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Abstract—Since optical submarine cable systems are a part of the
global communications infrastructure, their total capacity must be
continuously and dramatically enlarged. Recently, methods how to
maximize the transmission capacity under electrical power limita-
tions have been studied, and it has been reported that a single band
(C-band only) transmission system with more fiber pairs (FPs)
could be a promising technology. This finding has triggered work
on submarine cables with more FPs. For a further increase in FPs
in optical submarine cable systems, which also have space limita-
tions in existing cable designs, space-division multiplexing (SDM)
technologies such as multi-core fibers (MCFs) and multi-mode
fibers (MMFs) could be promising solutions. In particular, 125-µm
standard cladding SDM fibers are attractive for early deployment
in submarine cable systems since they are expected to have high
productivity and high mechanical reliability similar to existing
single-mode fibers (SMFs) with the same cladding diameter. In
this paper, we report transpacific MCF transmission over a 30-nm
bandwidth using standard cladding ultralow-loss coupled 4-core
fibers, extending our previous work. The Q2-factors of 608 (4 core
× 152 WDM) SDM/WDM channels modulated with 24-Gbaud
DP (dual polarization)-QPSK (quadrature phase shift keying) ex-
ceeded the assumed forward error correction (FEC) limits after a
9,150-km transmission. As a result, transmission capacity of 50.47
Tbit/s and a capacity-distance product of 461.8 Pbit/s·km were
achieved for standard cladding diameter SDM fibers.

Index Terms—High-capacity transmission, long-haul
transmission, multi-core fiber (MCF), optical submarine cable
system, space-division multiplexing (SDM).

I. INTRODUCTION

S INCE optical submarine cable systems are a part of the
global communications infrastructure, their total capacity

must be continuously and dramatically enlarged to meet the
predicted future traffic demands. Recently, methods how to
maximize the transmission capacity have been studied under
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Fig. 1. Relationship between the transmission distance and the transmission
capacity reported in recent standard cladding SDM fiber transmission experi-
ments over 1000 km.

the condition that the electrical power supplied to the system
is limited, and it has been reported that a single band (C-band
only) transmission system with more fiber pairs (FPs) could be
a promising technology [1]. This finding has triggered work on
submarine cables with more FPs, and it was announced that
the full qualification of submarine repeaters and optical cables
containing 20 or more FPs has been completed [2], [3]. For
a further increase in FPs in optical submarine cable systems,
which also have space limitations in existing cable designs,
space-division multiplexing (SDM) technologies such as multi-
core fibers (MCFs) and multi-mode fibers (MMFs) could be
promising solutions [4]. In particular, 125-μm standard cladding
SDM fibers are attractive for early deployment in submarine
cable systems since they are expected to have high productivity
and high mechanical reliability similar to existing single-mode
fibers (SMFs) with the same cladding diameter [5]. Fig. 1
shows the relationship between the transmission distance and
the transmission capacity reported in recent standard cladding
SDM fiber transmission experiments over 1000 km [6]–[14].
To date, transoceanic distance transmissions have been reported
with standard cladding uncoupled and coupled 4-core fibers [12]
and coupled 7-core fibers [9]; however, the bandwidth used in
these experiments is a part of the C-band and is smaller than
5 nm. In wide-bandwidth transmission, the longest transmission
distance has been 5500 km in a 34.56-Tbit/s transmission using
a coupled 4-core fiber [10].

In this paper, we report transpacific MCF transmission over a
30-nm bandwidth using standard cladding ultralow-loss coupled

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1540-668X
https://orcid.org/0000-0002-8220-9515
https://orcid.org/0000-0003-0936-5922
https://orcid.org/0000-0002-7116-9415
https://orcid.org/0000-0003-0475-5075
https://orcid.org/0000-0002-5209-9650
https://orcid.org/0000-0002-0310-2980
mailto:da-souma@kddi-research.jp
mailto:sh-beppu@kddi-research.jp
mailto:yu-wakayama@kddi-research.jp
mailto:se-sumita@kddi-research.jp
mailto:takahashi@kddi-research.jp
mailto:yoshikane@kddi-research.jp
mailto:morita@kddi-research.jp
mailto:tsuri@kddi-research.jp
mailto:suzuki@kddi-research.jp
https://doi.org/10.1109/JLT.2021.3109890


7100 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 39, NO. 22, NOVEMBER 15, 2021

Fig. 2. Experimental setup.

4-core fibers. This paper extends our previous work [14] with
the following additional contributions:
� Detailed description of the experimental setup for a 9150-

km 152 WDM coupled 4-core fiber transmission.
� Evaluation of the tolerance for the nonlinear effects in

the coupled MCF to determine the optimal fiber launch
power using the center channel of 16-WDM 24-Gbaud DP
(dual polarization)-QPSK (quadrature phase shift keying)
signals.

� Experimental results of the transmission performance and
mode-dependent loss (MDL) as a function of the trans-
mission distance using the typical channels of 152-WDM
DP-QPSK signals in the coupled MCF.

Finally, we show the transmission performance of 152-WDM
24-Gbaud DP-QPSK signals with optimal fiber launch power
after 9150-km coupled 4-core fiber transmission. The Q2-factors
of 608 (4 core × 152 WDM) SDM/WDM channels exceed the
assumed forward error correction (FEC) limits. As a result,
transmission capacity of 50.47 Tbit/s and a capacity-distance
product of 461.8 Pbit/s·km were achieved for standard cladding
diameter SDM fibers.

II. EXPERIMENTAL SETUP

Fig. 2 shows the experimental setup for a 9150-km 152
WDM coupled 4-core fiber transmission. In the transmitter,
the continuous wave (CW) lights generated from eight external
cavity lasers were combined with a frequency spacing of 50 GHz
for even and odd channels. The even and odd channels were
independently modulated using a 4-channel arbitrary waveform
generator (AWG) and two IQ modulators (IQMs). The IQMs
were driven by 24-Gbaud Nyquist-shaped electrical two-level
signals for QPSK, which were generated by AWG operated at

120 GSample/s for the I and Q components. Pseudo-random
bit sequences (PRBS) with lengths of 215-1 were upsampled to
two samples/symbol. The delay between two carriers was set
to be approximately 10000 symbols. Following C-band optical
amplification, the signals were combined with a 25-GHz spacing
and polarization-multiplexed with a delay of 87 ns. Then, we
obtained 16 channels of 25-GHz-spaced 24-Gbaud DP-QPSK
Nyquist-shaped WDM signals in the C-band.

In addition, we constructed a third rail to load 152 WDM
channels in the C-band to maintain not only an optical signal-
to-noise ratio (OSNR) but also nonlinear effects in fiber prop-
agation. These 25-GHz spaced 152 tones were generated by
a two-cascaded carrier-suppressed modulation of 76 50-GHz-
spaced lasers, ranging from 1534.545 nm to 1564.781 nm.
These tones were modulated and polarization-multiplexed in
the same manner as the measured channel. After three rails
were combined and power-equalized with a C-band wavelength
selective switch (WSS), we consequently obtained 152-channel
WDM Nyquist-shaped DP-QPSK signals with a bit rate of 96
Gbit/s including the FEC overhead. The inset of Fig. 2 shows
the measured optical spectrum of the WDM signals. Note that
when we measured the BER at every channel, the 16 consec-
utive channels on the C-band loading rails were automatically
disabled, and the measured channel and the 15 dummy channels
were tuned to the corresponding frequencies in turn.

The generated WDM signal was split into 4 paths, with a rela-
tive delay of 200 ns between subsequent paths for decorrelation,
and fed into a recirculating loop system consisting of four spans
of 60.2-km coupled 4-core fibers, C-band EDFAs and 2x2 optical
switches (SWs). Here, conventional single-mode EDFAs were
used to evaluate the transmission potential of coupled MCFs
in transpacific transmission. The WDM signals after 4-span
transmission were gain-equalized using two 2-channel C-band



SOMA et al.: 50.47-TBIT/S STANDARD CLADDING COUPLED 4-CORE FIBER TRANSMISSION OVER 9150 KM 7101

TABLE I
OPTICAL CHARACTERISTICS OF COUPLED MCF

WSSs. The polarization switches synchronized with the recir-
culating loop system rotated the polarization state of the signals
by 90 degrees per loop to reduce the polarization-dependent
loss (PDL). In this experiment, the skew between the four cores,
which occurs in all devices in a recirculating loop system, such
as FIFO devices, optical amplifiers, WSSs, and optical switches,
was compensated for each span via variable optical delay lines
(VODLs). The skew contributes to an increase in the required
number of MIMO taps in MIMO signal processing, as well as
spatial modal dispersion (SMD). Therefore, we constructed the
recirculating loop system using optical amplifiers, FIFO devices,
and optical patch cords with optical path lengths matched within
a few centimeters between the four cores. Moreover, we compen-
sated for the skew on the order of millimeters using the VODLs
that can be adjusted up to approximately 6 cm ( = 300 ps).

The four cores arranged in a square lattice of the coupled MCF
[15] had almost the same refractive index profile as an ultralow-
loss pure-silica-core single-mode fiber used for long-haul trans-
mission. Table I shows the optical characteristics at 1550 nm
and the cross-sectional image of the fabricated coupled MCF.
The core-averaged transmission loss, effective area, core pitch
and SMD for the coupled MCF at 1550 nm were approximately
0.155 dB/km, 113 μm2, 20.2 μm, and 7.1 ps/�km, respectively.
The insertion losses of the lens-coupled fan-out (FO) devices
at 1550 nm ranged from 0.3 to 0.6 dB (including core and
individual differences). In addition, the losses at one splice
point were less than 0.1 dB for the coupled MCF. Therefore,
in this experiment, the averaged total span losses were 11.8 dB,
including VODLs with a typical insertion loss of 1.0 dB.

In the receiver, the transmitted WDM signals were detected
by four digital coherent receivers based on heterodyne detection
with a free-running local oscillator (LO) after channel selection
with optical bandpass filters (OBPFs). By using heterodyne
detection, the number of photodetectors and A/D converters in
the receiver can be reduced to half compared to intradyne de-
tection. The frequency offset between the LO and the measured

Fig. 3. Q2-factors as a function of the fiber launch power at 6020-km trans-
mission in coupled MCF.

Fig. 4. Q2-factors as a function of the transmission distance at 1534.94 nm,
1555.04 nm and 1563.96 nm.

signal was adjusted to 20 GHz. The received electrical signals
were digitized at 80 GSample/s using four synchronized real-
time oscilloscopes. For offline processing, the stored samples
were processed as follows: The samples were downconverted
to the base band. After rectangular-shaped Nyquist shaping,
the samples for all modes were simultaneously processed by a
half-symbol-spaced 8×8 MIMO equalizer with up to 500 taps.
The MIMO tap coefficients were updated based on a decision-
directed least-mean square (DD-LMS) algorithm [16]. In LMS,
data-aided equalization with training signals was used for initial
convergence. After that, it was switched to blind equalization
( = decision directed mode). After the symbols were decoded,
the Q2-factors were calculated using only the data after the
switch to decision directed mode.

III. RESULTS AND DISCUSSION

A. Fiber Launch Power Optimization
First, we clarified the tolerance for the nonlinear effects in

the coupled MCF to determine the optimal fiber launch power.
Fig. 3 shows the Q2-factors as a function of the power per
channel at 6020-km transmission. The fiber launch power was
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Fig. 5. Optical spectra at (a) core#1, (b) core#2, (c) core#3 and (d) core#4 outputs after 9150-km transmission (0.02 nm res.).

Fig. 6. Q2-factors of 608-SDM/WDM channels calculated from the measured BERs.

Fig. 7. Relationship between transmission distance and worst MDL.

Fig. 8. Worst MDLs of each WDM channel.

defined as the input power to the FI devices. Here, we used
the center channel of 16-WDM 25 GHz-spaced 24-Gbaud DP-
QPSK signals, ranging from 1548.615 nm to 1551.620 nm,

for the simplification of gain equalization of the transmitted
WDM signals using WSSs in the recirculating loop system. The
highest Q2-factor averaged among the four cores was obtained
at –2 dBm/ch. The coupled 4-core fibers had better nonlinear
performance since the fiber launch power could be increased
compared to the standard cladding uncoupled 4-core fibers
with an optimal fiber launch power of –5 dBm/ch [12]. The
accumulation of nonlinear noise is suppressed in coupled MCFs
compared to uncoupled MCFs and SMFs because the waveform
changes along with propagation due to inter-core coupling and
mode dispersion [17]. Therefore, the signal powers launched
into each core of the coupled 4-core fibers were also adjusted to
–2 dBm/ch in the following transpacific transmission experiment
using 152-WDM DP-QPSK signals.

B. Transmission Performance As a Function of the
Transmission Distance

Next, the Q2-factors as a function of the transmission distance
in the typical three channels, which are the center channel and
two channels at both edges in the 152-WDM signals with a band-
width of 30 nm, were measured to clarify the reachability of the
152-WDM DP-QPSK signals in the coupled MCF. Fig. 4 shows
the relationship between the transmission distance and the core-
averaged Q2-factors at wavelengths of 1534.94 nm, 1555.04 nm,
and 1563.96 nm. In this experimental setup, the Q2-factors of
the two channels at both edges degraded by approximately 2 dB
at each transmission distance compared to the center channel.
In addition, the Q2-factors of the two channels at both edges
exceeding the FEC threshold of 25.5% [18], which has the largest



SOMA et al.: 50.47-TBIT/S STANDARD CLADDING COUPLED 4-CORE FIBER TRANSMISSION OVER 9150 KM 7103

Fig. 9. MIMO impulse responses at (a) 1534.545 nm, (b) 1550.016 nm, and (c) 1564.781 nm after the 9150-km transmission.

Fig. 10. Relationship between the wavelength and the number of 8x8 MIMO taps covering ±2σ of the Gaussian fitting of the MIMO impulse response.

overhead among the FECs assumed this time, were obtained after
9150-km transmission. Therefore, the transmission distance was
set to 9150 km in the following high-capacity transmission
experiment using 152-WDM DP-QPSK signals.

C. Transmission Performance of 152-WDM DP-QPSK Signals
Over Coupled 4-Core Fiber

Finally, we evaluated the transmission performance of 152-
WDM DP-QPSK signals after 9150-km coupled 4-core fiber
transmission. Figs 5(a)–(d) show the optical spectra at the output
of each core after 9150-km transmission ((a) core #1, (b) core
#2, (c) core #3, and (d) core #4). The flattened and stable WDM
channels were maintained across a 30-nm bandwidth in the
C-band after transmission due to gain equalization using WSSs
in the recirculating loop system, although core-to-core coupling
occurs dynamically in coupled MCFs. In addition, the power
fluctuation among the cores in each WDM channel was very
small because no significant difference was observed in the
optical spectra between the four cores, as shown in Fig. 5.

Fig. 6 shows the Q2-factors of 608 (4 core × 152 WDM)
SDM/WDM channels calculated from the measured BERs. In
this experiment, we assumed a rate-adaptive FEC [19] (multirate
FEC [20]), which is a promising technology used to maximize
system capacity with the OSNR and the nonlinear effect varia-
tion between WDM channels. The assumed three different soft-
decision (SD)-FECs based on low-density parity-check (LDPC)
codes with a 12.75% overhead (OH) and 6.5 dB FEC limit
[21], a 20% OH and 5.7 dB FEC limit [22], and a 25.5% OH
and 4.95 dB FEC limit [18] were employed, and one of them
was selected for each channel according to the measured BERs.

From the results shown in Fig. 6, the Q2-factors of 107 WDM
channels, 19 WDM channels, and 26 WDM channels exceeded
the thresholds of 12.75% OH FEC, 20% OH FEC, and 25.5% OH
FEC, respectively. The worst Q2-factor was 4.98 dB at 1564.577
nm for core #1, which was higher than the FEC limit of 4.95
dB for the 25.5% OH FEC. The maximum difference in the
Q2-factors between the 4 cores in each WDM channel was 0.9
dB at 1534.545 nm.

Fig. 7 shows the relationship between the transmission dis-
tance and largest MDL [9] in seven typical channels. The largest
MDL is the difference between the maximum and minimum
singular values among 8 tributaries (4-spatial tributaries x 2
polarizations) averaged over the 24 GHz signal bandwidth.
The MDL increased with increasing transmission distance and
tended to be relatively large at both edges of the C-band,
especially at longer wavelengths. In addition, the MDL would be
enhanced compared to a straight-line configuration as well as the
PDL [23] because the signal lights pass through the same devices
in each loop in the recirculating loop system. Fig. 8 shows the
largest MDLs between the 8 tributaries of each WDM channel
after the 9150-km transmission. The MDL is caused by the loss
difference between the cores and the wavelength dependence
of the optical amplifiers, VODLs, WSSs, polarization switches,
and optical switches in the recirculating loop system. The largest
MDLs increased in several channels at both edges of the 30-nm
bandwidth due to the large difference among the four cores in the
gain of the amplifiers for the recirculating loop system at both
edges of the C-band. Fig. 9 shows the MIMO impulse responses
and their Gaussian fitting at (a) 1534.545 nm, (b) 1550.016
nm, and (c) 1564.781 nm after the 9150-km transmission. The
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Gaussian fitting given by f(x;A, μ, σ) = Ae
−(x−μ)2

2σ2 was
obtained by calculating the square of the intensity of the 8x8
MIMO impulse response and averaging it over 64 elements in
the 8x8 MIMO matrix [24]. Note that no wavelength dependency
was observed in these MIMO impulse responses. To roughly
estimate how many MIMO taps should be set, Fig. 10 shows the
number of 8×8 MIMO taps covering±2σ of the Gaussian fitting
of the MIMO impulse response as shown in Fig. 9 in each WDM
channel. These MIMO tap numbers were less than 300 across the
30-nm bandwidth in the C-band after the 9150-km transmission,
although the number increased with increasing square root of the
transmission distance in the coupled MCF [25].

From the obtained experimental results, a transmission ca-
pacity of 50.47 Tbit/s (12.62 Tbit/s/core) was achieved us-
ing the 152-WDM 24-Gbaud DP-QPSK signals over a 30-nm
bandwidth after a 9150-km transmission by assuming the rate-
adaptive FEC.

IV. CONCLUSION

We clarified the tolerance for the nonlinear effects in the cou-
pled MCF to determine the optimal fiber launch power. 50.47-
Tbit/s transpacific coupled MCF transmission over a 30-nm
bandwidth has been successfully demonstrated using standard
cladding ultralow-loss coupled 4-core fibers. The Q2-factors
of all 608 SDM/WDM channels modulated with 24-Gbaud
DP-QPSK exceeded the assumed multirate FEC limits after a
9150-km transmission.
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