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Advanced Convolutional Neural Networks for
Nonlinearity Mitigation in Long-Haul WDM

Transmission Systems
Oleg Sidelnikov , Alexey Redyuk , Stylianos Sygletos, Mikhail Fedoruk, and Sergei Turitsyn , Fellow, OSA

Abstract—Practical implementation of digital signal processing
for mitigation of transmission impairments in optical communica-
tion systems requires reduction of the complexity of the underlying
algorithms. Here, we investigate the application of convolutional
neural networks for compensating nonlinear signal distortions in
a 3200 km fiber-optic 11x400-Gb/s WDM PDM-16QAM transmis-
sion link with a focus on the optimization of the corresponding
algorithmic complexity. We propose a design that includes original
initialisation of the weights of the layers by a filter predefined
through the training a single-layer convolutional neural network.
Furthermore, we use an enhanced activation function that takes
into account nonlinear interactions between neighbouring symbols.
To increase learning efficiency, we apply a layer-wise training
scheme followed by joint optimization of all weights applying ad-
ditional training to all of them together in the large multi-layer
network. We examine application of the proposed convolutional
neural network for the nonlinearity compensation using only one
sample per symbol and evaluate complexity and performance of
the proposed technique.

Index Terms—Convolutional neural networks, nonlinearity
mitigation in fiber-optic links.

I. INTRODUCTION

CAPACITY demand in communication networks follows a
stable increasing trend over the recent decades due to the

continuing expansion of current and emerging digital applica-
tions and services. Assuming that this trend will maintain, the
potential disparity between growth rates of future traffic demand
and available network capacity is expected to create a what is
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known as “capacity crunch” problem. This fact calls for new
approaches to improve the transmission performance of optical
fiber links.

In general, there are two important questions related to optical
networking: What is the best way to design new high-capacity
transmission systems? and How to manage the existing systems
in the most efficient way? The key approach to contend with
the future demand is parallelization - i.e. to increase the number
of communication channels in the spectral or spatial dimen-
sion. These new designs can be used in next generation optical
communication systems. However, in the already installed fiber
links, possibilities are limited by the existing infrastructure,
requiring different technical approaches for optimizing the per-
formance. Overcoming fiber nonlinearity is one of the most
challenging tasks in those systems and it is a major limiting
factor for extending their capacity.

A nonlinear fiber channel differs substantially from the clas-
sical linear additive white Gaussian noise channel by the com-
plexity of the link between the output and input signal. The
output signal is given by the solution of a nonlinear stochastic
partial differential equation(s) with the input signal defining
the initial conditions of the problem. It is well understood
nowadays, that nonlinear fiber communication channels require
the development of conceptually new digital processing meth-
ods capable to deal with the nonlinear transmission impair-
ments (see e.g. [1]–[6] and references therein). One of those
methods is digital backward propagation (DBP) [7], [8] that
digitally mimics the propagation of a signal through a fiber in
the reversed direction at the receiver. Coincidentally, backward
propagation methodology is a central building block in many
machine learning (ML) approaches such as neural networks.
The basics of back-propagation were introduced in 1960 s in
the context of control theory [9] and then applied in the field
of machine learning in [10]. In the context of neural networks
the back-propagation algorithm is used to identify the optimum
layer weights for a specific training set.

Machine learning methods are generally well suited for appli-
cations in complex nonlinear systems. Therefore, it is rather nat-
ural that ML techniques emerged as a promising tool to improve
performance of complex modern fiber-optic networks ([11]–[14]
and references therein), with the number of publications in the
area following an explosive growth. Neural networks (NN), in
particular, are extremely popular in this field due to the high
classification accuracy they can achieve. However, it is also
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well-known that there is a lack of clear and well-defined rules
for designing an efficient neural network architecture to address
a particular applications. The number and size of hidden layers,
the type of activation function and other design options are often
addressed by a reasonable enumeration of possible configura-
tions, and heuristic approaches. Any apriori knowledge of the
system’s behaviour can be extremely useful in the NN training
to achieve fast convergence at a better optimum operating point.

Although DBP-based equalization has been supported by
robust mathematical models, their associated complexity has
prevented any real time implementation in optical communica-
tion systems [15]. On the other hand, it has been recently shown
that deep neural networks can provide a good approximation of
DBP at lower computational cost [16]. The alternating layers
of the proposed architecture corresponded to the linear and
nonlinear signal transformations of the split-step Fourier method
(SSFM). The resulting method was referred to as learned DBP
(LDBP). However, contrary to the conventional DBP, which
requires exact knowledge of all the transmission parameters
to be effective, the parameters of the LDBP equalizer can be
jointly optimized through a supervised training process allowing
a “blind” operation even on a totally unknown channel.

In this work we develop a new design of a deep convolutional
neural network (DCNN) for mitigating the nonlinear signal
distortions in a long-haul fiber communication system. To adjust
the proposed DCNN to the channel nonlinearity we applied an
activation function based on enhanced SSFM [17] that takes
into account nonlinear interaction of the symbol under con-
sideration with neighbouring symbols both from the same and
from surrounding spectral channels. We divide nonlinear layers
into groups of filters depending on the distance between the
processed spectral channels, which allows us to find a trade-off
between the computational complexity of the proposed scheme
and its performance. We demonstrated here that nonlinearity
compensation is possible using sampling with just one sample
per symbol (SpS). We examined the performance of the proposed
scheme in a 3200 km 11x400-Gb/s RRC WDM PDM-16QAM
transmission system when processing single channel or 5 neigh-
boring channels simultaneously. We also conducted extensive
analysis of computational complexity of the equalizer based on
deep convolutional neural network and showed the superiority
of the proposed scheme over conventional DBP methods.

The paper is organized as follows. In Section II, we briefly
present the theoretical background of the design of the con-
volution neural network and conceptual connection between
DCNN and DBP. Next, we introduce a detailed description
of the proposed DCNN-based nonlinear equalizer, including
complexity analysis. Section III provides detailed description
of the particular transmission system and numerical modeling
parameters. Section IV presents the results of numerical model-
ing and the comparison between DCNN and DBP performance.
Section V concludes the paper.

II. CNN-BASED PROCESSING AT THE RECEIVER

Based on information theory, an optical communication sys-
tem can be considered as a nonlinear channel with memory
defined by the interplay of chromatic dispersion (CD) and Kerr

Fig. 1. Deep convolutional neural network architecture.

effect. A conventional optical signal launched in the fiber link
presents an analog function A(z = 0, t) =

∑
k akf(t− kT ) of

time t, where ak are complex transmitted symbols, k is a number
of time slot, T is a symbol interval, and f(t) is a waveform of a
carrier pulse. This offers a natural discrete representation of the
signal A(z = 0, t) in the form of an infinite (in k) discrete-time
series of vectors ξk = (ξ1k, . . . , ξ

n
k ), where {ξjk} is a set of

regularly spaced signal samples for j = 1, . . . , n and n/T is
a sampling rate. Obviously, at one sample per symbol, such a
vector has just one component and represent a scalar, that is a
particular case of the considered approach. In a similar manner
we can represent received signalA(z = L, t) at the receiver side
as a time series of vectors ηk = (η1k, . . . , η

n
k ). Due to channel

memory a finite set of input signals ξk−M , . . . , ξk+M has an
impact on the output signalηk, whereM is a memory parameter.

Convolutional neural networks (CNN) are suitable tools for
time series analysis by processing the elements of the series
in blocks sliding along the input data. A CNN of N layers
transforms an input vector x to an output vector ȳ by alternating
between convolution with vectors w(i) and point-wise nonlin-
ear activation functions f(x): x(i) = f(w(i) ∗ x(i−1) + b(i)),
where i = 1, . . . , N is an index of a layer, sign ∗ denotes con-
volution product, b(i) is a bias vector, x(0) = x and x(N) = ȳ.
In contrast to fully-connected neural networks, where w(i) is
typically represented as a dense matrix describing connection
between all neurons from neighboring layers, in convolutional
neural networks w(i) is usually a matrix or vector of specific
length and it is known as filter or kernel. The elements of thew(i)

and b(i) vectors are considered as learning parameters, whereas
f(x) is a fixed function. During the training process the learning
parameters are updated in a way that minimizes the difference
between the estimated output vector ȳ and the target vector y of
the training set.

Here, we consider a deep convolutional neural network with
structure that inherits from the digital back-propagation con-
cept [7], see Fig. 1. It is an alternation of linear (convolutional)
and nonlinear (activation function) layers, with the linear layers
performing the compensation of the accumulated chromatic
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dispersion and the nonlinear layers undertaking to compensate
the response of the medium. We consider a sampling rate of
one sample per symbol. As input x we consider the vector of
received samples {ηk}, {ξ̄k} represents the estimated symbols
at the output of the architecture, target vector y is the same as
the vector of the transmitted symbols {ak}. The parameters of
all layers are jointly optimized after layer-wise training during
the NN learning stage.

In our study, we investigate WDM-signal transmission.
To take into account inter-channel interactions the proposed
DCNN simulate the DBP method based on coupled nonlinear
Schrödinger equations [18], [19]:

∂A
x/y
c

∂z
= −dc

∂A
x/y
c

∂t
− i

β2

2

∂2A
x/y
c

∂t2

+ i
8γ′
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⎛
⎝|Ax

c |2 + |Ay
c |2 + 2

∑
s �=c

(
|Ax

s |2 + |Ay
s |2
)⎞⎠Ax/y

c ,

(1)

where A
x/y
c is the complex field envelopes for x- and y-

polarization, c is the number of a spectral channel, dc = cβ2Δω
is the dispersion coefficient corresponding to the walk-off ef-
fect between spectral channels, Δω is the channel spacing, β2

represents the second-order dispersion, γ′ = γLeff , where γ
is the Kerr coefficient, and Leff is the effective length Leff =
(1− e−αL)/α that accounts for averaging over periodic loss and
gain, L is the amplifier span length and α is the fiber loss coef-
ficient. It should be noted, that the neural network architecture
based on coupled NLSEs have been proposed in [20] for single
channel processing of optical signals. We use this model as the
basis of the proposed scheme because it allows us to process
multiple channels at low sampling in parallel. Note, that DCNN
designed this way accounts for self-phase modulation (SPM)
and cross-phase modulation (XPM) between spectral channels,
but not four-wave mixing (FWM).

It is common practice for NN design that all involved quan-
tities such as network input/output and layer weights are real-
valued rather than complex valued. However, since the propaga-
tion of a telecommunication signal in an optical fiber is described
by the evolution of a complex field envelope and the constellation
symbols are also complex, it is worthwhile to implement the
NN with complex-valued arithmetic. We implemented complex
numbers and certain arithmetic operations presenting input com-
plex data as pairs of real numbers corresponding to its real and
imaginary parts. In addition, the individual polarizations and
WDM channels are processed in parallel, and we considered
them as additional “feature columns” in the data array. Thus,
input sequences of complex symbols of size L for Nch spectral
channels and both polarizations are represented as a real-valued
array of size (L, 4 ·Nch).

The implementation of the proposed DCNN is performed in
MXNet using the Adam optimizer [21] with adaptive learning
rate. Mean squared error between the transmitted and recovered
symbols is used as a loss function. We average the resulting error
over all spectral channels and polarizations.

Aiming at the reduced complexity we consider a DCNN archi-
tecture with each layer corresponding to one span propagation
and the input vector sampled at 1 sample per symbol.

A. Recovering of Signal Dispersion Broadening

The DBP method simulates a signal propagation through a
fiber in the reversed direction. Therefore, a signal with accumu-
lated dispersion, corresponding to the entire length of the fiber,
is used as the input of the approach. Similarly, samples of the
received signal are used as input data for the developed DCNN.
Moreover, the signal should be sampled at 1 SpS. In our study,
we transmit root raised cosine (RRC) pulses with a roll-off factor
of 0.1, and therefore the signal bandwidth is wider then 1/T . As
a result, if we downsample the received signal to 1 SpS directly,
we will lose some of the useful information. To avoid this we
perform the following procedure: first compensate accumulated
chromatic dispersion for the received signal downsampled to
2 SpS, next downsampling to single sample per symbol takes
place, and then we recover the signal dispersion broadening by
the inverse procedure of the accumulated CD compensation in
the frequency domain. This approach allows us to correctly take
into account the interplay of linear and nonlinear effects for
signals with 1 sample per symbol.

B. Convolution Layers for Chromatic
Dispersion Compensation

Although each linear step of the DBP method can be im-
plemented either in time [22] or in frequency domain [7], a
time domain implementation using finite impulse response (FIR)
filters [22], [23] is more efficient in real time applications.
Furthermore, it is consistent with the one-dimensional (1D)
convolution operation which can be equivalently executed by the
linear layer of a convolutional neural network. In our case each
1D convolution layer undertakes to compensate an equal part
of chromatic dispersion, although a non-uniform compensation
scheme can be also applied.

Neural network training is a rather long and complex proce-
dure. Nevertheless, we can improve its efficiency and achieve
fast convergence by creating favourable initial conditions using
any preliminary knowledge about our problem, e.g. we can
initialize the layer weights with the coefficients of an equivalent
FIR-based CD compensation (CDC) filters [7], [24]. Specifically
in our case, the weights of the single convolution layer were
trained first to adapt itself as one of the DBP linear steps. Such
approach allows to obtain CD filters of small length with accept-
able accuracy compared to filters based on frequency-domain
sampling [16]. The resulting convolutional filters with 61 and
151 coefficients are depicted in the insets of Fig. 3(a).

To initialize the weights of the entire neural network, and
thus compensate for the total accumulated dispersion of the
link, one could replicate the previously identified coefficients
for the remaining convolution layers of the NN architecture.
However, the repeated use of single span optimized coefficients
will likely lead to sub-optimal performance [16]. Therefore,
instead, before training the deep NN simulating DBP, a joint
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Fig. 2. Scheme of simulated transmission link.

Fig. 3. BER as a function of convolutinal CDC filter width (a) and “nonlinear”
SPM filter width (b). Insets: (a) trained linear filters with 61 and 151 coefficients,
(b) trained SPM, XPM-1 and XPM-2 filter coefficients.

weight optimization for the convolution layer cascade was per-
formed. The training was achieved by omitting the in-between
nonlinear activation functions and initializing each linear layer
of the cascade with the single-step weight solution identified
by the above process. During the joint optimization process, we
require that, in addition to the filter sequence compensating for
the entire accumulated CD, each filter should still compensate
for the corresponding part of the dispersion similar to [16]. The
joint optimization was implemented as follows: the first layer
should compensate chromatic dispersion of one span, at the
same time the first two layers compensate CD corresponding
for two spans, the first three convolutional layers used for CD
compensation of three spans, and so on. The application of a
joint filter optimization procedure can significantly reduce the
resulting error in compensating chromatic dispersion and reduce
substantially the training time. To show this we compare differ-
ent techniques of predetermination of convolution layers, in-
cluding: (i) the proposed optimization process described above;
(ii) joint optimization of all convolutional layers, but without
additional requirement for individual filters; (iii) initialization
of all filters with optimized coefficients for single span (without
joint optimization) and (iv) initialization of all convolutional
layers with random values.

Table I shows the achieved Q2-factor and number of per-
formed epochs for the considered techniques after training the
entire DCNN when processing single channel with an input
power of 2 dBm. By epoch, we mean one pass of the entire data
set through the neural network. It can be seen that all methods
except “Random” provide a similar level of performance. At the
same time, the method proposed in this work requires much less
epochs, and in all cases, the joint optimization process takes little

TABLE I
COMPARISON OF CONVOLUTIONAL LAYER OPTIMIZATION TECHNIQUES

time. It should be noted that in the case of random optimization
we stopped the training process when 10 000 epochs were
reached.

With the propagation of WDM signals, the chromatic dis-
persion leads to a group delay difference between spectral
channels [19]. Therefore, a neural network processed multiply
channels simultaneously should take this into account in the
architecture design. In the proposed DCNN each channel and
polarization are processed separately in a linear layer. We as-
sume here that signals at each channel propagate at the carrier
frequency and after the linear step group delay corresponding to
channel frequency and distance propagated is compensated. To
account for the group delay difference, a real-valued fractional
delay (FD) filter for each spectral channel can be used after
convolutional layer at each linear step [25], [26]. Furthermore,
to reduce the computational complexity, we set the step length so
that the time delay for each channel is divisible by the duration of
the symbol interval T , as it was suggested in [20]. Thereby, we
can shift the resulting data array by the corresponding number of
symbols to compensate for the walk-off between the channels.
It should be noted that in general it is necessary to use additional
FD filter after the last step, since the steps chosen by the method
described above may not completely cover the full transmission
length [20].

Simple physical considerations [7], [24] show that the CD
compensating FIR filters are symmetrical. Therefore, to reduce
the computational complexity we also required that linear convo-
lution filters are symmetric. This requirement slightly degrades
algorithm performance, but almost halves the complexity.

C. Activation Function for Fiber Nonlinearity Compensation

Selection of the appropriate nonlinear activation function is an
important design issue in the NN design. Its main task is to create
advanced mappings between the network’s inputs and outputs,
which are essential for the processing of complex data. On the
other hand, in fiber-optic communications the Kerr nonlinearity
has a well defined form, creating for each sub-step of the DBP
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method the following transfer function :

A(z + h) = e−iγDBPh|A(z)|2A(z), (2)

where γDBP is the effective (that includes losses through the
Leff ) fiber nonlinear parameter and h is the sub-step length.
As mentioned earlier, when designing a neural network it is
beneficial to make use of any pre-existing knowledge of the
underlying physical effects it is asked to address. Therefore, it is
natural to consider the activation function mimicking the nonlin-
ear DBP step. There are many approaches that focus on reducing
complexity and improving performance of the DBP method,
for instance, the enhanced split-step Fourier method [17], [27],
where neighboring samples are also used at a nonlinear step. In
this case, the nonlinear sub-step of the DBP method (2) can be
rewritten as:

Ak(z + h) = e
−iγDBPh

∑Rr
j=−Rl

αj |Ak+j(z)|2Ak(z), (3)

where Ak(z) ≡ A(z, t = k/f), f – sampling rate, R = Rl +
Rr + 1 is a number of included symbols and αj are real-valued
coefficients. In a similar manner we introduce a nonlinear acti-
vation function for the neural network as follows:

f(zk) = e
−i

∑Rr
j=−Rl

αj |zk+j |2zk, (4)

where αj are real-valued trainable weights.
Note that the sum in the exponent is similar to the formula

for an one-dimensional convolution layer with the real-valued
coefficients. Thus, the implementation of the enhanced SSFM
in a nonlinear sub-step of a deep convolutional neural network
is possible by using a convolution layer with filter {αj} to the
squared symbol modules |z|2 and then calculating the nonlinear
Kerr activation function.

D. Second Polarization and Neighboring Spectral
Channels Accounting

Considering the interaction between the polarizations and
neighboring spectral channels, we took into account only cross-
phase modulation effects as described in the propagation equa-
tions (1). Then using the enhanced SSFM the nonlinear activa-
tion function has the form:

f(z
x/y,c
k ) = e−iΦ

x/y,c
k z

x/y,c
k ,

Φ
x/y,c
k =

Nch∑
s=1

Rs,r∑
j=−Rs,l

αc
s,j

(|zx,sk+i|2 + |zy,sk+i|2
)
, (5)

where zx/y,c are data from the x- or y-polarization and cth
channel and Nch is the number of the processed spectral chan-
nels. It should be noted that we use the same weights for both
polarization of each WDM-channel. At the same time, we divide
the coefficients αc

s,j into groups depending on the distance
between the spectral channels c and s. For example, if c = s
the coefficients αc

c,j correspond to SPM effects and we refer
the real-valued convolution layer determined by these weights
as SPM filter. Accordingly, coefficients with c �= s correspond
to XPM effects and by analogy with SPM filters we call it
XPM-k filters for the spectral channels spaced at k channel
spacing. Such a division can be justified if we turn to the inset of

Fig. 3(b), where coefficients for SPM, XPM-1 and XPM-2 filters
of the central spectral channel with a width of 41 obtained after
training DCNN processed 5 neighboring channels are presented.
It should be noted that by XPM-k we denote a set of the filters,
so for the central channel there are one XPM-1 and one XPM-2
filters corresponding to the left adjacent channels (XPM-1(+)
and XPM-2(+) in the instet) and filters XPM-1(-) and XPM-2(-)
for the right neighbors. Filters XPM-k(+) and XPM-k(-) have
the similar shape but with reversed coefficients. We can see
that depending on the desired scale of the coefficients taken
into account, we can use SPM and XPM filters of different
widths. Moreover, different numbers of left and right neigh-
boring symbols can be used. We also can see that the resulting
SPM filter is symmetrical. So by analogy with linear convolution
layers to reduce complexity we also required that these filters
are symmetric during the training.

E. Complexity Analysis

The estimate of computational complexity is performed in
terms of the number of real multiplications (RMs) per transmit-
ted symbol, the addition operations are not taken into account.
In this work, we investigate DCNN that process single chan-
nel or five central channels from WDM channel grid and the
complexity analysis will be devoted to these cases.

Let us first estimate the complexity of a one-dimensional real
convolution layer. Such a layer of width S can be described by
the formula:

yi =

(S−1)/2∑
k=−(S−1)/2

wk · xi+k, (6)

and, therefore, requires S real multiplications. Complex form of
a convolution can be written as

w = (d ∗ z), wn =
∑
k

dkzn−k, (7)

where d = a+ ib, z = x+ iy, w = u+ iv are complex num-
bers. If we split a result into real and imaginary parts

un =
∑
k

akxn−k −
∑
k

bkyn−k, u = (a ∗ x)− (b ∗ y),

vn =
∑
k

bkxn−k +
∑
k

akyn−k, v = (b ∗ x) + (a ∗ y),

(8)

it can be seen that single complex-valued convolution can be
realised using four real-valued convolution and two addition
operations. As a result, complex convolution layer of size S
requires 4 · S real multiplications per transmitted symbol. It
should be noted that since we use symmetric filters for linear
layers, before the complex convolution we can add together
the corresponding left and right symbols, thereby reducing the
required number of real multiplications. Then the computational
complexity of the complex convolution layer is 2 · (S + 1).
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Implementation of the nonlinear activation function (2) in
complex-valued arithmetic is straightforward and can be per-
formed as follows:

fRe(z) = cos (γDBPP ) · x+ sin (γDBPP ) · y,
f Im(z) = sin (γDBPP ) · x− cos (γDBPP ) · y,

P = |x|2 + |y|2. (9)

So the implementation of the Kerr function requires a calcu-
lation of the cosine and sine functions and 7 real multiplications.
We assume here that cos and sin functions are defined by pre-
computed tables, thus no additional multiplications are required
for their calculation.

For the enhanced activation function after calculating of
squared data modules (2 real multiplications per symbol) we
need to apply one-dimensional real-valued convolution layer of
size R that requires R real multiplications. It should be noted
that since we use the same coefficients for different polarization,
we actually perform convolution once for both polarizations.
Therefore, a term with the number of multiplications required
by such convolution is included to the complexity formula with
a coefficient of 0.5. Next, implementation of the activation
function in complex-valued arithmetic requires an additional 4
real multiplications in accordance with the formula (9). So one
nonlinear activation function layer in the case of one channel re-
quires NL1 = 0.25 · (R+ 1) + 6 RMs per transmitted symbol.
This formula already takes into account the symmetry of SPM
filter by analogy with linear convolution layers.

In the case of 5 channels, in total we use 5 SPM filters, 8 XPM
filters for the closest adjacent spectral channels (XPM-1), 6 XPM
filters for the channels spaced at two channel spacing (XPM-2),
4 XPM-3 filters and 2 XPM-4 filters. So one nonlinear activation
function layer in case of 5 channels requires a totalNL5 = 0.25 ·
(R+ 1) + 0.8 ·R1 + 0.6 ·R2 + 0.4 ·R3 + 0.2 ·R4 + 6 RMs
per transmitted symbol, where Rk are width of XPM-k filters.

Let us consider a deep neural network used to process Nch

spectral channels with both polarization components, and con-
sisting of Ns layers, and suppose that the first output symbol
has already been calculated. Then, when calculating the second
and subsequent DCNN output symbols, most of the necessary
coefficients will be already calculated. In this case we need to
compute only once a complex convolution and once an enhanced
nonlinear activation function on each convolution layer. Thus,
the total computational complexity of the proposed deep convo-
lutional NN for the second and subsequent symbols is

CDCNN = Ns · (NLi + 2 · (S + 1)) + n · 4 · SFD, (10)

where i = 1 or 5 depending on the number of processed chan-
nels, n = 1 if the FD filter with SFD coefficients is used and
n = 0 otherwise.

Thus, provided that the first output symbol has been calculated
in advance or that a large number of symbols have been pro-
cessed, that the complexity of first symbol computing becomes
insignificant, we can use the expression (10) to estimate the
required number of real multiplications per transmitted symbol
for the entire deep convolutional neural network.

For an accurate comparison with other methods, we also take
into account the computational complexity of the chromatic
dispersion equalization (CDE) block. It includes the chromatic
dispersion compensation and the recovering of the signal dis-
persion broadening, which is actually the same as the CDC,
but in the opposite direction. So this block corresponds to two
linear steps of the DBP method with 2 and 1 samples per
symbol, respectively, and its computational complexity in terms
of number of real multiplications per transmitted symbol is [15]:

CCDE = 4 ·
(

2N (log2 N + 1)

(N −ND2
+ 1)

+
N (log2 N + 1)

(N −ND1
+ 1)

)
, (11)

where N is the FFT size and NDq
= qτD/T , where τD corre-

sponds to the dispersive channel impulse response. The factor
4 in the expression corresponds to the fact that one complex mul-
tiplication can be expressed through 4 real ones. We optimized
FFT size N to get the minimum computational complexity.
Finally, the complexity of the overall deep convolutional neural
network equalization scheme can be calculated as the sum of
CDCNN and CCDE .

We compare the performance of the proposed scheme with the
digital back-propagation method processed one or five spectral
channels. In the case of single channel the computational com-
plexity of the DBP method in terms of the number of required
real multiplications per transmitted symbol can be estimated
as [15]:

CDBP−1ch = 4NSpNStpSp

(
N (log2 N + 1) q(
N −NDq

+ 1
) + q

)
, (12)

where NSp is the total number of spans, NStpSp is the number
of propagation steps per span and q is the oversampling factor.

In the case of five WDM channels transmission, we consider
the DBP method based on coupled NLSEs (1) similar to DCNN.
It allows to compensate only SPM and XPM effects, but we
can use a small number of samples per symbol to reduce the
computational complexity. In this case, the linear step is the same
as in the case of single channel DBP, and therefore it requires
the same number of real multiplications per transmitted symbol.
The nonlinear step has the following form:

Ax/y
c (z + h)

= e−i 8γh
9 (|Ax

c |2+|Ay
c |2+2

∑
s �=c(|Ax

s |2+|Ay
s |2))Ax/y

c (z). (13)

For the single channel DBP it is assumed that the value
of the nonlinear phase shift can be obtained using a lookup
table [15], [28], and then nonlinear step (2) requires single
complex multiplication per sample. In the case of 5-channel
DBP, first we need to calculate the optical intensity for each
channel and polarization that requires 2 RMs per sample and
after summing in the exponent, we can also use the lookup
table to obtain the phase shift. So, to calculate the nonlinear
step we need to perform 2 real and 1 complex multiplication per
sample or 6 RMs in total. Thus, the computational complexity
for 5-channel DBP in terms of the number of required real
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TABLE II
TRANSMISSION MODEL PARAMETERS

*including 28% FEC overhead.

multiplications per transmitted symbol can be estimated as

CDBP−5ch = NSpNStpSp

(
4
N (log2 N + 1) q(
N −NDq

+ 1
) + 6q

)
.

(14)

III. TRANSMISSION SYSTEM MODEL

The simulated transmission link is depicted in Fig. 2. Trans-
mission of 11 WDM channels with polarization multiplexing
has been studied. Each channel transmitter generates 16-QAM
modulated root raised cosine pulses at symbol rate 64 GBaud,
resulting in 512 Gb/s channel rate that includes 28% forward-
error-correction overhead, making net information rate 400 Gb/s
per channel. A Gray-coded constellation diagram, a roll-off
factor of 0.1 and an oversampling factor of 32 has been used
in the numerical modelling. The frequency spacing between the
channels was 75 GHz. The central wavelength of the emitted
signal band was located λ = 1550 nm. All system and signal
parameters used in the modelling are summarized in Table II.

The generated signal is subsequently launched into a trans-
mission link that consisted of 40 spans of 80 km single mode
fiber each making total propagation distance of 3200 km. A
standard EDFA with a 4.5 dB noise figure compensates the losses
of each span. Signal propagation is modelled by the Manakov
equations [29]:

∂Ax/y

∂z
=

[
−α

2
− i

β2

2

∂2

∂t2
+ iγ

8

9

(|Ax|2 + |Ay|2
)]

Ax/y.

(15)
The propagation equations have been solved using a standard

second-order symmetrical split-step Fourier method [18]. We
didn’t include polarization-mode dispersion (PMD) and princi-
pal states of polarization rotations caused by fiber birefringence
in our simulation. To take into account these effects, real-valued
FD filters and trainable 2x2 rotation matrix on each layer can be
used as proposed in [25].

After transmission, the optical signal is coherently detected.
Each channel is demultiplexed with a root raised cosine matched
filter of the same roll-off factor as at the transmitter. Then a
chromatic dispersion equalization stage is used. It is described in
detail in II-A and consists of downsampling to 2 SpS, chromatic
dispersion compensation, down-conversion to single sample per
symbol and recovering of CD broadening. Next, the nonlinear
equalization (NLE) is applied by means of a deep convolutional
neural network. We use 221 16-QAM symbols to train DCNN
and 217 symbols for testing (the same number of symbols is used

to calculate BER in the case of CDC and DBP equalizations).
Mini-batch size is 217 symbols. Discrete distribution genera-
tor with random seed from MKL in C++ is used to generate
transmission data. For convolutional layer weight initialization
before joint optimization we used MXNet normal initializer with
sigma = 0.05. All nonlinear filters are initialized with a zero
vector of appropriate length with 1 in the center. The learning
rate is initially set at 2 · 10−4 and it is halved if the losses don’t
decrease for 100 epochs in a row.

For comparison purpose, we also consider the nonlinear
equalizers based on the DBP method. In this case, after down-
sampling to 2 SpS DBP for central channel for SPM compen-
sation [7] or DBP for 5 channels based on coupled nonlinear
NLSEs [18] are applied. It should be noted that for the DBP
method we numerically optimized nonlinear parameter, because
its value depends on the dispersion map, number of propagation
steps and launched power [7]. At the next step, we compensate
for the remaining nonlinear phase shift of all symbols (joint
phase rotation in the complex plane) using the least mean square
(LMS) algorithm. After nonlinear equalization step we apply the
demodulation and calculate bit error rate (BER) for the central
channel of interest (COI).

IV. NUMERICAL RESULTS

The first step of our study was to investigate the influence
of the main characteristics of the proposed NLE scheme on the
efficiency of nonlinearity compensation. We start our analysis by
considering the 40-layers (1 layer per span) deep convolutional
NN processing central channel with both polarization and signal
transmission with launch power of 2 dBm.

We optimize the filter width from linear and nonlinear layers
to find a trade-off between the DCNN performance and com-
putational complexity. Fig. 3(a) shows BER as a function of
CDC filter width for deep convolutional NN with 13 coefficients
for SPM filter on each nonlinear step. As we can see, a neural
network with linear filters width less than 50 coefficients cannot
effectively compensate for the CD and the resulting BER level
is higher than one-step CD compensation in frequency domain
(dashed line “CDC” in the figure). On the other hand, application
of filters with a width more than 100 coefficients just slightly
increases the performance. The resulting lower bound close to
the analytical estimation of the 1-span channel memory [30]:

MCD = 2π|β2|LSpB/T ≈ 50, (16)

where LSp is the span length and B is the signal bandwidth.
However, it was shown [16] that the required CDC filter width
is significantly larger than predicted by (16).

Fig. 3(b) shows BER as a function of “nonlinear” SPM filter
width for DCNN with fixed CDC linear filter width on each layer
(101 coefficients). The leftmost point on the figure corresponds
to the case of the conventional DBP, when no information about
neighboring symbols is used in nonlinear steps (1 coefficient
width). It can be seen that using even one neighboring symbol
on each side (3 coefficients width) allows us to reduce BER
by 23% compared to neural network without enhanced SSFM.
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Fig. 4. Q2-factor (recalculated from the directly counted BER) as a function
of launch power per channel for NLEs processed single channel.

Usage of SPM filters with more than 10 coefficients leads only
to a slight performance improvement.

To evaluate the efficiency of the proposed scheme we com-
pared it with a linear compensator and DBP with different
number of steps per span. We determine BER using direct
error counting and then recalculate Q2-factor from BER using
standard approach [31]:

Q2 [dB] = 20 log10

[√
10 erfc−1

(
8BER

3

)]
. (17)

Fig. 4 shows Q2-factor for COI as a function of launch power
per channel for different configurations of NLE algorithms. As
expected, the system with the linear compensator (grey line)
shows the worst performing. Red line corresponds to the digital
back-propagation method with 2 samples per symbol and 1 step
per span (DBP - 1 StpSp) and it requires approximately 6000
RMs per transmitted symbols. For comparison we also consider
DCNN with an architecture designed to have the same computa-
tional complexity (DCNN - 6 k RMs). The main parameters and
the complexity of the considered NLEs can be found in the table
at the bottom of the figure. In this case the proposed scheme
overtakes the DBP method by 0.31 dB. We are also interested in
the best performance improvement achievable with these NLEs.
Orange line corresponds to the DBP method with 2 SpS and 16
steps per span and a further increase in the number of steps does
not lead to a significant performance improvement. The best
performance obtained by DCNN is indicated by the blue line
and it requires 20 874 RMs per transmitted symbol. The best

Fig. 5. Q2-factor (recalculated from the directly counted BER) for the channel
of interest as a function of launch power per channel for NLEs processed five
spectral channels.

achieved Q2-factor for deep convolutional NN processed single
channel exceeds linear equalization performance by 0.82 dB and
it is 0.15 dB lower then the best Q2-factor for the single channel
DBP with 2 SpS. It should be noted that in this case DCNN has
a computational complexity of almost 5 times less than the DBP
method.

We also considered the deep convolutional NN that processed
5 WDM channels simultaneously and compared it with the DBP
method for 5 channels based on coupled NLSEs (1) with differ-
ent number of steps per span. Fig. 5 shows Q2-factor for COI as a
function of launch power per channel for different configurations
of NLE algorithms. Red line corresponds to multi-channel DBP
method with 2 SpS and 16 steps per span. It should be noted that
multi-channel DBP with fewer steps per span shows the same
performance or lower than the single channel DBP with 1 step
per span, with significantly greater computational complexity.
The best performance obtained by DCNN is indicated by the
blue line and it requires 24 234 RMs per transmitted symbol. Its
parameters can ber found in the table at the bottom of the figure.
Orange line corresponds to the 5-channel DBP method based on
coupled NLSEs with the best performance improvement. It has
96 steps per span and a further increase in the number of steps
does not lead to a significant performance improvement. The
proposed scheme overtakes the linear compensator by 1.2 dB and
multi-channel DBP with 16 step per span by 0.7 dB. It shows
the performance improvement lower by 0.36 dB compared to
the best Q2-factor achieved by 5-channel DBP method, but
in the same time, DCNN has significantly less computational
complexity. The received constellation diagrams, for the cases
of linear compensator and DCNN based equalization taken at
the point of optimum launched power, are shown in the inset of
Fig. 5.
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Fig. 6. Q2-factor improvement (recalculated from the directly counted BER)
for COI as a function of the number of required real multiplications per
transmitted symbol.

Subsequently we compared the computational complexity of
the proposed NLE scheme based on deep convolutional NN with
the DBP method based on coupled NLSEs in case of processing
single and five spectral channels. Fig. 6 shows the achieved Q2-
factor improvement in comparison with the linear compensator
for DCNN and DBP in terms of required number of real multipli-
cations per transmitted symbol. For DBP the number of steps per
span varied and we considered DCNN with a different number of
coefficients on linear and nonlinear layers. Dotted lines indicate
maximum performance improvement achieved using the DBP
method for single (red line) and five (orange line) spectral
channels. As we can see, in all cases, DCNN-based equalizers
show a larger performance improvement compared to the DBP
method with the same complexity. It should be noted that when
comparing with a single channel DBP equalizer, DCNN for 1
channel shows up to 0.45 dB higher Q2-factor improvement with
the same complexity, while 5-channel DCNN scheme achieve
up to 0.75 dB higher performance improvement. Moreover, deep
convolutional neural network processed five WDM channels
shows better performance with lower computational complexity
compared to the maximum achieved Q2-factor for single channel
DBP.

V. CONCLUSION

We studied application of the convolutional neural networks
for compensating nonlinear distortions in a long-haul ultra-high
capacity fiber-optic transmission system. The introduced DCNN
architectures mimics the traditional DBP algorithm by using
each linear convolutional layer to compensate for the chromatic
dispersion on a subsection of the link and the nonlinear ac-
tivation layer to cancel the corresponding Kerr-effect induced
nonlinearity. As a further development of the previously studied
DNN-based compensation schemes [16], [20], we customize the

nonlinear activation function to account for a different number
of neighboring symbols from adjacent spectral channels, en-
abling to suppress a large portion of the XPM introduced signal
distortions with low computational complexity. Furthermore, to
achieve fast training and secure convergence in the optimum
operating point a thoughtful 2-stage weight initialization scheme
was applied by identifying the sub-optimal values for the single
layer and then performing joint optimization of the weights when
cascading linearly all the convolutional layers of the DCNN
architecture.

Through a detailed complexity analysis the number of real
multiplications has been identified as a function of the dimen-
sions of the architecture. In addition we examined the perfor-
mance of the proposed scheme in a 3200 km 11x400-Gb/s RRC
WDM PDM-16QAM transmission system when equalization
was applied separately on a per channel basis, or the nonlin-
ear equalizer was compensating simultaneously 5 neighboring
channels. The results showed that our scheme exceeded the
performance of the linear equalizer by 0.8 dB in the single
channel scenario and by 1.2 dB in the multi-channel case. When
comparing with a DBP equalizer of the same complexity, in the
single channel compensation case, the DCNN scheme achieves
up to 0.45 dB higherQ2-factor improvement performance. More
impressive are the results in the multi-channel equalization
case, in which the complexity of the DCNN remains almost
unchanged, whereas the DBP schemes require significantly a
higher number of real multiplications per transmitted symbol.
Our simulations show that the suggested DCNN based equalizer
can have 4 times less complexity than a multi-channel DBP
based scheme and still achieve 0.7 dB more improved Q2-factor
performance. Our results show clearly the great potential of our
proposed equalization method in extending the capacity of future
transmission systems.
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