer, two series of experiments
are carried out. The first series are used to test the performance
of motionless objects. 900 locations were randomly chosen in
the experimental field to evaluate the positioning accuracy of
the proposed multi-sensor fusion for VLP-SLAM. Without loss
of generality, we also simultaneously calculate the positioning
result from the SLO-VLP (900 samples) and the AMCL (50
samples) in the experiment. The results can be seen in Fig. 9.
The average positioning accuracy of the proposed multi-sensor
fusion for VLP-SLAM is 2.48 cm with a maximum error of
5.73 cm, which is close to that of SLO-VLP, which is 2.23 cm
with maximum error of 5.74 cm (maintains as similar level to
our previous work [17] [49]). While the average accuracy of the
AMCL (LiDAR-SLAM) is 6.97 cm with a maximum error of
14.18 cm.

2) Robust and Real-Time Pose Estimation: To further assess
the real-time localization performance, we collect the data in
trials to show the positioning performance among the SLO-VLP,
AMCL, and our proposed VLP-SLAM during the movement of
the robot. Fig. 9 shows the estimated trajectories, which travel
around 17.6 m. Due to the limitation of our hardware, we cannot
provide the motion capture system to obtain the ground-truth of a
moving robot. Therefore, we do not discuss the accuracy for the
dynamic localization. For the proposed VLP-SLAM method,
on the one hand, the SLO-VLP can provide high accuracy
positioning, which can not only used as the pose measurement
for the robot but also can be used as the pose initialization and
calibration for the AMCL. On the other hand, with the AMCL
and the odometry, it still can provide localization when the LED
is outage (no LED coverage region). Therefore, the derived pose
estimates from our VLP-SLAM can get smoothed temporally
and can be sustained over a short time when LEDs are not
available. It is worth to mention that the AMCL is the calculation
of robot pose through the LiDAR scanner. When the robot
is under no-LED region, the LiDAR localization calculation

(AMCL) can be used to compensate the information loss of
the VLP, so that the overall robot localization system can work
well without LED density deployment.

3) Real-Time Performance: Positioning speed is another key
factor for localization systems. Especially, when the positioning
terminal is moving, it can continuously receive information from
the positioning system and calculate the current position in time.
In this section, the computational time for position calculation of
our VLP-SLAM is continuously measured 200 times to calculate
the average positioning time-consumption, as shown in Fig. 10.
The average computational time of our VLP-SLAM is around
42ms. There are some special points of positioning time, which
fluctuate from about 100 ms to 120 ms. These points are the EKF
output when SLO-VLP or LiDAR-SLAM calculation is avail-
able, otherwise, the main weight of the EKF output is calculated
through the odometry sensor which is high frequency sampled.
Please note that the odometry provided data at higher rates
than the camera or LiDAR scanner, even when the SLO-VLP
is in-calculating (unavailable caused by calculation delay), the
odometry prediction step of the EKF is still used. Thanks to the
high-rate pose estimation from odometry, our VLP-SLAM can
maintain smooth pose estimation and compensate the delay of
the VLP or LiDAR-SLAM calculation.

D. Navigation Performance

Once mapping and localization are successfully done, the
navigation can be easily achieved since our VLP-SLAM can
provide real-time and accuracy localization. As can be seen
in in Fig. 5(c), we embed our VLP-SLAM method into the
Navigation Stack16 in ROS to navigate the robot. The robot
navigation framework is based on our multi-sensor fusion for
VLP and SLAM, which uses the proposed multi-sensor localizer
to estimate the pose of the robot, and the map data from the
proposed VLP-constrained Gmapping for path planning. ROS
package move_base17 is adopted to accomplish autonomous
navigation. This package uses the localization information from
our multi-sensor localizer and provides move-commands to the
mobile base of the robot to move safely in the environment
without colliding with obstacles. The framework maintains two
costmap18 each for the local and global planner. The global plan-
ner is based on A Star search algorithm, while the local planner
uses the dynamic window approach [50]. Once a navigation goal
is received, the global path planning algorithm takes charge of
generating an appropriate path from the start pose to the target
pose, while the local path planning is responsible for generating
velocity commands. Thanks to the reliable and accurate pose
estimation from our VLP-SLAM fusion, the robot can move
steadily according to the planned path to reach the designated
location.

During the automatic navigation, the VLP provides high accu-
racy pose estimation, initialization, and correction for SLAM,
which contributes to pose initialization for global path plan-
ning. Odometry makes great contributions to maintain real-time
capability and compensate the delay of the VLP or SLAM

16[Online]. Available: http://wiki.ros.org/navigation/Tutorials/RobotSetup
17[Online]. Available: http://wiki.ros.org/move_base
18[Online]. Available: http://wiki.ros.org/costmap_2d

http://wiki.ros.org/navigation/Tutorials/RobotSetup
http://wiki.ros.org/move_base
http://wiki.ros.org/costmap_2d
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Fig. 7. Using the RVIZ to visualize the position of the robot (stay at same point B; “map” coordinate is the origin of the map; “base_link” coordinate is the
position of the robot through SLO-VLP calculation): (a) The SLAM-map made by traditional Gmapping starting at Point A; (b) The SLAM-map made by traditional
Gmapping start at Point B; (c) The SLAM-map made by proposed VLP-constrained Gmapping start at Point B.

Fig. 8. CDF curve of the positioning error for the VLP-SLAM fusion, SLO-
VLP, and AMCL.

Fig. 9. The trajectory estimation of our multi-sensor fusion for the VLP-
SLAM method with SLO-VLP and AMCL. (a) Test One and (b) Test Two
for similar paths.

calculation. While the LiDAR-SALM can compensate the cu-
mulate error from the odometry, and the dynamic obstacles can
be detected through the LiDAR scanner via the update of the
local cost-map to realize the dynamic obstacle avoidance. All of

Fig. 10. The measured positioning / calculation time of our Multi-sensor
fusion for VLP-SLAM.

these contribute to the reliable navigation for robotics. Thus, the
crucial problem of autonomous initialization and localization in
robotics can be solved. For the details of the navigation test, we
strongly recommend readers to our video demo:
� https://www.bilibili.com/video/BV1Qw411Z7HX
� https://www.bilibili.com/video/BV1EP4y1h7Fy/
� https://www.bilibili.com/video/BV1vq4y1K7Tx/
� https://www.bilibili.com/video/BV1JX4y137Q7

E. Discussion

In this section, we compare the performance of our VLP-
SLAM multi-sensor localizer with the SOTA works in the field
of VLP in Table I. The average positioning accuracy, computing
time, and the density of the LEDs in the related experimen-
tal platform are also reported objectively. Compared to other
approaches, our method performs favorably, with less latency
(42 ms), high accuracy (2.5 cm) and no LED density deployment
required. It is worth to mention that, without losing generality,
the proposed multi-sensor fusion for VLP-SLAM method has
also been evaluated in the Hong Kong University of Science and
Technology to show the reproducibility. Extensive experiments
evaluation can be seen in our technology report [49]. Note that
the experiment setup is different between this work and our
technology report [49] with same algorithm, however, based on

https://www.bilibili.com/video/BV1Qw411Z7HX
https://www.bilibili.com/video/BV1EP4y1h7Fy/
https://www.bilibili.com/video/BV1vq4y1K7Tx/
https://www.bilibili.com/video/BV1JX4y137Q7
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TABLE I
PERFORMANCE COMPARISON WITH THE SOTA

“∗” means that the LED lamp with beacon marker.
“#” means that the position estimation was performed in post-processing, not real-time.

the probabilistic theory, the localization result might have slight
fluctuation in different platform, but maintains a similar level
(2.0 cm in [49]). While the real-time performance is different
since the processor is different (52 ms in [49]). But these can
show the stability of the accuracy of our method is also evaluated.
As for the LED density coverage, the VLP coverage area depends
on the FOV of the camera and the height of the LED-installation,
our multi-sensor fusion for VLP-SLAM method can perform
well under LED outage region through LiDAR and odometry.

Compared to the VLP-aided IMU method [6], [15]–[17],
which suffers from bias or drift during long-term running. Our
work can cope with the cumulative error through the LiDAR
scan matching measurement. Through the multi-sensor fusion,
especially the LiDAR scanning compensation, the orientation
angle from the odometry can perform well with considerable
drift after long-term experiments. The single LED VLP, which
is based on the orientation angle from the odometry, can obtain
low-drift and accuracy pose estimation. Therefore, the proposed
multi-sensor fusion for VLP-SLAM can not only achieve well
balance among accuracy, real-time performance, and robustness,
but also compensate the deficiencies of stand-alone sensors and
provide more reliable, more robust positioning and navigation.

For the real-time performance, please note that we run the
whole image process and data collection on a low-cost embedded
platform Raspberry Pi 3B with a large-size captured image of
2048×1536 without any code optimization for ARM processors.
After that, the data (including the VLP observation, LiDAR
scanning, and odometry data) are transmitted to the laptop
which takes charge of multi-sensor fusion pose estimation and
visualizes the result in RVIZ. The time cost here is the whole
process covering both the image process and pose estimation
(runtime on both laptop and Raspberry), and also the time-cost
of data transmission from robot to the laptop. Compared to the
similar process platform with image size of 1640 × 1232 in
Ref. [15], and 640 × 480 in Ref. [6], our proposed multi-sensor
fusion for VLP-SLAM is more efficient, and hence lightweight
to be used on resource-constrained computational platforms.

For the pose initialization, since the odometry only provides
relative motion measurements, the initial pose is needed with

the direction/orientation with respect to the map. For LiDAR-
SLAM localization, the AMCL also needs to initialize its filters,
which is generally done with an initial pose message given
by the user. In our VLP-SLAM method, the VLP can pro-
vide position initialization for the AMCL, while the AMCL
can provide reliable orientation estimation for the SLO-VLP.
Based on this, the robot no longer needs to head along a fixed
direction (e.g., x-axis) before running. When the manually initial
pose (position and orientation) of the robot is not accurate, the
LiDAR-SLAM can adjust the orientation of the robot, while the
SLO-VLP can provide higher accuracy position estimation with
the more correct orientation from the LiDAR. Meanwhile, the
high position estimation from SLO-VLP can update the overall
pose estimation for the EKF, which can also act on the AMCL
to improve the measurement from the AMCL. The interaction
between VLP and LiDAR-SLAM provides reliable and accurate
pose estimation. The details of the random pose initialization can
be visualized through the video demo.19

Furthermore, for LiDAR-SLAM, it is difficult to estimate the
pose in the large space or long corridors without a sufficient
variety of observations. Since similar geometric regions in these
environment may mislead the convergence of AMCL. When the
robot is not under the VLP coverage area, the wrong initialization
for LiDAR-SLAM would cause the robot getting lost since the
geometric regions of these two parts are quite similar. However,
when VLP is available, the position of the robot can be calibrated
to the correct position. The evaluation of the VLP calibration for
LiDAR-SLAM can be seen in the video demo.20

V. CONCLUSION

In this paper, we pursued reliable, real-time, and accurate
pose estimation for mobile robot through the multi-sensor fu-
sion method based on EKF for VLP-SLAM. We relaxed the

19Pose initialization for VLP-SLAM: [Online]. Available: https://www.
bilibili.com/video/BV1VX4y1G7wN

20VLP calibration for SLAM: [Online]. Available: https://www.bilibili.com/
video/BV1iA411N76g/

https://www.bilibili.com/video/BV1VX4y1G7wN
https://www.bilibili.com/video/BV1VX4y1G7wN
https://www.bilibili.com/video/BV1iA411N76g/
https://www.bilibili.com/video/BV1iA411N76g/
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assumption on the minimum number of concurrently observable
LEDs from three to zero for the RSE-camera based VLP system
through integrating with odometry and LiDAR sensor. While
the cumulative error of the odometry can be compensated and
corrected through the LiDAR scanning. The experiment result
shows that the our method has strong robustness with low
latency (42 ms) and high accuracy (2.5 cm), which can achieve
well balance among accuracy, real-time ability and coverage.
In future work, we will deeply study the tightly coupled VLP
and SLAM for incorporating the LED markers into the maps,
which could construct the global map and optimize poses with
sufficient features, together with a method to model and reduce
data uncertainty.
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