
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 39, NO. 19, OCTOBER 1, 2021 6085

Performance Versus Complexity Study of Neural
Network Equalizers in Coherent Optical Systems

Pedro J. Freire , Yevhenii Osadchuk , Bernhard Spinnler , Antonio Napoli , Wolfgang Schairer ,
Nelson Costa , Jaroslaw E. Prilepsky , and Sergei K. Turitsyn , Senior Member, IEEE

Abstract—We present the results of the comparative
performance-versus-complexity analysis for the several types
of artificial neural networks (NNs) used for nonlinear channel
equalization in coherent optical communication systems. The
comparison is carried out using an experimental set-up with the
transmission dominated by the Kerr nonlinearity and component
imperfections. For the first time, we investigate the application
to the channel equalization of the convolution layer (CNN)
in combination with a bidirectional long short-term memory
(biLSTM) layer and the design combining CNN with a multi-layer
perceptron. Their performance is compared with the one delivered
by the previously proposed NN-based equalizers: one biLSTM
layer, three-dense-layer perceptron, and the echo state network.
Importantly, all architectures have been initially optimized by
a Bayesian optimizer. First, we present the general expressions
for the computational complexity associated with each NN type;
these are given in terms of real multiplications per symbol. We
demonstrate that in the experimental system considered, the
convolutional layer coupled with the biLSTM (CNN+biLSTM)
provides the largest Q-factor improvement compared to the
reference linear chromatic dispersion compensation (2.9 dB
improvement). Then, we examine the trade-off between the
computational complexity and performance of all equalizers and
demonstrate that the CNN+biLSTM is the best option when
the computational complexity is not constrained, while when
we restrict the complexity to some lower levels, the three-layer
perceptron provides the best performance.

Index Terms—Neural network, nonlinear equalizer,
computational complexity, Bayesian optimizer, coherent detection,
optical communications, digital signal processing.

Manuscript received March 8, 2021; revised June 13, 2021; accepted July
7, 2021. Date of publication July 13, 2021; date of current version October 4,
2021. This work was supported in part by the EU Horizon 2020 program under
the Marie Sklodowska-Curie Grant 813144 (REAL-NET), by the SMARTNET
EMJMD programme under Grant 586686-EPP-1-2017-1-U.K.-EPPKA1-JMD-
MOB, by Leverhulme Trust under Grant RP-2018-063, and by EPSRC project
TRANSNET. (Corresponding author: Pedro J. Freire.)

Pedro J. Freire, Yevhenii Osadchuk, Jaroslaw E. Prilepsky, and Sergei K.
Turitsyn are with the Aston Institute of Photonic Technologies, Aston
University, Birmingham B4 7ET, U.K. (e-mail: p.freiredecarvalhosourza
@aston.ac.uk; osadchukevgeny@gmail.com; y.prylepskiy1@aston.ac.uk;
s.k.turitsyn@aston.ac.uk).

Antonio Napoli is with Infinera, London EC2A 1NQ, U.K. (e-mail:
ANapoli@infinera.com).

Bernhard Spinnler and Wolfgang Schairer are with the Infinera R&D,
81541 Munich, Germany (e-mail: bspinnler@infinera.com; WSchairer
@infinera.com).

Nelson Costa is with the Infinera Unipessoal, 2790-078 Carnaxide, Portugal
(e-mail: NCosta@infinera.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JLT.2021.3096286.

Digital Object Identifier 10.1109/JLT.2021.3096286

I. INTRODUCTION

AMONGST the variety of different nonlinearity compensa-
tion methods, the machine learning (ML) based techniques

are gaining momentum as a promising and flexible tool capable
to efficiently unroll fiber and component-induced impairments.
In the past several years, the research on artificial neural net-
works (NN) for optical channel equalization has already led
to the development of a noticeable number of novel digital
signal processing (DSP) methods that can provide the perfor-
mance better than that rendered by the “conventional” DSP ap-
proaches [1]–[10]. The fast development of NN-related research
and the growing ML developers community incites testing dif-
ferent novel NN architectures to mitigate fiber propagation im-
pairments. In terms of the experimental verification of NN-based
equalizers, several works dealt with the intensity-modulation
with direct-detection (IM/DD) links. It was demonstrated that
the application of the NNs with different internal structures, such
as multi-layer perceptron (MLP) [11], [12] (i.e. a simple densely
connected feed-forward NN architecture), convolutional NNs
(CNN) [13], [14], echo state networks (ESN) [15], and long
short-term memory (LSTM) NNs [16], is efficient in improving
optical system-level performance. However, the test of similar
NN architectures in coherent optical systems has been carried
out, mainly, numerically [17]–[20], or in short-haul experi-
ments [21]–[24]. It is worth noticing that some very recent
works evaluated the functioning of NN-based equalizers in
metro/long-haul trials [4], [5], [8]–[10].

The variety of existing and emerging channel equalizers
makes a comparative analysis of the different solutions a timely
challenge. The NN-based channel equalization refers to two
important aspects: i) the improvement of performance by the
reduction of bit-error rate (BER), and ii) the complexity of
the algorithms, which is a fundamental issue for practical im-
plementation. Clearly, the comparison can be carried out only
for specific systems: some approaches can be more suitable
for certain transmission links, while the others are favorable
for different systems.

To gain a thorough understanding of how each of the afore-
mentioned NN architectures performs, we need to pick a bench-
mark system for the comparison. In this work, we perform
such a comparison using, as a benchmark, a single channel
transmission of a dual-polarization (DP) 16-QAM signal with
34.4 GBd rate transmitted over 9×50 km TrueWave Classic
(TWC) fiber spans at the power of 2 dBm. Such a choice of
the fiber and the power level ensures that the system is in the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3145-1018
https://orcid.org/0000-0002-1612-7036
https://orcid.org/0000-0001-9578-0297
https://orcid.org/0000-0002-9264-9274
https://orcid.org/0000-0001-7417-9398
https://orcid.org/0000-0002-8678-5691
https://orcid.org/0000-0002-3035-4112
https://orcid.org/0000-0003-0101-3834
mailto:p.freiredecarvalhosourzapenalty -@M @aston.ac.uk
mailto:osadchukevgeny@gmail.com
mailto:y.prylepskiy1@aston.ac.uk
mailto:s.k.turitsyn@aston.ac.uk
mailto:ANapoli@infinera.com
mailto:bspinnler@infinera.com
mailto:WSchairerpenalty -@M @infinera.com
mailto:NCosta@infinera.com
https://doi.org/10.1109/JLT.2021.3096286

6086 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 39, NO. 19, OCTOBER 1, 2021

strongly nonlinear regime, as we intend to study how the NNs
unroll the Kerr nonlinearity effects. In our work, we analyze
both the synthetically simulated and the experimental data. We,
first, analyze the performance of several previously studied
NN models: MLP, bidirectional LSTM (biLSTM), and ESN.
Next, we compare their performance with that rendered by new
composite NN structures: i) the convolutional layer coupled with
the MLP (CNN+MLP); ii) the combination of the convolutional
layer with the biLSTM (CNN+biLSTM). These new designs
are, then, tested in the same environment, allowing us to infer
the performance characteristics pertinent to each type among the
7 different NN topologies. We point out that the term “topology”
in our research identifies the particular NN structure (architec-
ture) with a specific fixed distribution of hyper-parameters. We
emphasize that, in contrast to other similar investigations, we
employ the Bayesian optimization procedure [9] for each NN
type studied. This provides the optimal distribution of hyper-
parameters pertaining to each NN type, such that we identify the
best functioning regime (in terms of the performance delivered)
for each architecture without complexity constraints. We show
that the new CNN+biLSTM combination performs better than
all other studied types. For each NN type considered hereafter,
we also present the analytical expressions for the complexity, i.e.
the number of multiplications attributed to each specific NN per
recovered symbol. The highest complexity for the optimized NN
equalizers corresponds to the new CNN+biLSTM composition
that also renders the best performance.

The completely new subject in the remit of this manuscript is
what happens when we restrain the complexity of different NN
types: no work has previously addressed the comparison of the
performance rendered by different NNs considering the identical
levels of computational complexity. Our findings demonstrate
a nontrivial behavior: while at the relatively high complexity
levels the best performing model is the CNN+biLSTM, when
we constraint the complexity to lower values, the simple MLP
equalizer outperforms the advanced NN structures with the same
complexity. Nevertheless, we notice that the goal of this paper
is not to reach a broad conclusion about the trade-off between
the complexity and performance for all possible transmission
scenarios; rather, we aim at emphasizing the importance of
accounting for this issue in the equalizer design stage, and we
provide the tools for one’s correctly assessing the DSP-type
complexity of the most popular NN-layers.

The paper is organized as follows. In Section II we describe the
details of the different NN equalizers analyzed in our study. Sec-
tion III presents how to compute the computational complexity
on all NN-based equalizers considered in this paper. Section IV
describes the experimental setup and contains the results, includ-
ing the comparison between the performance and computational
complexity of different NN topologies; the performance is also
compared with the digital back-propagation with 3 steps per
span. Our findings are summarized in the conclusion.

II. A ZOO OF NEURAL NETWORK-BASED EQUALIZERS

In this section, we revisit the most popular NN architectures
that have been proposed and investigated so far in coherent

optical channel post-equalization. We also introduce two new
composite NN equalizer structures that can be deemed as the
extension of previously proposed NN configurations.

To enhance the reproducibility of our methods, we provide a
thorough summary of each NN architecture. The code of the al-
gorithms implemented in Python 3.6.9 with TensorFlow (2.2.0)
GPU backend and Keras (2.3.1), is provided in Zenodo [25].

Before addressing the details of the NN-based equalizers,
let us describe how the datasets used in this work are created.
When dealing with the optical channel equalization, we require
the NN to process not only the symbol of interest but also the
neighboring ones insofar as both the chromatic dispersion and
the drive amplifier add the memory to the channel. The latter
means that the NN performs better if it is given information about
the correlations between the symbols in the sequence. Therefore,
the input of the real-valued NN models used in this paper (in
the regression task), is the time-domain vector delayed by k
symbols (the memory vector) containing the real and imaginary
parts of both polarizations for the symbol at the time-step k
and its 2N neighboring (past and future) symbols. In the NN
signal processing, due to the computational memory constraints
the input layer receives just a portion of the total data, called
the mini-batch, as far as the finite computational resources limit
the length of the sequences with which we can operate. The
NN input mini-batch shape can be defined by three dimensions:
(B,M, 4), whereB is the mini-batch size,M is the memory size
defined through the number of neighbors N as M = 2N + 1,
and 4 is the number of features for each symbol, referring to the
real and imaginary parts of two polarization components. The
output target is to recover the real and imaginary parts of the
k-th symbol of one of the polarization, so the shape of the NN
output batch can be expressed as (B, 2).

In general, for all the NNs considered in this paper, we use
the mean square error (MSE) loss estimator, since this choice
corresponds to the conventional loss function frequently used
for the regression tasks [26]. The other types of loss functions
such as the mean absolute error, the Huber Loss, and the Log-
Cost loss, were also considered for our NNs, but they did not
show any noticeable benefits compared to the MSE. Moreover,
it is important to highlight that we decided to present just the
regression task in this paper because (for our test case scenario)
the results achieved by regression and classification algorithms
were close, but some fewer epochs were needed in the case of
regression to reach the lowest BER.

The classical Adam algorithm was chosen for the stochas-
tic optimization step with the default learning rate equal to
0.001 [27]. All NNs were trained for at most 1000 epochs (if not
stopped earlier because of negligible changes in the loss function
value over 150 epochs) and, after every training epoch, we
calculated the BER obtained using the independently generated
testing dataset.

The dataset was composed of 220 symbols for the training
dataset and 218 independently generated symbols for the eval-
uation. To eliminate any possible data periodicity and overesti-
mation [28] in our experiment, a pseudo-random bit sequence
(PRBS) of order 32 was used to generate those datasets with
different random seeds for each of them. The periodicity of

FREIRE et al.: PERFORMANCE VERSUS COMPLEXITY STUDY OF NEURAL NETWORK EQUALIZERS 6087

the data is, therefore, 210 times higher than our training dataset
size, since the modulation format used in our study was the 16
QAM. For the simulation, the Mersenne twister generator [29],
which has periodicity equal to 219937 − 1, was used with a
different random seed. Additionally, we highlight that the NN
training data were shuffled using numpy.random.shuffle
function in Python before feeding the dataset into the NN: such
a shuffling helps to mitigate overfitting. The experimental setups
and scenarios in which the datasets were acquired are described
in the following sections.

The following subsections will delve deeper into the design
of the NN models used within this paper.

A. A Multi-Layer Perceptron

The first and, perhaps, simplest and well-studied NN-based
equalizer that we consider is the MLP, proposed for the short-
haul coherent system equalization in [22] and the long-haul sys-
tems in [30]. The MLP is a deep feed-forward densely connected
NN structure that handles the I/Q components for each polariza-
tion jointly, providing two outputs for each processed symbol:
its real and imaginary parts. Due to the MLP’s ability to process
joint I/Q components, the equalizer can learn the nonlinear phase
impairments in addition to the amplitude-related nonlinearities.
When using the MLP, the channel and device-induced memory
effects are taken into account by incorporating the time-delayed
versions of the input signal, as it was implemented in [30].

In a simulation environment, the MLP equalizer showed
performance metrics similar to those delivered by the “tradi-
tional” digital back-propagation (DBP) with 2 steps-per-span
and 2 samples-per-symbol at 1000 km of standard single-mode
fiber [30]. In our current paper, we use the same 3-layer MLP
as in [22], but in our case here the number of neurons and the
activation function are optimized for each layer. Importantly,
the number of layers in MLP, which is 3, has been found as
optimal for our particular transmission scenario by the Bayesian
optimizer (BO). However, this MLP topology rendered the BO,
can alter essentially for different transmission scenarios.

The general equation, in a matrix form, describing the output
vector y given the input x passing through the 3-layer MLP, is:

y=φ

{
φ [φ(x×Wn1

+b1)×Wn2
+b2]×Wn3

+b3

}
×Wout,

(1)
where x is the input vector with ni elements, y is the output
vector with no elements, φ is a nonlinear activation function,
Wn1

∈ Rni×n1 , Wn2
∈ Rn1×n2 , Wn3

∈ Rn2×n3 and Wout ∈
Rn3×no are the real weight matrices of the respective dimensions
participating in each layer of the MLP, b1,2,3 are the bias vectors,
the indexesn1,2,3 stand for the number of neurons in each hidden
layer, and × in (1) is the matrix-vector convolution.

B. Long Short-Term Memory NNs

Compared to static (memoryless) systems where the MLPs
can be efficient, the time sequences usually ought to be ap-
proached dynamically. Thus, recurrent NNs (RNNs) are often
favored over other NN models for time sequences. However,

Fig. 1. The Long Short-Term Memory (LSTM) cell diagram representing
graphically the operations described by (2) for one time-step. The arrows
represent the “flow” of respective variables (the blue/green ones refer to the
previous state and current input), the rectangles identify the nonlinear functions,
while the symbols in circles identify the respective mathematical operations.

training the recurring connections can be a much more compli-
cated task compared to the MLP training, so that the network
weights are usually changed almost imperceptibly. This aspect
of RNNs often leads to the well-known vanishing gradient
problem [26], [31]. The LSTM networks were built to solve it
and to harness the memory-related effects. The LSTM comprises
a gateway architecture that includes three gate types: the input
(it) gates, the forget (ft) gates, and the output (ot) gates, as
shown in Fig. 1. The compact form of the forward pass LSTM
cell equations for a time-step t (i.e. when we process the input
feature sequence xt having the size ni) is [32], [33]:

it = σ(W ixt + U iht−1),
ft = σ(W fxt + Ufht−1),
ot = σ(W oxt + Uoht−1),

Ct = ft � Ct−1 + it � tanh(W cxt + U cht−1),
ht = ot � tanh(Ct),

(2)

where Ct is the cell state vector, ht is the current hidden state
vector of the cell with size nh and ht−1 is the previous hidden
state vector. Note that ni is equal to the number of features,
and nh is the number of hidden units that will be chosen in the
design process. The trainable parameters of the LSTM network
are represented by the matrices W ∈ Rnh×ni and U ∈ Rnh×nh

with the respective upper indices i, f , o, and c, referring to
the particular LSTM gates mentioned previously. More details
are given in Fig. 1. In (2), � is the element-wise product, and
σ denotes the logistic sigmoid activation function. The aim of
the input i-gate is to store the content to the cell; the forget
f -gate defines what information is to be erased; the output o-gate
defines what information has to be passed to the next cell.

What makes the usage of the LSTM a dynamical approach is:
the time sequence is processed by the array of LSTM cells rang-
ing over the t-interval of interest, which is the memory size in our
case. Besides the “dynamical” LSTM property, the bidirectional
LSTM (biLSTM) provides a more robust solution for time series
since with the bidirectional structure, we are learning the weights
from the past visible values to the future hidden values, and that
corresponds to our learning which features of the past values are
useful for a particular symbol value prediction [34]. In the optical
channel equalization context, the key advantage of biLSTM

6088 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 39, NO. 19, OCTOBER 1, 2021

Fig. 2. Schematic of a leaky-ESN. A dynamical core called a reservoir is
driven by input signalx. The states of the reservoirs are combined non-linearly to
produce the output y. The reservoir consists ofN interconnected nodes followed
by a static (leaking) layer. The circular dashed lines in dynamic and static layers
represent the past state values, while the solid lines represent the current time
step value. The reservoir and input weights are fixed after initialization, while
the output weights are learned using a regression technique.

is that it can efficiently handle intersymbol interference (ISI)
between the preceding and the following symbols.

In the context of channel equalization, the LSTM was sug-
gested in [16], [35] to reduce the transmission impairments in
IM/DD systems with pulse amplitude modulation (PAM). The
LSTM-based approach was developed further in [17], where, for
the first time, the biLSTM was used in an optical coherent system
to compensate for fiber nonlinearities, but only in a simulation
environment. Additionally, it was shown that the biLSTM also
outperformed a low-complexity DBP [17]. More recently, a
bi-vanilla RNN was applied as well for the soft-demapping non-
linear ISI [10]. In our current study, we use a similar structure as
in [17], where the NN model is made up of a bidirectional LSTM
layer followed by a dense layer. Finally, we note that, in contrast
to the previous studies where the grid search was executed to
guess the optimal number of hidden unities and memory size,
this paper uses the BO to identify the best-performing biLSTM
structure [9].

C. Echo State Networks

The ESN is a promising type of RNNs due to its relaxed
training complexity and its ability to preserve the temporal
features from different signals over time [21], [36]–[39]. The
ESNs are in the reservoir computing (RC) category because in
the ESNs only the output weights are trainable. In Fig. 2, the
grey-colored area is the reservoir “main” structure containing
the randomly connected “neurons” that capture the time features
of the signal, while the output weights are trained to define which
states are more relevant to describe the desired output. In this pa-
per, we use the concept of leaky-ESN [40] containing no output
feedback connections. Our motivation to choose the leaky-ESN
architecture is that there was an experimental observation that
the leaky-ESN configuration outperforms the traditional ESN

in feature extraction for noisy time series [37]. The latter is,
evidently, an important property in optical transmission-related
tasks. The leaky-ESN is formalized for a certain time-step t, as
follows:

at = φ (Wr × st−1 +Win × xt) , (3)

st = (1− μ)st−1 + μat, (4)

yt = Wo × st, (5)

where st ∈ RNr is the system state at time-step t, Nr is the
number of hidden neurons units in the dynamic layers, which
represents the dimensionality in the reservoir;xt ∈ Rni andyt ∈
Rno are the input and the output vector of the ESN, respectively;
Wr ∈ RNr×Nr is a reservoir weight matrix that defines which
neuron units are connected (including the self-connections); this
matrix is also characterized by a sparsity parameter sp defining
the ratio of connected neurons to the total possible connections
number. Finally, Win ∈ RNr×ni is the input weight matrix, μ
is the leaking rate parameter, and Wo ∈ Rno×Nr is the output
weight matrix which is the only one that is trainable using a
regression technique. This training phase in ESN does not affect
the dynamics of the system, which makes it possible to operate
with the same reservoir for different tasks [36]. A schematic
representation of a leaky-ESN, including the sequential input,
dynamic, static, and output layers, is depicted in Fig. 2.

The signal passing through the dynamic layer in Fig. 2 is
represented by (3), and this layer is the core of the reservoir
structure. Then it is followed by a static layer, represented by (4),
which incorporates the leaky-ESN behavior through accumulat-
ing (integrating) its inputs, but it is also losing exponentially
(leaking) accumulated excitation over time. Finally, the output
layer defines which units are relevant to the description of the
current task (for the equalization, in our case), and it is described
by (5).

Concerning the previous ESN applications for optical channel
equalization [38], the ESN was implemented in the optical do-
main for the distortions’ mitigation: a 2 dB gain inQ2-factor was
achieved for 64-QAM 30 GBaud signals transmitted through
100 km fiber at 10 dBm input power. In addition, the same as
it is in our paper, the reservoir can be applied in the digital
domain. In [21], the leaky-ESN was successfully applied after
the analog-to-digital converter to enable 80 km transmission to
reach below KP4-FEC limit [41] for a 32 GBd on-off keying
signal.

D. Convolutional Neural Networks

Due to their feature extraction propensity [26], the CNNs have
become one of the most commonly used NN structures in such
areas as 2D image classification and 3D video applications [42],
[43]. Convolution layers have also been found efficient in the
analysis of temporal 1D sequences with several applications to
time series sensors, audio signals, and natural language pro-
cessing [44], [45]. For longer sequences, the CNN layer can be
used as a pre-processing step due to its ability to reform the
original sequence and extract its high-level features used for
further processing cycles [24].

FREIRE et al.: PERFORMANCE VERSUS COMPLEXITY STUDY OF NEURAL NETWORK EQUALIZERS 6089

Here, we investigate, for the first time, two new models for the
equalization of signal distortions in metro systems, combining
a 1D convolutional layer performing the effective signal pre-
processing with two previously proposed NN-based equalizers:
the MLP described in Section II-A, and the biLSTM, Section II-
B. These new structures, CNN+biLSTM and CNN+MLP, are
addressed in our study because it was shown that the convolution
layers are efficient in image denoising [46] and array signal
processing [47], where the CNNs can reduce the background
and quantization noise effects on coded signals. Therefore, we
can naturally surmise that in our model the first convolutional
layer can enhance the received signal by removing a part of the
embedded noise before it enters the next neural layer. Also, gen-
erally, by adding the CNN layer, we end up with a NN model with
less trainable parameters without losing performance, which can
be yet another advantage. To that end, in the current study, we
analyze how the combined NN architectures work for the optical
channel equalization task. A simplified CNN+MLP combination
was already successfully used in [24] in the transceiver for the
high-baud-rate 80 km system.

The convolutional layer is primarily characterized by three
key parameters: the number of filters, the size of its kernel,
and the layer activation function. The extracting functionality
is achieved by applying nf filters, sliding over the raw input
sequence, and generating the number of output maps equal
to nf , with a fixed kernel size nk. The convolutional layer is
constructed as a squash function, which means that the input is
mapped to a lower-dimensional representation, in which only the
main (or desirable) characteristics are retained. Since the CNNs
were mainly developed in the context of image recognition and
spacial feature extraction, other parameters such as padding, di-
lation, and stride, are also used in the design of the convolutional
layers. Considering that the input shape is (B,M, 4), the output
shape after the CNN layer with all those parameters is defined
as (B,Lout, nf), where the parameter Lout is the function of
the CNN hyper-parameters and defined as:

Lout=

[
M + 2·padding−dilation·(nk − 1)−1

stride
+1

]
. (6)

However, in this paper, we will not focus on the investigation
of those additional parameters. Consequently, we fix the default
convolutional layer configuration with the padding equal to 0
(which corresponds to “valid” in Keras), the dilation equal to
1, and the stride equal to 1. Then, the input-output mapping of
the convolution layer for this configuration can be described as
follows:

yfi = φ

⎛
⎝ ni∑

n=1

nk∑
j=1

xin
i+j−1,n � kfj,n + bfj,n

⎞
⎠ , (7)

where yfi is the output feature map of the i-th input element
produced by filter f in the CNN layer, xin is the input raw data
vector, kfj is the j-th trained convolution kernel of the filter f ,

and bfj is the bias of the filter f . Further, n is the feature index of
the kernel and input data, ranging from 1 to ni, corresponding
to the number of features in the data; φ, as before, denotes the
nonlinear activation function used in the convolutional layer.

Fig. 3. Schematic of the convolutional-recurrent NN composed.

Note that (7) is true for all i ∈ [1, . . ., Lout]. Moreover, since
the pooling layer captures only the most important features in
the data and ignores the less important ones [48], the pooling
discretization process is not used in our equalizers to avoid the
downsampling of feature sequences.

The output collection of feature maps, yf , emerging from
the convolutional layer, is then fed into one of the structures
described above: either into two dense layers (MLP, where the
number of layers is, again, dictated by the BO), forming the
CNN+MLP structure or into the one biLSTM layer, resulting
in CNN+biLSTM, as shown in Fig. 3. We recall that we use
the convolutional layer before the following layers to extract the
middle-level locally invariant features from the input series.

Here we mention that even the CNNs alone are extremely
powerful deep learning instruments that have a complicated
multi-parametric structure that combines filters, kernel size,
padding, stride, dilation, and pooling. However, having per-
formed an exhaustive experimental exploration, we observed
that deep CNNs have not reached the substantial performance
level, like the one achieved by CNN+ MLP or CNN+biLSTM
in our test case. Therefore, in this work, we utilize the convolu-
tion layers as pre-processing feature-extracting step and do not
include deep CNN architectures in our current study.

III. COMPUTATIONAL COMPLEXITY OF THE NN-BASED

EQUALIZERS

In this section, the computational complexity in terms of real
multiplications per recovered output symbol is examined for
all introduced NN architectures. We notice that the number of
additions is typically neglected for such estimation in ordinary
DSP techniques [49]. The major reason for this is that the typical
algorithms for multiplying two integers with n digits have a
computational complexity of O(n2), whereas adding the same
two numbers has a computational complexity of Θ(n) [50]. As
a result, due to dealing with float values with 16 decimal digits,

6090 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 39, NO. 19, OCTOBER 1, 2021

multiplication is by far the most time-consuming part of the
implementation procedure.

Here we point out that the training complexity will not be
considered since we evaluate the real-time computation com-
plexity (evaluation phase), which is the most critical part, while
the training of a NN equalizer is carried out offline (calibration
phase). Also, the computational complexity of nonlinear acti-
vation functions is not considered in our framework, due to the
fact that typically their operation is based on an approximation
approach, rather than on direct multiplicative calculation. In the
classical lookup tables-based (LUTs) approximation method,
direct mapping can be digitally implemented with much fewer
computations [51], [52].

Early works presented the results regarding the complexity
of the MLP [30], RNN [53], and LSTM [35] layers. However,
to enhance the understanding of this subject and clarify it, in
our work we directly relate those complexities to the parameters
of the most widely used machine learning platforms (Keras,
TensorFlow, and PyTorch) without losing generality, and specif-
ically addressing the composite NN types described before.
Let the mini-batch size be B, ns be the input time sequence
size, with ns = M , where M is the memory size (see also
Section II), and ni be the number of features, which in our
case is equal to 4. Since we recover the real and imaginary
parts of each symbol, the number of outputs per symbol, no, is
equal to 2. For ESN, biLSTM, and CNN layers, as they require
inputs in the form of tensors of rank 3, the input of the NN
equalizer can be parametrized as [B,ns, ni], the three numbers
defining the dimensions of the input tensor, as mentioned above.
The parametrization for the MLP equalizer is simpler, with
[B,ns · ni] defining the dimensions of the 2D tensor input.
We use flattening layers when it was necessary to reduce the
dimensionality of the data.

In this case, considering three dense layers with n1, n2, and
n3 neurons, respectively, the complexity CMLP of the resulting
NN is given by:

CMLP = nsnin1︸ ︷︷ ︸
a1

+n1n2 + n2n3︸ ︷︷ ︸
b1

+n3no︸ ︷︷ ︸
c1

, (8)

where a1 is the contribution of the input layer, b1 is the contribu-
tion of the hidden layer, and c1 refers to the contribution of the
output layer. The subindex “1” in a, b, and c explicitly associates
these parameters with the MLP architecture

The next part presents the computational complexity for an
NN-based equalizer composed of a biLSTM layer. Assuming
that the biLSTM layer has nh hidden units, the complexity of
such a NN is given by:

CbiLSTM = 2nsnh(4ni + 4nh + 3 + no)︸ ︷︷ ︸
a2

,
(9)

where a2 is the contribution of the only layer, while the subindex
“2” attributes the number a to the biLSTM. This expression is
easier to understand if we analyze the mathematical description
of the LSTM cell, see (2) and Fig. 1. We have several contribu-
tions to the cell’s complexity. In the first layer we have 4ninh

multiplications associated with the input vector xt. Then, 4n2
h

multiplications are due to the operations with the previous cell

output ht−1. Afterward, 3nh and nonh multiplications due to
the internal multiplications identified with � and involving the
current cell output (ht) going into the output layer, respectively,
are added. Lastly, we multiply the number of operations by the
number of time steps in the layer, ns. Since the topology is
bidirectional, the total contribution is also multiplied by 2.

Following Section II, now we address the computational
complexity associated with the ESN equalizer. Before
presenting the respective expression, it is important to emphasize
two aspects. First, the implementation of the ESN in the digital
domain does not benefit from the fact that only the output
layer weights are trainable, since, as mentioned previously, the
training is not a key bottleneck as it is carried out during the
offline calibration process. Second, the complexity of the ESN
can potentially drop drastically if we implement it in the optical
domain as an ESN dynamic layer, as it was noted in [38].
However, in this paper, we analyze the ESN implementation in
the digital domain, similarly to [21].

Considering the leaky-ESN definition given by (3)–(5), the
computational complexity of this equalizer can be expressed as:

CESN = ns

⎛
⎜⎝niNr +N2

r sp︸ ︷︷ ︸
a3

+ 2Nr︸︷︷︸
b3

+Nrno︸ ︷︷ ︸
c3

⎞
⎟⎠. (10)

In the expression above, a3 represents the contributions of (3),
where the input layer adds niNr multiplications whereas the
dynamic layers add N2

r sp. b3 refers to the contributions of (4)
describing the static layer, and c3 represents the multiplications
in the output layer, (5). This overall process is repeated for
all ns time steps. Note that in the case of a potential optical
implementation of the ESN, a3 and b3 would be equal to zero,
and only the final weights would be learned in the digital domain.

Finally, let us address the complexity of the composite struc-
tures: CNN+MLP and CNN+biLSTM. The computational com-
plexity of a 1-D convolutional layer is described as:

CCNN = ninfnk

[
ns + 2 padding−dilation(nk − 1)−1

stride
+1

]
(11)

However, we assumed (7) that the convolutional layer is
defined by the number of filters nf , the kernel size nk, and
that the number of time steps ns ≥ nk, according to (6) the
output size for each filter of the CNN is (ns − nk + 1). (12)
and (13) are the expressions for the complexity of a convolutional
layer combined with two dense layers or one biLSTM layer,
respectively:

CCNN+MLP = ninfnk(ns − nk + 1)︸ ︷︷ ︸
a4

+

(ns − nk + 1)nf︸ ︷︷ ︸
b4

n1 + n1n2 + n2no︸ ︷︷ ︸
c4

, (12)

CCNN+biLSTM = ninfnk(ns − nk + 1)︸ ︷︷ ︸
a5

+

(ns − nk + 1)︸ ︷︷ ︸
b5

2nh[4nf + 4nh + 3 + no]︸ ︷︷ ︸
c5

.

(13)

FREIRE et al.: PERFORMANCE VERSUS COMPLEXITY STUDY OF NEURAL NETWORK EQUALIZERS 6091

In this scenario, the two-layer MLP has n1 and n2 neurons in
each respective layer, and the biLSTM layer hasnh hidden units.
In the equations above, a4 and a5 are the contributions of the
convolutional layer, b4 is the correction factor for the transition
between layers since the flattening layer was placed before the
dense layers; b5 is the number of time-steps for the following
biLSTM layer; c4 is the contribution of the two-layer MLP; and
c5 is the contribution of the biLSTM layer where, in this case, the
number of filters, nf , is equal to the number of features entering
the LSTM cell.

Finally, we would like to present the computational complex-
ity of the DBP-based receiver used in this paper for benchmark
purposes. We considered a basic implementation of the DBP
algorithm [54], where each propagation step comprises a linear
part for dispersion compensation followed by a nonlinear phase
cancellation stage. The linear part is achieved with a zero-forcing
equalizer by transforming the signal in the frequency domain
and multiplying with the inverse dispersion transfer function of
the propagation section. The complexity of the DBP in terms of
RMpS is [30], [49]:

CDBP=4NspanNstep

(
nNFFT[log2(NFFT) + 1]

(NFFT −ND + 1)
+ n

)
,(14)

where Nstep is the number of steps per span used, NFFT is the
FFT size, n is the oversampling ratio, and ND = τD/T , where
τD corresponds to the dispersive channel impulse response and
T = 1/Rs is the symbol duration. We have considered that
NFFT = 256 and τD defined as:

τD =
1.1Rsc|D|Lspan

f2
cNsteps

, (15)

where fc is the optical carrier reference frequency that in our
case was 193.41 THz, c is the speed of light, Lspan is the span
length and D is the fiber dispersion parameter.

IV. PERFORMANCE VERSUS COMPUTATIONAL COMPLEXITY

TRADE-OFF ANALYSIS

In this section, we initially describe the numerical and exper-
imental scenarios used in this paper to analyze and compare the
functioning of the equalizers detailed in Section II. After that,
the two types of analysis for our set of NN structures are carried
out. First, we present the maximum performance improvement
(in terms of Q-factor gain compared to the non-equalized case)
that each equalizer can deliver and compare this gain to the
respective computational complexity corresponding to each op-
timized equalizer. Then, we decrease the computational com-
plexity of six NN topologies from Section II and present the
gain improvement provided by each NN-equalizer when all NNs
have approximately the same computational complexity. This
enables us to investigate the dependence of optical performance
on the computational complexity and to identify which equalizer
is better for a certain complexity level.

A. Experimental and Numerical Setups

The setup used in our experiment is depicted in Fig. 4. At the
transmitter, a DP-16QAM 34.4 Gbaud symbol sequence was

Fig. 4. Experimental setup used to analyze the performance of different NN
equalizers; further details are reported in Section IV-A. The input of the NN
(shown as the purple rectangle at the bottom right) is the soft output of the
regular DSP just before the decision unit.

mapped out of data bits generated by a 232 − 1 PRBS. Then,
a digital RRC filter with roll-off 0.1 was applied to limit the
channel bandwidth to 37.5 GHz. The resulting filtered digital
samples were resampled and uploaded to a digital-to-analog
converter (DAC) operating at 88 GSamples/s. The outputs of the
DAC were amplified by a four-channel electrical amplifier which
drove a dual-polarization in-phase/quadrature Mach-Zehnder
modulator, modulating the continuous waveform carrier pro-
duced by an external cavity laser at λ = 1.55μm. The resulting
optical signal was transmitted over 9×50 km spans of TWC
optical fiber with EDFA amplification. The optical amplifier
noise figure was in the 4.5 to 5 dB range. The parameters of
the TWC fiber – at λ = 1.55μm – are: attenuation coefficient
α = 0.23 dB/km, dispersion coefficient D = 2.8 ps/(nm · km),
and effective nonlinear coefficient γ = 2.5 (W · km)−1.

At the RX side, the optical signal was converted into the
electrical domain using an integrated coherent receiver. The
resulting signal was sampled at 50 Gsamples/s by a digital
sampling oscilloscope and processed by an offline DSP based
on the algorithms described in [55]. Firstly, the bulk accumu-
lated dispersion was compensated using a frequency domain
equalizer, which was followed by the removal of carrier fre-
quency offset. A constant-amplitude zero-autocorrelation-based
training sequence was then located in the received frame, and
the equalizer transfer function was estimated from it. After the
equalization, the two polarizations were demultiplexed and the
signal was corrected for clock frequency and phase. Carrier
phase estimation was then achieved with the help of pilot sym-
bols. Thereafter, the resulting soft symbols were used as input
for the NN equalizers. Finally, the pre-FEC BER was evaluated
from the signal at the NN output.

6092 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 39, NO. 19, OCTOBER 1, 2021

Fig. 5. Comparison of the computational complexity versus performance for the different NN-based equalizer considered within this paper with their optimized
architectures and the DBP with 3 StPS. The number over each bar gives the 10 logarithm of the number of multiplications per recovery symbol an input layer
corresponding to a time series with 4 features, followed by a 1D- convolutional layer (represented with two rectangles containing neurons) and a biLSTM layer,
shown with the two lines (bi-directional) of lozenges, and ending with the flattering layer (a thick vertical deep-green line) and the output layer consisting two
linear neurons to represent the real and imaginary part of the recovered symbol.

With regard to simulation, we mimic the experimental trans-
mission setup.1 The optical signal propagation along an optical
fiber was simulated by solving the Manakov equations via
the split-step Fourier method (with a resolution of 1 km per
step). Every span was followed by an optical amplifier with
the noise figure NF = 4.5 dB, which fully compensates fiber
losses and adds amplified spontaneous emission noise. At the
receiver, after full electronic chromatic dispersion compensation
(CDC) by the frequency-domain equalizer and downsampling
to the symbol rate, the received symbols were normalized to
the transmitted ones. Finally, we added Gaussian noise to the
signal representing an additional transceiver distortion that we
may have in the experiment, such that the Q-factor level of
the simulated data matched the experimental one. The system
performance is evaluated in terms of the Q-factor, defined as:
Q = 20 log10[

√
2 erfc−1(2BER)].

B. Optimized NN-Based Architectures

In this section, we show the maximum achievable Q-factor
for all equalizers without constraining the computational com-
plexity. The Bayesian optimization (BO) tool, introduced in [9]
for optical NN-based equalizers, was implemented to identify
the optimum values of hyper-parameters for each NN topology,
which provides the best Q-factor in the experimental test dataset.
As it was recently shown, the BO renders superior performance
compared to other types of search algorithms for machine learn-
ing hyperparameter tuning [56]. The same topologies (without
further optimization) were tested for the numerical analysis as
well. The search space used in the BO procedure was defined via
the allowed hyper-parameters intervals: N = [1 to 50], nf = [1
to 1000], nk = [1 to 20], nh = [1 to 1000], n1 = [1 to 1000],
n2 = [1 to 1000], n3 = [1 to 1000], Nr = [1 to 1000], sp = [0
to 1], μ = [0 to 1], and spectral radius=[0 to 1].

In Table. I, the line marked with the “Best Topology” label,
summarizes the hyper-parameters obtained by the BO. These
values are used to count the real multiplications per symbol
recovery (complexity), and to assess the equalizers’ performance

expressed via the Q-factor gain, Fig. 5. Note that for all equal-
izers, the same optimal number of taps found by the BO was
N = 20, which means that the memory in our equalizers is
M = 41 and the mini-batch size, B, is equal to 4331. Moreover,
for the ESN, the BO found the best value μ = 0.57, and the
optimal spectral radius equal to 0.667. The activation functions
found for every hidden NN layer are summarized as follow-
ing: 1D-CNN layer – ‘linear′ activation function followed by
LeakyReLU (Leaky version of a Rectified Linear Unit) with
negative slope coefficient alpha = 0.2; biLSTM layer – hyper-
bolic tangent (‘tanh′) activation function; ESN layer – ‘tanh′

activation function; MLP layer – ‘tanh′ activation function.
The results obtained by using the numerical synthetic data

are presented in Fig. 5(a). First, the CNN+biLSTM turned
out to be best-performing in terms of the Q-factor gain: it
achieved a 4.38 dB Q-factor improvement when compared to
the conventional DSP algorithms [55], 0.05 dB when compared
to the biLSTM equalizer level, 0.47 dB when compared to
the CNN+MLP equalizer level, 1.4 dB when compared to the
MLP equalizer level, and 3.96 dB when compared to the ESN
equalizer level. Second, when adding the convolutional layers
to MLP and biLSTM, we observed the improvement in terms
of the number of epochs needed to reach the highest perfor-
mance: the single-layer biLSTM required 119 epochs, while
the CNN+biLSTM reduced this number to 89 epochs; the MLP
itself needed 214 epochs to reach the best performance level, and
the CNN+MLP required just 100 epochs. Thus, we conclude
that the addition of a convolutional layer indeed renders the
enhancement in the NN structure’s performance and assists in
the training stage.

When considering how NN equalizers function with the ex-
perimental data, Fig. 5(b), we can mention two major observa-
tions. First, similarly to the numerical results, the CNN+biLSTM

1We consider a DP-16QAM, single-channel signal at 34.4 Gbaud pre-shaped
by an RRC filter with 0.1 roll-off transmissions with an upsampling rate of 8
samples per symbol (275.2 GSamples/s) over a system consisting of 9×50 km
TWC-fiber spans.

FREIRE et al.: PERFORMANCE VERSUS COMPLEXITY STUDY OF NEURAL NETWORK EQUALIZERS 6093

TABLE I
SUMMARY OF THE COMPLEXITY ATTRIBUTING TO EACH NN EQUALIZER

TOPOLOGY: THE TOPOLOGY TYPE IS IDENTIFIED IN THE LEFTMOST COLUMN.
THE COMPLEXITY CORRESPONDING TO EACH TOPOLOGY AND THE NN TYPE

IS EXPRESSED IN TERMS OF REAL MULTIPLICATIONS PER SYMBOL RECOVERED

(RMPS), HIGHLIGHTED IN RED. IN THIS TABLE, WE ALSO DEPICT THE

HYPER-PARAMETERS DISTRIBUTIONS FOUND BY THE BO: THE CELL MARKED

AS “BEST TOPOLOGY” AND OTHER 6 TOPOLOGIES (TOPOLOGIES FROM 1 TO 6,
REFERRING TO THE INCREASING COMPLEXITY THRESHOLD NUMBER) FOR THE

STUDY OF COMPLEXITY VERSUS PERFORMANCE. IN ADDITION, FOR ALL

TOPOLOGIES, THE VALUES OF ns, ni AND no WERE: 41, 4 AND 2,
RESPECTIVELY, AND THESE ARE NOT REPORTED IN THE TABLE

is best-performing among all the considered NN structures in
terms of the Q-factor gain. The CNN+biLSTM demonstrated
a 2.91 dB improvement when compared to the conventional
DSP, 0.15 dB when compared to the biLSTM equalizer, 0.61 dB
when compared to the CNN+MLP equalizer, 0.96 dB when
compared to the MLP equalizer, and 2.33 dB when compared
to the ESN equalizer. Additionally, as was also observed in
the numerical analysis, a lower number of training epochs was
necessary to reach the best performance point when we add
a convolutional layer: using the CNN+biLSTM we needed 169
epochs, while for the pure biLSTM this number was 232 epochs;
the number of epochs required for the CNN+MLP to reach
the best performance was 107, and for the pure MLP it was
753 epochs. Second, compared to the simulation, the overall
gain of all NN-based equalizers is slightly reduced. This can be

explained by the existing “reality gap” between the numerical
model and the true experimental transmission results. In a real
transmission, extra nonlinearity and the non-ideal behavior of
transceiver (signal clipping by the ADC/DAC, harmonic and
intermodulation distortions of the driver amplifier (DA), I/Q
skew, etc.) add extra noise add complexity to the process of
channel inversion. We believe that with just the date from the
split-step method, the NNs can unroll the synthetic propagation
effects more easily than reverting the actual propagation in the
experimental condition. We also point out that even though the
gain numbers are different in the numerical and experimental
data, the NN structures’ performance followed the same pattern
for both numerical and experimental cases: the best performance
was attributed to the CNN+biLSTM, the next level performance
pertains to the biLSTM, followed by the CNN+MLP, the MLP
and, finally, the ESN.

Finally, of all equalizer types investigated in this study, the
DBP 3 StPS applied with two samples per symbol was still
the least complex method. In all simulation and experiment test
cases, however, the CNN+biLSTM outperformed the 3 StPS
DBP, as shown in Fig. 5. Even by optimizing the DBP’s nonlinear
coefficient parameter (γ), the DBP approach was able to en-
hance the Q-factor only by 1.32 dB, whereas the CNN+biLSTM
equalizer improved it by 2.91 dB, in the experimental case. The
boost in the performance in the experiment scenario provided
by the CNN+biLSTM relative to the DBP demonstrates the
NN-equalizer’s power in mitigating transmission impairments
in a practical application.

C. Comparative Analysis of Different NN-Based Equalizers
With the Fixed Computational Complexity

The analysis given above does not address the question of
which NN topology would provide the best gain if we restrict
the NN structure’s complexity to a certain level. To answer
this question, we retested the equalizers constraining the total
number of real multiplications per recovered symbol (RMpS).
We considered the complexity values in the range from 103 to
108 RMpS. We note that the NN structures with large RMpS
(∼ 108) can be prohibitively complex for efficient hardware
implementation. However, Ref. [57] demonstrated an efficient
FPGA implementation of LSTM NN with 256 and 512 hidden
units. This result reveals that the architectures outlined in this
research are still feasible for realistic signal processing when
advanced techniques for NN hardware implementation are used.

The hyper-parameters distributions for each NN architecture
with the complexity constraint are summarized in Table I in
the cells marked from ’‘Topology 1” to “Topology 6”. The
parameters of those topologies were also tuned by the BO: for
each case, we reduced the allowed BO search range to comply
with each computational complexity constraint.

As seen in Fig. 6, for different allowed computational com-
plexity levels, the performance ranking of equalizer types
changes. Several conclusions can be drawn analyzing the re-
sults emerging from the simulated, Fig. 6(a) and experimental,
Fig. 6(b), data. First, in the experimental scenario, the best com-
plexities corresponding to the maximum gain coincide with the

6094 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 39, NO. 19, OCTOBER 1, 2021

Fig. 6. Q-factor gain dependence on the constrained multiplications number for the equalizers having different architectures, presented in Section II, in the case
of DP-16 QAM single channel TWC-fiber 9×50 km. The power level is 2 dBm, which guarantees the high enough nonlinearity transmission regime.

complexities identified by the BO procedure, which confirms the
effectiveness of the BO in finding the “right” NN architecture.
Second, in simulations, the maximum performance is reached
already at a lower complexity level compared to the experi-
mental results. As it can be seen from the experimental figure,
the CNN+biLSTM, CNN+MLP, and biLSTM equalizers need
≈107 RMpS, while in the simulation ≈106 RMpS was already
enough to achieve the best performance. This observation further
confirms that the NN can cope with the reversion of the simulated
channel more easily than with the reversion of experimentally
obtained data. Third, when we increase the complexity above the
level determined by the BO, the gain remains nearly constant:
this is due to overfitting and it is particularly pronounced in the
MLP scenario. The key concept of the function approximation
capability of the MLP belongs to its number of i) feed-forward
hidden layers and ii) hidden neurons; these two parameters
define the NN’s capacity [58]. Changing the MLP’s capacity by
adjusting the complexity levels frequently leads to unpredictable
changes in the NN’s performance. Starting at the 105 complexity
level for both simulation and experimental layouts, we can see
that the MLPs with oversized capacity suffer from overfitting,
as the network memorizes the properties of the training set in
such detail that it can no longer efficiently recover the informa-
tion from the inference dataset [58]. The latter blockades the
equalizer from providing further Q-factor improvement. Thus,
we argue that the architectures found by the BO identify the
most appropriate NN equalizer’s capacity (structure) matching
our problem, and a further increase in complexity cannot render
any noticeable performance improvement.

Next, we note that for the high level of RMpS (Topologies 4,
5, and 6), the best-performing equalizer is the CNN+biLSTM.
However, once we reduce the number of real multiplications
from Topology 3 and below, the best-performing equalizer turns
out to be the traditional MLP. This can be explained by the fact
that advanced architectures, such as CNN and biLSTM, require
more filters and a higher number of hidden units, respectively,
to learn the complete dynamics of the data. Also, we observe
that the CNN+biLSTM performs similarly to the CNN+MLP at
low complexity levels (orange and yellow curves in Fig. 6), and

similarly to the biLSTM (blue line) at high complexity. Conse-
quently, we can infer how the addition of a convolutional layer
works: while for high complexity the blue and orange curves are
approximately the same, at a lower allowed complexity level the
CNN+biLSTM performs better.

In addition, we used the hatched blue zone in both simulation
and experimental cases, attributed to the traditional DBP with
3 StPS, to highlight the performance of the NN equalizers with
similar computational complexity to the DBP. Then, it is evident
that reducing the number of neurons, filters, and hidden units is
not the optimal technique to achieve low complexity architec-
tures, because the performance fell below the DBP level. As a
possible alternative, pruning and quantization techniques [59],
[60] can be used to minimize the computational complexity of
the NN equalizers without compromising their performance,
making the NN equalizers appealing not only for their good
performance but also for their decreased complexity.

Finally, the performance shown by the ESN does not meet
the expectations, where we observed the lowest achievable gain
numbers. However, Ref. [61] contains the results explaining the
poor ESN performance for the nonlinear wireless scenario. It
was shown that in the channel with a high level of noise, the
ESN-based equalization indeed performs poorly. Furthermore,
in that Ref. it was demonstrated that by increasing the ESNs’
number of neurons (i.e. its complexity), and, thus, effectively
increasing the hidden dimensionality of the representation, the
equalization performance worsens. Moving to the nonlinear
optical channel equalization, we observed both aforementioned
effects: the performance was relatively poor due to the high
level of noise, and the performance did not improve when we
increased the complexity, as can be seen from the behavior of
the green curve in Fig. 6.

V. CONCLUSION

In this paper, we proposed and examined the novel designs
of combined NN-based post-equalizers: (a) CNN+MLP and
(b) CNN+biLSTM, for the equalization of coherent optical
fiber channels. We reviewed and compared several key existing

FREIRE et al.: PERFORMANCE VERSUS COMPLEXITY STUDY OF NEURAL NETWORK EQUALIZERS 6095

NN-based methods with the proposed new algorithms using
both the numerically simulated synthetic data and the exper-
imental data from the benchmark transmission system. One
of the important outcomes of our work lies in the reported
analytical expressions for the complexity (the number of real
multiplications) associated with each NN type considered in the
paper. Although a comparative analysis has been carried out for
a specific benchmark system, we believe that our findings are
relatively generic and can be applied to other scenarios.

Fiber Kerr nonlinearity was the predominant source of signal
deterioration in the experimental benchmark system used for
comparing different channel equalizers. In order to analyze the
equalizers functioning with the clear nonlinear signal distor-
tions, we used a low dispersion TWC fiber and processed the
data at 2 dBm signal launch power. We emphasize that the
trade-off conclusions for each NN equalizer’s performance and
complexity are unique to the system under consideration in this
paper. However, we believe that our research paves the way
for a rigorous methodology that can be used for estimating the
computational cost of various NN-based channel equalizers.

We described in detail the design of the selected most promis-
ing NN-based equalizers. To derive the best-performing NN
structures, we utilized the Bayesian optimization of each NN
type that provides the optimized set of hyper-parameters for
each particular NN-based equalizer type. For these optimized
structures, we found that the best performance of the test system
was rendered by the new CNN+biLSTM architecture, though
the performance of the pure biLSTM was only slightly lower.
However, the optimized CNN+biLSTM design corresponded to
the highest complexity among all cases studied.

The important part of the analysis was the comparison of the
performance under the condition of the restricted complexity:
the respective results are given in the last section. We found that
at high complexity levels, the best-performing NN among stud-
ied cases was the CNN+biLSTM. However, when reducing the
complexity, we observed the transition: when the allowed com-
plexity is relatively low, the best-performing structure turned out
to be the simple MLP. We can explain this behavior as follows:
the advanced architectures (the CNN and biLSTM) require more
complexity-hungry components (filters or hidden units) to learn
the data dynamics, while the MLP is less demanding using
just the summation and activation functions at the basic level.
Overall, we conclude that the addition of the convolutional layer
can be beneficial if we do not restrain the complexity. However,
complexity can play a crucial role in the hardware implementa-
tion of the NN equalizers. Our analysis demonstrates that even
the simple NN structures, like the MLP, can outperform the more
advanced counterparts when the complexity is constrained to
relatively low levels.

REFERENCES

[1] M. A. Jarajreh et al., “Artificial neural network nonlinear equalizer for
coherent optical OFDM,” IEEE Photon. Technol. Lett., vol. 27, no. 4,
pp. 387–390, Feb. 2015.

[2] D. Wang et al., “System impairment compensation in coherent optical
communications by using a bio-inspired detector based on artificial neu-
ral network and genetic algorithm,” Opt. Commun., vol. 399, pp. 1–12,
2017.

[3] C. Häger and H. D. Pfister, “Nonlinear interference mitigation via deep
neural networks,” in Proc. IEEE Opt. Fiber Commun. Conf. Expo., 2018,
pp. 1–3.

[4] C. Huang et al., “Demonstration of photonic neural network for fiber
nonlinearity compensation in long-haul transmission systems,” in Proc.
Opt. Fiber Commun. Conf. Exhib., 2020, pp. 1–3.

[5] B. I. Bitachon, A. Ghazisaeidi, M. Eppenberger, B. Baeuerle, M. Ayata, and
J. Leuthold, “Deep learning based digital backpropagation demonstrating
SNR gain at low complexity in a 1200 km transmission link,” Opt. Exp.,
vol. 28, no. 20, pp. 29 318–29 334, Sep. 2020.

[6] Y. Zhao et al., “Low-complexity fiber nonlinearity impairments compen-
sation enabled by simple recurrent neural network with time memory,”
IEEE Access, vol. 8, pp. 160 995–161 004, 2020.

[7] M. M. Melek and D. Yevick, “Nonlinearity mitigation with a perturbation
based neural network receiver,” Opt. Quantum Electron., vol. 52, no. 10,
pp. 1–10, 2020.

[8] S. Zhang et al., “Field and lab experimental demonstration of nonlinear im-
pairment compensation using neural networks,” Nature Commun., vol. 10,
no. 1, pp. 1–8, 2019.

[9] P. J. Freire et al., “Complex-valued neural network design for mitigation
of signal distortions in optical links,” J. Lightw. Technol., vol. 39, no. 6,
pp. 1696–1705, 2021.

[10] M. Schaedler, F. Pittala, G. Böcherer, C. Bluemm, M. Kuschnerov, and S.
Pachnicke, “Recurrent neural network soft-demapping for nonlinear ISI
in 800Gbit/s DWDM coherent optical transmissions,” in Proc. 46th Eur.
Conf. Opt. Commun., 2020, pp. 1–4.

[11] J. Estaran et al., “Artificial neural networks for linear and non-linear
impairment mitigation in high-baudrate IM/DD systems,” in Proc. 42nd
Eur. Conf. Opt. Commun., 2016, pp. 1–3.

[12] L. Yi, T. Liao, L. Xue, and W. Hu, “Neural network-based equalization
in high-speed PONs,” in Proc. IEEE Opt. Fiber Commun. Conf. Exhib.,
2020, pp. 1–3.

[13] P. Li, L. Yi, L. Xue, and W. Hu, “56Gbps IM/DD PON based on 10G-class
optical devices with 29dB loss budget enabled by machine learning,” in
Proc. Opt. Fiber Commun. Conf., 2018, pp. 1–3.

[14] M. Liang and J. Du, “Research on signal recovery method of IM/DD optical
fiber transmission system based on multi-bit and multi-class classification
convolutional neural network,” in Proc. Asia Commun. Photon. Conf.,
2020, pp. 1–3.

[15] S. M. Ranzini, F. Da Ros, H. Bülow, and D. Zibar, “Optoelectronic
signal processing for chromatic dispersion mitigation in direct detection
systems,” in Proc. IEEE 22nd Int. Conf. Transparent Opt. Netw., pp. 1–2,
2020.

[16] X. Dai, X. Li, M. Luo, Q. You, and S. Yu, “LSTM networks enabled
nonlinear equalization in 50-Gb/s PAM-4 transmission links,” Appl. Opt.,
vol. 58, no. 22, pp. 6079–6084, 2019.

[17] S. Deligiannidis, A. Bogris, C. Mesaritakis, and Y. Kopsinis, “Compen-
sation of fiber nonlinearities in digital coherent systems leveraging long
short-term memory neural networks,” J. Lightw. Technol., vol. 38, no. 21,
pp. 5991–5999, 2020.

[18] O. Sidelnikov, A. Redyuk, S. Sygletos, M. Fedoruk, and S. K. Turitsyn,
“Advanced convolutional neural networks for nonlinearity mitigation in
long-haul WDM transmission systems,” J. Lightw. Technol. vol. 39, no. 8,
pp. 2397–2406, 2021.

[19] O. S. Sidelnikov, A. A. Redyuk, S. Sygletos, and M. P. Fedoruk, “Meth-
ods for compensation of nonlinear effects in multichannel data transfer
systems based on dynamic neural networks,” Quantum Electron., vol. 49,
no. 12, pp. 1154–1157, 2019.

[20] C. Häger and H. D. Pfister, “Physics-based deep learning for fiber-optic
communication systems,” IEEE J. Sel. Areas Commun., vol. 39, no. 1,
pp. 280–294, Jan. 2020.

[21] S. M. Ranzini, R. Dischler, F. Da Ros, H. Buelow, and D. Zibar, “Exper-
imental investigation of optoelectronic receiver with reservoir computing
in short reach optical fiber communications,” J. Lightw. Technol., vol. 39,
no. 8, pp. 2460–2467, 2021.

[22] M. Schaedler, C. Bluemm, M. Kuschnerov, F. Pittala, S. Calabro,
and S. Pachnicke, “Deep neural network equalization for optical short
reach communication,” Appl. Sci., vol. 9, no. 21, pp. 4675-1–4674-14,
2019.

[23] B. Karanov et al., “Experimental investigation of deep learning for digital
signal processing in short reach optical fiber communications,” in Proc.
IEEE Workshop Signal Process. Syst., 2020, pp. 1–6.

[24] V. Bajaj, F. Buchali, M. Chagnon, S. Wahls, and V. Aref, “Single-channel
1.61 Tb/s optical coherent transmission enabled by neural network-based
digital pre-distortion,” in Proc. IEEE Eur. Conf. Opt. Commun., 2020,
pp. 1–4.

6096 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 39, NO. 19, OCTOBER 1, 2021

[25] P. J. F. de Carvalho Souza, “Zoo of neural network based equalizers,” Ac-
cessed: Mar. 2021. [Online]. Available: https://doi.org/10.5281/zenodo.
4582298

[26] C. C. Aggarwal, Neural Networks and Deep Learning. Springer, 2018.
[27] A. Gulli and S. Pal, Deep Learning With Keras. Packt Publishing Ltd,

2017.
[28] T. A. Eriksson, H. Bülow, and A. Leven, “Applying neural networks in

optical communication systems: Possible pitfalls,” IEEE Photon. Technol.
Lett., vol. 29, no. 23, pp. 2091–2094, Dec. 2017.

[29] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator,” ACM Trans.
Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, 1998.

[30] O. Sidelnikov, A. Redyuk, and S. Sygletos, “Equalization performance
and complexity analysis of dynamic deep neural networks in long haul
transmission systems,” Opt. Exp., vol. 26, no. 25, pp. 32 765–32 776,
2018.

[31] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J.
Schmidhuber, “A novel connectionist system for unconstrained handwrit-
ing recognition„” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 5,
pp. 855–868, May 2009.

[32] F. Karim, S. Majumdar, H. Darabi, and S. Chen, “LSTM fully convo-
lutional networks for time series classification,” IEEE Access, vol. 6,
pp. 1662–1669, 2017.

[33] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhu-
ber, “LSTM: A search space Odyssey,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 28, no. 10, pp. 2222–2232, Oct. 2017.

[34] T. Osogami, H. Kajino, and T. Sekiyama, “Bidirectional learning for time-
series models with hidden units,” in Proc. Int. Conf. Mach. Learn., 2017,
pp. 2711–2720.

[35] X. Lu et al., “Memory-controlled deep LSTM neural network post-
equalizer used in high-speed PAM VLC system,” Opt. Exp., vol. 27, no. 5,
pp. 7822–7833, 2019.

[36] P. Verzelli, C. Alippi, and L. Livi, “Echo state networks with self-
normalizing activations on the hyper-sphere.,” Sci. Rep., vol. 9, no. 1,
pp. 1–14, 2019.

[37] C. Sun, M. Song, S. Hong, and H. Li, “A review of designs and applications
of echo state networks,” 2020, arXiv:2012.02974.

[38] M. Sorokina, “Dispersion-managed fiber echo state network analogue with
high (including THz) bandwidth,” J. Lightw. Technol., vol. 38, no. 12,
pp. 3209–3213, 2020.

[39] H.-P. Ren, H.-P. Yin, C. Bai, and J.-L. Yao, “Performance improvement
of chaotic baseband wireless communication using echo state network,”
IEEE Trans. Commun., vol. 68, no. 10, pp. 6525–6536, Oct. 2020.

[40] Q. Wu, E. Fokoue, and D. Kudithipudi, “On the statistical chal-
lenges of echo state networks and some potential remedies,” 2018,
arXiv:1802.07369.

[41] E. El-Fiky, A. Samani, D. Patel, M. Jacques, M. Sowailem, and D. V. Plant,
“400 Gb/s O-band silicon photonic transmitter for intra-datacenter optical
interconnects,” Opt. Exp., vol. 27, no. 7, pp. 10 258–10 268, 2019.

[42] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber,
“Flexible, high performance convolutional neural networks for image
classification,” in Proc. 22d Int. Joint Conf. Artif. Intell., pp. 1237–1242,
2011.

[43] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei, “Large-scale video classification with convolutional neural networks,”
in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2014, pp. 1725–
1732.

[44] J. Gu et al., “Recent advances in convolutional neural networks,” Pattern
Recognit., vol. 77, pp. 354 –377, 2018.

[45] Y. LeCun and Y. Bengio, Convolutional Networks for Images, Speech, and
Time Series. Cambridge, MA, USA: MIT Press, 1998, pp. 255–258.

[46] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian
denoiser: Residual learning of deep CNN for image denoising,” IEEE
Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, Jul. 2017.

[47] Z. Zhao, H. Liu, and T. Fingscheidt, “Convolutional neural networks to
enhance coded speech,” IEEE/ACM Trans. Audio, Speech, Lang. Process.,
vol. 27, no. 4, pp. 663–678, Apr. 2018.

[48] A. Hassan and A. Mahmood, “Convolutional recurrent deep learning
model for sentence classification,” IEEE Access, vol. 6, pp. 13 949–13
957, 2018.

[49] B. Spinnler, “Equalizer design and complexity for digital coherent
receivers,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5,
pp. 1180–1192, Sep./Oct. 2010.

[50] S. Jahani, “ZOT-MK: A new algorithm for big integer multiplication,”
MSc, Dept. Comput. Sci., Universiti Sains Malaysia, Penang, 2009.

[51] F. Piazza, A. Uncini, and M. Zenobi, “Neural networks with digital LUT
activation functions,” in Proc. Int. Conf. Neural Netw., vol. 2, 1993,
pp. 1401–1404 .

[52] Y. Xie, A. N. Joseph Raj, Z. Hu, S. Huang, Z. Fan, and M. Joler, “A
twofold lookup table architecture for efficient approximation of activation
functions,” IEEE Trans. Very Large Scale Integration Syst., vol. 28, no. 12,
pp. 2540–2550, Dec. 2020.

[53] Q. Zhou, C. Yang, A. Liang, X. Zheng, and Z. Chen, “Low computationally
complex recurrent neural network for high speed optical fiber transmis-
sion,” Opt. Commun., vol. 441, pp. 121–126, 2019.

[54] C.-Y. Lin et al., “Adaptive digital back-propagation for optical communi-
cation systems,” in Proc. Opt. Fiber Commun. Conf., 2014, paper. M 3C-4.

[55] M. Kuschnerov et al., “Data-aided versus blind single-carrier coherent
receivers,” IEEE Photon. J., vol. 2, no. 3, pp. 387–403, Jun. 2010.

[56] R. Turner et al., “Bayesian optimization is superior to random search
for machine learning hyperparameter tuning: Analysis of the black-box
optimization challenge 2020,” 2021, arXiv:2104.10201.

[57] Z. Que, Y. Zhu, H. Fan, J. Meng, X. Niu, and W. Luk, “Mapping large
LSTMs to FPGAs with weight reuse,” J. Signal Process. Syst., vol. 92,
no. 9, pp. 965–979, 2020.

[58] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learn.. MIT Press, 2016,
[Online]. Available: http://www.deeplearningbook.org

[59] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model
compression and acceleration for deep neural networks,” 2017,
arXiv:1710.09282.

[60] X. Long, Z. Ben, and Y. Liu, “A survey of related research on compression
and acceleration of deep neural networks,” J. Physics: Conf. Ser., vol. 1213,
Jun. 2019, Art. no. 0 52003.

[61] S. S. Mosleh, L. Liu, C. Sahin, Y. R. Zheng, and Y. Yi, “Brain-inspired wire-
less communications: Where reservoir computing meets MIMO-OFDM,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 10, pp. 4694–4708,
Oct. 2018.

https://doi.org/10.5281/zenodo.4582298
http://www.deeplearningbook.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

