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Abstract—We introduce a flexible, software-defined real-time
multi-modulation format receiver implemented on an off-the-shelf
general-purpose graphics processing unit (GPU). The flexible re-
ceiver is able to process 2 GBaud 2-, 4-, 8-, and 16-ary pulse-
amplitude modulation (PAM) signals as well as 1 GBaud 4-, 16-
and 64-ary quadrature amplitude modulation (QAM) signals, with
the latter detected using a Kramers–Kronig (KK) coherent re-
ceiver. Experimental performance evaluation is shown for back-
to-back. In addition, by using the JGN high speed R&D network
testbed, performance is evaluated after transmission over 91 km
field-deployed optical fiber and reconfigurable optical add-drop
multiplexers (ROADMs).

Index Terms—Field trial, GPU, Kramers–Kronig, real-time.

I. INTRODUCTION

W ITH the continual increase in demand for data-traffic
at lower cost-per-bit, there is an increased interest

in low-cost optical transceivers for data-center interconnects.
Multi-vendor standards, e.g., [1], are key to the development
and roll-out of these systems. Software-defined transceivers
have supported and enhanced the widespread development of
5 G and other wireless communications standards [2]. These
systems perform digital signal processing (DSP) wholly [3]
or partially [4] using off-the-shelf general purpose hardware,
leading to high flexibility, combined with low development effort
and rapid turnaround. Therefore, software-defined transceivers
are expected to play an increasing role in the rapid development,
validation, and test of optical communication standards.
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Whilst commonplace for wireless systems, the development
of software-defined transceivers for optical communications has
been restricted by energy and computing power limitations.
Recently, exploiting field-programmable gate arrays (FPGAs)
for real-time DSP for optical communications has been investi-
gated [5]–[7]. GPU-based systems for optical communications
are restricted by energy and computing power to prototype and
test. With 45% [8] year-on-year growth of computing power
and 25% increase [9] in energy efficiency (FLOPS per Watt),
general-purpose GPUs have the potential to meet demand-
ing processing requirements. Note that, GPU power efficiency
showed a 3-fold improvement over equivalent FPGA for simple
highly-parallelized operations [10]. These exponential increases
may facilitate GPU use beyond prototyping. Compared to GPUs,
FPGAs require longer development times and more stringent
resource management to achieve the specific functions required
for DSP.

Recently, the use of general-purpose GPUs has been demon-
strated for specific functions such as forward error correction
(FEC) decoding [11], [12] and physical-layer functions for opti-
cal communications [13]–[15]. Additionally, real-time DSP for
optical differential quaternary phase-shift-keying (DQPSK) has
been implemented on a GPU [16]–[18]. In these papers, massive
parallel processing capabilities of GPUs were exploited for pro-
cessing single-polarization 5 Gbit/s DQPSK signals, correcting
for intersymbol interference (ISI) using a finite impulse response
(FIR) filter. This approach greatly increases flexibility of optical
transceivers. However, there remains the potential to further
improve on this concept, since single-polarization coherent
systems require real-time polarization control and differential
phase-shift keyed modulation does not provide high spectral
efficiency.

In this work, we implement a flexible, software-defined real-
time multi-modulation format receiver. A full real-time DSP
chain is implemented on a commercial, off-the-shelf general-
purpose GPU and validated experimentally. The receiver DSP
uses massive parallelization to receive PAM-2, -4, -8, and -16
signals at 2 GBaud as well as 4-, 16-, and 64-QAM signals
at 1 GBaud, with the latter detected using a KK coherent
receiver [19]. All measurements employ identical transmitter
and receiver hardware without polarization control. The GPU
software is able to switch between modulation formats. To
the authors’ knowledge, this is the first demonstration of a
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Fig. 1. Comparison between parallel processing on an FPGA (left) and a GPU (right). GPU processing algorithms are implemented in kernels which are executed
in order in streams. Many threads in parallel perform the operations defined in the kernel. Threads are grouped in warps and threadblocks. Execution times on
FPGAs are deterministic and strictly controlled, whilst timings on GPUs are non-deterministic.

multi-modulation format software-defined GPU-based receiver
and the first real-time demonstration of coherent KK detection.

Furthermore, we validate the performance in a 91 km optical
fiber link over a field-deployed metropolitan network. The fiber
ring is part of the Japan Gigabit Network (JGN) high speed R&D
network testbed [20] consisting of 3 commercial ROADMs in 2
separate Tokyo locations. These results demonstrate the poten-
tial of software-defined receivers for low-cost optical links, ex-
ploiting the exponentially growing computing power of GPUs.

This paper is an extension to the work presented at the
European Conference on Optical Communications (ECOC)
2020 [21]. Additional results and a detailed description of the
structure of the real-time receiver architecture and the algorithms
implemented on the GPU are presented. Clock-recovery for
intensity-modulation direct-detection (IMDD) PAM-N signals
is shown to tolerate rapid changes in clock-frequency offset
and static clock-frequency offsets of up to 30.5 ppm. Using a
noise-loading optical setup, 2 GBaud PAM-2, 4, 8 signals are
shown to reach the 8.4 dB optical signal-to-noise ratio (OSNR)
Q-factor threshold for 6.7% overhead hard decision forward
error correction (HDFEC) [22] at 5.6 dB, 14.0 dB, and 22.2 dB,
respectively. After transmission through the field trial network,
an OSNR penalty of 0.4 dB and 1.5 dB is observed for PAM-2
and PAM-4, respectively. For PAM-8, a 20% overhead HDFEC
was necessary since it cannot reach the 6.7% threshold. PAM-16
can be decoded in real time both in back-to-back and after trans-
mission using the GPU DSP, but signal quality is not sufficient
to reach either HDFEC threshold. For 1 GBaud KK N-QAM
signals, carrier-to-signal power ratio (CSPR) optimization was
performed and a CSPR of 6 dB was chosen for 4-QAM and 11
dB for 16- and 64-QAM. 4- and 16-QAM signals reach the 6.7%
overhead HDFEC threshold at 5.5 dB and 5.9 dB OSNR, whilst
16-QAM requires an OSNR of 17.6 dB and 19.1 dB for back-
to-back and transmission, respectively. 64-QAM signals were
processed in real time, but performance was not sufficient to
reach either HDFEC threshold. Six second continuous real-time
transmission of all modulation formats show stable short-term
average Q-factors despite the varying environment of installed
fiber.

This paper is structured as follows: Section II introduces
GPU processing and the general structure of the real-time GPU

receiver architecture. Section III describes the DSP algorithms
employed for IMDD PAM-N signals in detail and with perfor-
mance evaluation the in a back-to-back scenario. Section IV
discusses the implementation and back-to-back evaluation for
KK N-QAM signals. Section V discusses the evaluation of the
real-time receiver evaluated using the experimental field trial
network. Finally, Section VI concludes this paper.

II. REAL-TIME GPU RECEIVER ARCHITECTURE

A. Comparison Between FPGA and GPU Processing

Fig. 1 shows the similarities and differences between FPGA
and GPU parallel processing architectures. Data are digitized by
an ADC, copied to the processing device, and after processing
the results are stored in memory. Timings between parallel stages
of processing in FPGAs processing are deterministic and strictly
controlled. The FPGA operates at a certain clock rate and every
stage of processing should fit within the timing parameters
imposed by this central clock. Also, each stage of processing
is assigned a fixed portion of physical computing hardware.
In contrast, execution times on the GPU are not deterministic.
Computing hardware is shared for all kernels and a central
scheduler assigns computing resources to kernels running in
parallel.

B. GPU Processing Terminology

Kernels are highly parallel routines that act upon data in the
GPU memory. The GPU code of the kernel is performed by
threads running in parallel. A thread is executed on a GPU core
and efficient implementations can use millions of threads. A
group of 32 threads is called a warp and is guaranteed to execute
simultaneously, which allows for very efficient data exchange
between these threads through warp-level shuffles, used in this
work for certain reduction kernels. A group of warps, called a
threadblock, is executed on the same streaming multiprocessor,
which is a group of GPU cores. Threads in a threadblock share
physical computing hardware and memory, leading to caching
benefits. Multiple threadblocks are not necessarily performed in
parallel. This depends on the scheduling by the GPU driver.
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Fig. 2. Real-time GPU Receiver Architecture. The output of the photodiode (PD) is digitized by the analog-to-digital converter (ADC). Samples are processed
per buffer in a block-wise fashion in parallel streams on the GPU controlled by the central processing unit (CPU). Detailed descriptions of the Signal Processing
block can be found in Section III and IV.

Dependencies in the signal processing chain need to be
handled appropriately. Kernels in the same processing stream
are performed in order. Therefore, splitting an algorithm into
separate kernels in the same stream can address the dependency.
Alternatively, a single threadblock can be employed to perform
a certain algorithm, synchronization within a threadblock is
possible since it runs the same piece of physical hardware.
Kernels in different streams run parallel to each other. In this
case, events can be used to halt one stream until a certain kernel
in another stream has finished processing.

C. Continuous Real-Time Processing Requirements

The real-time GPU receiver consists of a 1GHz photodiode
connected to a 12 bit 4 GSa/s ADC. Digitized samples are copied
in buffers from the ADC to the GPU where they are processed in a
highly parallel manner. Each buffer contains 222 samples, which
takes 1.049 ms at 4 GSa/s. In our implementation, each buffer
is assigned its own processing stream and any dependencies
to ensure data continuity are handled by events. For real-time
processing, the buffers need to be processed as fast or faster than
they are created by the ADC in order to avoid data loss. As such,
the average buffer processing time needs to be lower than 1.049
ms times the number of streams employed. Therefore, buffer
processing times can be relaxed by increasing the number of
parallel streams at the expense of increased latency.

D. GPU Signal Processing Structure

Figure 2 shows the structure of receiver, the tasks per-
formed by the GPU, and how those are controlled by the CPU.
The ADC is controlled by an application programming inter-
face (API), provided by the manufacturer which also manages
the data transfer to the GPU. A second program, written by
the authors, controls the API and launches signal processing
kernels.
� Step 1: The ADC digitizes the analog signal into 12-bit

digital samples at either 2 (IMDD) or 4 (KK) samples per
symbol and temporarily stores them in ADC memory. The

Fig. 3. Relation between buffers and blocks for block-wise processing. Each
stream processes one buffer at a time, each consisting of 8192 blocks. Overlap-
save Fourier transforms are used to ensure data integrity.

API initiates the transfer of a buffer containing 222 samples
from ADC memory to GPU memory using direct memory
access (DMA), provided a free GPU buffer is available for
the API to use. This is marked as Step 1 in Fig. 2. Each
buffer is assigned its own stream and DSP kernels are added
to that stream to process the data.

� Step 2: Control over the GPU buffer which now contains
the digitized signal is handed over to the control program
written by the authors.

� Step 3: For continuous real-time data processing certain
overlap between buffers is required, an overlap kernel is
used for this. These overlap kernels need to be executed
in order and events ensure an overlap kernel cannot start
processing until its predecessor is finished. This is shown
in Fig. 2 as Step 3 and marked as Dependency.

� Step 4: The 222 samples in a buffer are subdivided into
8192 blocks of 512 samples for frequency domain (FD)
processing as depicted in Fig. 3. FD processing requires
one block of overlap between buffers for data continuity.
An overlap kernel handles this by prepending a block to
the current buffer which was stored elsewhere in memory.
Afterwards, it copies the last block of its buffer to memory
for the next overlap kernel to use. Also, the overlap kernel
converts the data from 12-bit unsigned integers to 32-bit
floats.

� Step 5: This step contains the actual DSP chain which
uses both time domain (TD) and 100% overlap-save FD
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Fig. 4. IMDD GPU signal processing chain including an annotated GPU profiler trace, detailing the Signal Processing block of Fig. 2 for PAM-N signals.

processing. This block uses floating point samples as input
and produces decoded bits as output. A detailed description
can be found in Section III and IV for PAM-N and N-QAM
signals, respectively.

� Step 6: After processing, the decoded bits are copied to
random-access memory (RAM) and control over the buffer
is handed back to the API.

III. IMDD GPU SIGNAL PROCESSING CHAIN

Figure 4 lists the DSP chain for IMDD PAM-N signals. It
consists of 9 steps, each of which executed by one or more
kernels. To support real-time operation, five parallel streams
are used as shown in the annotated profiler trace in Fig. 4.
Dependencies between algorithms running in parallel streams
are handled through events which are marked as Dependency in
the DSP chain and shown by the orange arrows in the profiler
trace.

A. Step 1 and 2: fast Fourier transform (FFT) and Static
Equalization

The IMDD signal processing chain starts after overlap copy-
ing. A 100% overlap-save 1024-point FFT at 2 samples-per-
symbol is performed using a readily-available highly-parallel
GPU FFT implementation. This splits the 222 samples in the
buffer into 8192 blocks of 1024 samples, of which 512 are valid
due to 100% overlap-save. Secondly, static FD equalization is
performed to compensate for receiver bandwidth impairments
using a pre-computed FIR filter. This filter optimized offline in
TD using 503 taps, converted to a 1024-point FD version, and
uploaded to the GPU. The number of taps was limited to 503
to prevent introduction of ISI through the cyclic nature of the
1024-point FFT.

To fully appreciate the parallel nature of this processing, we
need to look at the number of independent threads working in this
one kernel alone. FD equalization requires 512 complex multi-
plications to be performed for each of the 8192 blocks, Hermitian
symmetry allows for the omission of half of the spectrum. To
this end, 221 threads are launched, each operating on 2 complex

samples (4 32-bit floats) at a time. 128-bit vector loads/stores
allow for the 4 floats to be loaded/stored using just a single
instruction, increasing memory throughput. These 221 threads
can be performed in parallel, exploiting the massive parallel
capabilities of the GPU. Fig. 4 shows that during the execution of
this kernel in stream 1, marked as step 2, is performed in parallel
with a ADC-to-GPU copy in stream 2 and other stages of the
signal processing of other buffers in streams 4 and 5. Therefore,
parallelization is not only exploited within kernels acting on a
buffer, but also between streams operating on different buffers.

B. Step 3 and 4: Clock-Phase Estimation and Unwrapping

Clock-phase estimation is performed block-wise in FD after
static equalization using a technique introduced in [23]. This
provides an estimate clock-phase for each block of samples. To
improve noise tolerance, these estimates are averaged over 105
blocks. This requires the 52 previous and 52 future clock-phase
estimates to be known as well. The causality issue of the future
estimates is resolved through increased buffering in the overlap
kernel before actual signal processing starts. The dependency
on previous estimates requires the clock-phase estimation of
the previous buffer to be completed before the averaging and
unwrapping step of the current buffer can be allowed to start. To
this end, events are used to signal when clock-phase estimation
is completed, allowing for the current processing to wait until
the previous has completed. Note that only the estimation step
has this dependency, the remainder of the signal processing can
occur in parallel. The events resolving these dependencies are
shown by orange arrows in Fig. 4.

The clock-phase estimates are restricted to 2π. Hence, averag-
ing is performed through vector addition in complex space and
subsequent phase unwrapping is required. It is denoted as step
4 in Fig. 4. The phase unwrapping kernel checks whether the cur-
rent averaged clock-phase differs more thanπ from the previous.
This sequential algorithm is hard to parallelize. To some extent
this is done through inter-thread communication using warp-
level shuffles. This requires some significant processing time.
However, the unwrapping algorithm uses a single warp of 32



2362 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 39, NO. 8, APRIL 15, 2021

Fig. 5. Experimental noise-loading setup for back-to-back evaluation of the
real-time receiver.

threads and leaves much of the GPU processing power unused,
which can be used by other kernels running in different streams.
For example, during the phase unwrapping in stream 1, stream 2
performs an FFT, FD equalization, and clock-phase estimation,
stream 3 performs a ADC-to-GPU memory copy, stream 4 is
idle, and stream 5 performs normalization, symbol decision,
and a GPU-to-RAM copy. Therefore, phase unwrapping does
not take up significant amount of resources, even though it takes
up significant amount of time.

C. Step 5-9: Clock Recovery, IFFT, Normalization, and
Symbol Decision

Clock recovery is performed by correcting for the unwrapped
clock-phase in FD. After the 1024-point inverse fast Fourier
transform (IFFT), 256 valid symbols need to be extracted for
further processing. In the presence of clock-frequency offset,
every now and then, either more or fewer symbols may need to
be extracted from a block to keep the unwrapped clock-phase
within bounds. This is performed in step 7 of Fig. 4, which
converts the fixed rate sample input to a variable rate symbol
output. Then, buffer-wise normalization is performed using
three kernels: initialization, estimation of the DC-offset, and
estimation of the amplitude. In the symbol decision kernel, the
DC-offset and amplitude are corrected for and PAM-N symbols
are decoded into bits. Decision thresholds are optimized offline
beforehand and uploaded to the GPU.

D. Experimental Setup for Back-to-Back Evaluation of PAM-N

Figure 5 shows a diagram of the experimental setup for
back-to-back characterization of the real-time receiver. At the
transmitter, the lightwave from a 500 kHz linewidth external
cavity laser (ECL) centered at 1542.92 nm is modulated us-
ing a single-polarization in-phase and quadrature modulator
(IQM). Electrical driving signals for the IQM are provided by
a 2-channel arbitrary-waveform generator (AWG) operating at
12Gs/s amplified by RF-amplifiers, whilst bias-tees and voltage
sources control the bias of the modulator arms. PAM-N signals
are modulated by biasing one of the IQM-arms to mid-point and
driving it with a baseband 2 Gbaud 50% roll-off root-raised-
cosine (RRC) pulse-shaped signal.

Fig. 6. Q-factor versus clock-frequency offset. The clock-recovery algorithms
allows for stable performance across a wide range of clock-frequency offsets.

The receiver consists of an erbium-doped fiber amplifier
(EDFA) pre-amplifier followed by a 0.04 nm bandpass filter
(BPF). In addition, a noise-loading setup is included with an
amplified spontaneous emission (ASE) source and an optical
spectrum analyzer (OSA) through a 2 × 2 coupler. A variable
optical attenuator (VOA) is used to control the power at the input
of a PD with a 3 dB cut-off frequency of 1GHz. The electrical
PD output is directed to the ADC for processing.

E. Experimental Results

The performance of clock-recovery is evaluated using PAM-4
and PAM-8 signals in back-to-back transmission. Fig. 6 shows
the Q-factor versus the clock-frequency offset between trans-
mitter and receiver clock when transmitting 2 GBaud PAM-4
signals. An attenuator limited the power into the photodiode to
−10 dBm to introduce enough noise and thus bit errors to prop-
erly evaluate performance when changing the clock-frequency
offset. Performance is stable for a wide range of offsets, showing
the resiliance of the implemented algorithms. Performance drops
off very rapidly when an offset of 122 kHz (30.5 ppm) or more
is applied, which can be attributed an implementation choice to
use an 8-bit integer to keep track of number of symbols added or
removed throughout the buffer. A change to a 16- or even 32-bit
number would greatly increase clock-frequency offset tolerance,
but was deemed unnecessary.

Fig. 7 shows clock-frequency offset and Q-factor over time
for 2 GBaud PAM-8 signals at 0 dBm input power when using
free-running clocks. The transmitter digital-to-analog converter
(DAC) is driven by a laboratory-grade tone-generator whilst
the ADC uses its own internal clock source. Even when the
clock-frequency offset experiences rapid changes as shown in
Fig. 7, the Q-factor remains constant, demonstrating that the
clock-recovery algorithm is able to cope with these rapid tran-
sitions. Since the ADC manufacturer advises against the use of
the internal clock, the authors consider this a worst-case test.
For the remainder of this work, the ADC received a high-quality
clock-signal from a laboratory-grade tone-generator.

Fig. 8 shows the Q-factor as a function of OSNR for PAM-2,
PAM-4, PAM-8, and PAM-16. In back-to-back, performance
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Fig. 7. Clock-frequency offset and Q-factor versus time when using free-
running clocks. The clock-recovery algorithm allows for stable performance
even when clock-frequency offset changes rapidly.

Fig. 8. Q-factor versus OSNR for PAM-N signals, both back-to-back and after
transmission over the field trial network.

reaches the 8.4 dB Q-factor threshold for 6.7% overhead HD-
FEC [22] at 5.6 dB, 14.0 dB, and 22.2 dB for PAM-2, PAM-4,
and PAM-8, respectively. PAM-16 can be decoded in real-time
using the GPU DSP, but signal quality is not sufficient to reach
the threshold for either 6.7% or 20% [22] overhead HDFEC.
Most likely this is due to severe low-pass filtering of the signal
by the receiver components. The 2 GBaud signal with 50%
RRC roll-off uses 1.5GHz of electrical bandwidth, whilst the
3 dB bandwidth of the photodiode and ADC are both 1GHz.
The static equalizer (see Section III and Fig. 4, step 2) can
boost the attenuated higher frequencies, but only at the cost
of amplifying noise. Future ADCs (PCIe Gen 4) offer greater
bandwidth and sampling rate, facilitating greater baud and data
rates. Proprietary interfaces such as NVIDIA NVLink [24] can
support a further tenfold increase.

IV. KK GPU IMPLEMENTATION AND EVALUATION

We chose to implement KK field reconstruction to show-
case GPU excellence in handling large FFTs and exploiting
its enhanced capability for frequency-domain signal processing.
Fig. 9 shows the DSP chain for KK N-QAM signals subdivided

in 9 steps, each of which an algorithm performed by one or
more kernels as described in this section. Five parallel streams
are used as shown in the profiler trace. Dependencies between
streams are marked as Dependency and annotated with orange
arrows in the profiler trace.

A. Step 1: Overlap and KK Front-End

The KK Front-end containing the square root and logarithm
operations are incorporated into the overlap kernel to limit GPU
memory access and thus improve performance. The overlap part
of this kernel, including the dependency handling via events, see
Section II-D and Fig. 2.

Since the digitizer used in this experiment was AC-coupled,
no DC-terms are measured, hampering KK field reconstruction.
Therefore, an offline-optimized static DC-offset is added to
the signal [25] after the data are converted from 12-bit un-
signed integers to 32-bit floats. Subsequently, a conventional KK
front-end [19] performs the square root, to retrieve the signal
amplitude, and logarithm, required for phase reconstruction,
operations at 4 samples-per-symbol.

B. Step 2-5: Hilbert Transform and KK Field Reconstruction

A 100% overlap-save 1024-point real-to-complex FFT is used
to convert the samples pre-processed for phase-retrieval by the
KK front-end to frequency domain, dividing the 222 samples in
the buffer in 8192 blocks of 1024 samples of which, because
of 100% overlap-save, 512 are valid. The Hilbert transform is
performed in FD before a complex-to-complex IFFT converts
back to TD. Now, the KK field reconstruction [19] combines the
previously retrieved signal amplitude with the phase recovered
through the logarithm and Hilbert transform. The recovered
optical field is downshifted to DC for further processing.

C. Step 6-8: FD Static Equalization

After a 1024-point complex-to-complex FFT, the recovered
signal is filtered in FD by a static 203-tap FIR filter, which is
optimized offline beforehand and uploaded to GPU memory.
This static equalizer compensates for receiver bandwidth im-
pairments and performs matched filtering for the RRC N-QAM
signals. A 512-point IFFT both converts the signal to TD and
downsamples it to 2 samples-per-symbol.

D. Step 9: TD Adaptive Equalization and Symbol Decision

Clock-phase and symbol-phase recovery, transmitter IQ-
imbalance compensation, and symbol decision and demap-
ping are performed by a 4-tap adaptive widely-linear [26] TD
decision-directed least mean square (DDLMS) equalizer. Note
that in contrast to the PAM-N signals of Section III, a 10MHz
reference clock was shared by transmitter and receiver, so the
equalizer only needs to handle relatively small clock-phase
and symbol-phase fluctuations, for example due to changing
conditions in the field-deployed fiber. During equalization, the
decisions made by the equalizer are demapped and stored in
GPU memory to be sent to RAM after this kernel is finished.



2364 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 39, NO. 8, APRIL 15, 2021

Fig. 9. KK GPU Signal Processing Chain including an annotated GPU profiler trace, detailing the Signal Processing block of Fig. 2 for N-QAM signals.

Four taps was deemed sufficient and has the benefit of ex-
ploiting 128-bit parallel data access through vector load/store
instructions as explained in Section III-A. Furthermore, warp-
level shuffles are used to further optimize this TD adaptive
equalizer kernel which is serial in nature. One might conclude
based on the GPU profiler trace in Fig. 9 that this kernel uses
a lot of resources since it uses a lot of time. However, this is
not correct. A relatively low amount of GPU parallel processing
units are used for execution of this kernel. Therefore, this kernel
does not take up significant amount of resources even though it
takes up significant amount of time, similar to the clock-phase
unwrapping kernel discussed in Section III-B. The unused par-
allel processing units can be used by other parallel processing
streams, see Fig. 9.

E. Back-to-Back Evaluation of N-QAM Signals

KK N-QAM signals are generated using the same setup as
PAM-N signals explained in Section III-D, Fig. 5. However,
the IQM is operated at the minimum optical output bias point,
whilst the AWG produces baseband 1 GBaud N-QAM signals
with 1% roll-off RRC pulse shaping combined with a digitally-
introduced carrier tone at 0.547 GHz. The tone power can be
chosen to produce the desired CSPR. Note that the N-QAM
required optical bandwidth is half of PAM-N, but the required
electrical bandwidth is identical.

CSPR optimization is important for KK N-QAM signals
since it directly influences the accuracy of signal reconstruction
and OSNR performance. When employing high carrier power,
signal-signal beat interference (SSBI) is lower and signal re-
construction through the KK algorithm is better, thus improving
signal quality after receiver DSP. However, higher carrier power
leads to lower signal power for the same combined power.
Therefore, signal quality degrades in the higher CSPR region,
as can be seen in Fig. 10. The choice of CSPR is essentially
a trade-off between increased reconstruction error at lower
CSPRs versus increased noise at higher CSPRs. Moreover, the
optimal choice also depends on modulation cardinality, since
high-cardinality modulation formats such as 64-QAM suffer
more from reconstruction errors than 4-QAM. For simplicity

Fig. 10. CSPR optimization shows a trade-off between reconstruction errors
at low CSPR and increased noise at high CSPR. 6 dB is chosen for 4-QAM and
11 dB for 16/64-QAM.

Fig. 11. Q-factor versus OSNR for Kramers-Kronig N-QAM signals, both
back-to-back and after field trial transmission.

of measurement, the CSPR is optimized at only one specific
value for OSNR, 10 dB for 4-QAM and 20 dB for 16-QAM and
64-QAM. A CSPR of 6 dB is chosen for 4-QAM whilst 11 dB
is employed for 16-QAM and 64-QAM throughout this work.

Fig. 11 shows the Q-factor as a function of OSNR for 4,
16, and 64-QAM. 4-QAM reaches the 6.7% overhead HDFEC



VAN DER HEIDE et al.: FIELD TRIAL OF A FLEXIBLE REAL-TIME SOFTWARE-DEFINED GPU-BASED OPTICAL RECEIVER 2365

Fig. 12. Experimental setup using field-deployed fiber between Koganei and Otemachi, Tokyo. Transmitter and receiver structure are detailed in Fig. 5.

threshold [22] at 5.5 dB OSNR, whilst 16-QAM requires an
OSNR of 17.6 dB. 64-QAM signals were received and processed
in real time, however, performance was not sufficient to reach
either the 6.7% of 20% overhead HDFEC threshold [22].

V. EXPERIMENTAL FIELD TRIAL

A. Experimental Setup

The same transmitter and receiver architecture used for back-
to-back characterization, see Fig. 5, is also used to generate
and receive the signals in the field trial scenario. The signal
launch power is set by an EDFA followed by a VOA. The
transmission network shown in Fig. 12 consists of a bidirectional
ring with 3 commercial ROADMs. Two ROADMs are installed
in the same location in Koganei, Tokyo. The link between these
ROADMs is relatively short and its loss was set to 16 dB using
fixed attenuators. Both ROADMs are connected to a commercial
ROADM in Otemachi, Tokyo by a 45.5 km, 4-fiber link. The
transmission loss, including optical distribution frames, is 16.5
dB. 56% of the fiber is installed in underground ducts and the
remainder on areal paths and in the surface along railway tracks.
The red line in Fig. 12) shows the signal path along the network,
with a total transmission distance of 91 km. Each ROADM has
two line sides, each consisting of WSSs and optical amplifiers
for add/drop and express connections. In addition, (ArrWGs)
were used for add and drop. Fig. 12 shows a photograph of one
of the commercial ROADMs.

B. Transmission Results of PAM-N Signals

Fig. 8 shows the Q-factor as a function of OSNR for PAM-
2, PAM-4, PAM-8, and PAM-16 for back-to-back and after
transmission through the field trial network. An OSNR penalty
increasing with modulation cardinality, is observed. The penalty
at the 6.7% overhead HDFEC threshold is 0.4 dB and 1.5 dB
for PAM-2 and PAM-4, respectively. After transmission through
the field trial network, PAM-8 cannot be recovered using a 6.7%
overhead HDFEC, but can when a 20% overhead HDFEC with a
Q-factor threshold of 5.7 dB is employed [22]. Eye diagrams for
PAM-N transmission over the field trial network without noise
loading are plotted in Fig. 13.

C. Transmission Results of N-QAM Signals

Fig. 11 shows the Q-factor as a function of OSNR for 4-QAM,
16-QAM, 64-QAM for back-to-back and after transmission

Fig. 13. Eye diagrams for PAM-N transmission over the field trial network
without noise loading.

Fig. 14. Constellation diagrams for KK N-QAM transmission over the field
trial transmission without noise loading.

through the field trial network. A 0.2 dB and 1.2 dB OSNR
penalty is observed for 4-QAM and, respectively. 64-QAM
signals were received and processed in real time, however,
performance was not sufficient to reach either the 6.7% of 20%
overhead HDFEC threshold [22]. Constellation diagrams for
these modulation formats at maximum available OSNR after
transmission over the field trial network are plotted in Fig. 14.

D. Continuous Real-Time Transmission

Fig. 15 shows the short-term average Q-factor for six sec-
ond long traces for various modulation formats. Within these
six seconds, all transmitted symbols were received, processed,
and recorded continuously, using the real-time GPU algorithms
detailed in the previous sections. During these six seconds, 6
billion symbols were received for N-QAM signals and 12 billion
symbols for PAM-N signals. The Q-factor displayed in Fig. 15 is
estimated from the bit error rate (BER) in sections of 21 ms. For
all transmitted signals, we observe stable performance. No errors
are observed while transmitting PAM-2. 4-QAM, PAM-4, and
16-QAM can be recovered using a 6.7% overhead HDFEC since
the Q-factors are 14.1 dB, 13.4 dB, and 10.4 dB, respectively.
With a Q-factor of 7.4 dB, PAM-8 cannot be recovered by the
6.7% overhead HDFEC but performance is sufficient for 20%
overhead error coding. 64-QAM is successfully transmitted,
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Fig. 15. Continuous real-time transmission traces for various modulation
formats. Performance remains stable despite the varying environment of installed
fiber.

received, processed using the GPU, and stored in RAM in real
time, but performance is not sufficient for HDFEC algorithms
considered.

VI. CONCLUSION

A real-time, software-defined, multi-modulation-format,
GPU-based receiver achitecture is introduced, detailed, and
demonstrated to achieve stable real-time operation over a field-
deployed metropolitan network. We show the potential for
massive parallel processing provided by a GPU to recover
directly-detected PAM-N signals as well as N-QAM signals with
Kramers-Kronig coherent detection. 2 GBaud optical signals us-
ing PAM-2, PAM-4, PAM-8, and PAM-16 modulation, 1 GBaud
4-QAM, 16-QAM, and 64-QAM modulation, are received and
processed in real time by our flexible receiver architecture.
PAM-2 and -4 and 4- and 16-QAM reach the Q-factor threshold
for a 6.7% overhead HDFEC both in back-to-back and after
transmission through the field-trial network. PAM-8 reaches
this threshold in back-to-back, but no longer after transmission,
although it can be received using a 20% overhead HDFEC. PAM-
16 and 64-QAM are received and processed in real-time, but
performance is not sufficient to reach either HDFEC threshold.
Continuous real-time transmission reveals stable performance
despite the varying environment of installed fiber. These results
show the potential of massive parallel processing provided by
GPUs for low-cost flexible optical links for a range of modula-
tion formats.
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