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Abstract—A bidirectional free-space optical (FSO) communica-
tion through a 600-m free-space transmission is built, employing
a phase modulation (PM) scheme and a remotely injection-locked
distributed feedback laser diode (DFB LD) for presentation. With
optimum injection locking, a DFB LD is excellent for duplex
transceiver operations. An injection-locked DFB LD not only op-
erates as a PM-to-intensity modulation converter with an optical
detector, but also functions as an upstream optical carrier. To
be the first one of employing a remotely injection-locked DFB
LD to detect a phase-modulated 25-Gb/s/25-GHz four-level pulse
amplitude modulation (PAM4) passband signal, the DFB LD with
remote injection locking is successfully intensity-modulated with
an upstream 25-Gb/s non-return-to-zero (NRZ) signal. Good bit
error rate performance and clear PAM4/NRZ eye diagrams show
that this FSO communication can use a remotely injection-locked
DFB LD to detect the downstream phase-modulated PAM4 signal
and concurrently deliver an upstream intensity-modulated NRZ
signal. This bidirectional 25-Gb/s/25-GHz (downstream)/25-Gb/s
(upstream) FSO communication is prominent due to its enhance-
ment in two-way high-speed optical wireless communications.

Index Terms—Four-level pulse amplitude modulation (PAM4),
free-space optical (FSO) communication, phase modulation,
remotely injection-locked DFB LD.

I. INTRODUCTION

W IRELESS broadband access (WBA) is attractive for sup-
plying present and emerging technologies such as high-

speed Internet, virtual/augmented reality, 4K/8K high-definition
video transmission, and 5G/6G mobile telecommunication [1]–
[6]. However, its low radio-frequency (RF) power feature limits
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its wireless access distance. Modern access, metro, and long-
haul core networks need increased transmission capacity to
cover Internet, 5G/6G mobile telecommunication, and cloud
computing applications. Increasing demands are pushing the re-
quirements of long-range wireless access and high transmission
capacity. Following optical wireless communication technol-
ogy’s evolution, free-space optical (FSO) communication has
attracted substantial attention because of its numerous bene-
fits over RF-based WBA, such as unlicensed bandwidth, non-
interference with RF signals, and affording an optical wireless
link in certain area in which RF wireless link is restricted. Com-
pared with RF-based WBA, FSO communication is enhanced
with free-space link of hundreds of meters and data rate of tens
of gigabits [7]–[12]. The performance of FSO communications
will be subject to bad weather. Atmospheric turbulence because
of thick fog or heavy rain will affect FSO communication’s link
availability and bring on poor performance. In the scenario of
thick fog or heavy rain, however, millimeter-wave (MMW) link
can be deployed as a substitute solution [13]. As for the eye
safety problem of FSO communications, people have a natural
aversion to laser light and are liable to turn their heads or close
their eyes if exposed, meaning that people will not stare at the
laser light due to natural reaction. Thus, the risk of eye damage
can be alleviated since people’s natural reaction makes it difficult
to expose the eyes over a long time.

Phase-modulated FSO communication requires a costly delay
interferometer (DI) [14] or a sophisticated fiber Bragg grating
(FBG) tilt filter [15], [16] to convert the phase-modulated optical
signal into an intensity-modulated signal before being sent to a
photodiode (PD). However, a costly DI or sophisticated FBG tilt
filter will severely restrict the constructing of phase-modulated
FSO communication. Developing an inexpensive and unsophis-
ticated phase modulation (PM)-to-intensity modulation (IM)
converter is thus imperative for constructing a phase-modulated
FSO communication. To conquer the restriction of costly DI
or sophisticated FBG tilt filter, a distributed feedback laser
diode (DFB LD) with remote injection locking is thereby of-
fered to make a PM-to-IM conversion. Gu et al. [17] and
Su et al. [18] experimentally employed an injection-locked
vertical-cavity surface-emitting laser (VCSEL) or DFB LD to
directly detect phase-modulated optical signal. Experiments
have shown that as a VCSEL or DFB LD is remotely injection-
locked, a phase-modulated optical signal can be converted to
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an intensity-modulated signal. In addition, an electrical signal
can be acquired from the electrical port of an injection-locked
VCSEL or DFB LD. An injection-locked VCSEL was used
to directly detect phase-modulated 12-Gb/s non-return-to-zero
(NRZ) baseband signal in a digital fiber optics transmission
system [17], and an injection-locked DFB LD was used to
directly detect phase-modulated 50–550 MHz analog CATV
signal in a fiber optical CATV transmission system [18]. Never-
theless, applying it to detect phase-modulated PAM4 passband
signal in a bidirectional FSO communication has not been
addressed. In this study, a bidirectional FSO communication
with a downstream phase-modulated 25-Gb/s/25-GHz PAM4
passband signal and an upstream intensity-modulated 25-Gb/s
NRZ baseband signal over a 600-m free-space transmission
is proposed and constructed. Importantly, a bidirectional FSO
communication, rather than a unidirectional FSO communica-
tion, must be built and implemented. One of the merits of FSO
communications is to offer the spatial reuse. A bidirectional
FSO communication that delivers symmetrical downstream and
upstream transmission rates is thus built to meet the spatial
reuse target. PAM4’s data rate is twice that of NRZ at a given
bandwidth, making PAM4 suitable for high-speed transmission
[19]–[21]. Regarding PM scheme, it provides high robustness
against noise since PM scheme utilizes phase shifting to write
down signal states. In FSO communications, noise increases as
other lights from the environment increase, by which bringing
on link performance degradation. Compared with IM scheme,
PM scheme can further enhance the link performance of FSO
communications due to higher noise tolerance. Although a PM-
to-IM converter is required at the receiving side, however, PM
scheme is worth adopting because it has better link performance
than IM scheme.

To successfully deploy a bidirectional FSO communication,
an optical carrier is needed at the receiver side for upstream mod-
ulation. Wavelength reuse is commonly utilized in bidirectional
lightwave transmission systems for upstream transmission. The
feasibility of adopting a reflective semiconductor optical am-
plifier (RSOA) for wavelength reuse in bidirectional lightwave
transmission systems was performed formerly [22]–[25]. Never-
theless, sending a 25-Gb/s NRZ data stream via an RSOA is quite
challenging since RSOA’s bandwidth is limited. A DFB LD with
remote injection locking is a promising mechanism for upstream
transmission. An injection-locked DFB LD’s bandwidth is sev-
eral times that of an RSOA. This allows FSO communication
enhancing the upstream transmission capacity without using an
electrical equalizer [26], [27]. In addition, the upstream perfor-
mance for employing an injection-locked DFB LD is better than
that for employing an RSOA, due to the reduction of laser chirp
caused by direct modulation [28]. Consequently, a DFB LD with
remote injection locking is a promising mechanism because it
can not only function as a PM-to-IM converter with an optical
detector to detect the phase-modulated optical signal, but it can
also function as an upstream optical carrier to provide improved
upstream performance. To the author’s best knowledge, this is
the first time that an injection-locked DFB LD is adopted to
detect a downstream phase-modulated PAM4 passband signal
and deliver an upstream intensity-modulated NRZ baseband

signal concurrently. With optimal injection wavelength and
injection power, a remotely injection-locked DFB LD effec-
tively operates as a duplex transceiver. Compared with previous
works [17], [18], the realization of such a bidirectional FSO
communication with phase-modulated 25-Gb/s/25-GHz PAM4
passband signal (downstream) and intensity-modulated 25-Gb/s
NRZ baseband signal (upstream) is a challenge, especially for
a 600-m long-range free-space transmission and given trans-
mission qualities. It is difficult to obtain good transmission per-
formances due to high downstream/upstream transmission rates
and long-reach free-space transmission. Employing an injection-
locked DFB LD to detect downstream phase-modulated 25-
Gb/s/25-GHz PAM4 passband signal and transmit upstream
intensity-modulated 25-Gb/s NRZ baseband signal in a bidi-
rectional FSO communication is more difficult than employ-
ing an injection-locked VCSEL (DFB LD) to detect down-
stream phase-modulated 12-Gb/s NRZ baseband signal (50–
550 MHz analog CATV signal) and transmit upstream intensity-
modulated 12-Gb/s NRZ baseband signal (50–550 MHz ana-
log CATV signal) in a bidirectional fiber optics transmission
system. Furthermore, laser light alignment is imperative for a
bidirectional FSO communication. Thanks to strict laser light
alignment requirement, it is quite challenging for a bidirectional
FSO communication to maintain the link availability. To ensure a
practical operation of bidirectional FSO communication through
600 m free-space transmission, these technique challenges must
be conquered [29].

The link performances of the demonstrated bidirectional
FSO communication through 600 m free-space transmission
are investigated in real-time via bit error rate (BER) values and
PAM4/NRZ eye diagrams. Good BER performances and clear
PAM4/NRZ eye diagrams are attained over a 600-m free-space
link. This bidirectional 25-Gb/s/25-GHz (downstream)/25-Gb/s
(upstream) FSO communication with low-complexity duplex
transceiver opens up a novel and promising way for developing
two-way high-speed optical wireless communications.

II. EXPERIMENTAL SETUP

Fig. 1 presents two bidirectional FSO communications em-
ploying downstream phase-modulated 25-Gb/s/25-GHz PAM4
passband signal and upstream intensity-modulated 25-Gb/s
NRZ baseband signal over 600 m free-space transmission.
Fig. 1(a), denoting system I, illustrates an FSO communica-
tion employing an FBG tilt filter with a PD at the receiving
side. Fig. 1(b), denoting system II, illustrates our proposed
FSO communication’s framework which employs a remotely
injection-locked DFB LD as a duplex transceiver. DFB LD1,
with a central wavelength of 1540.60 nm (λ1), inputs an op-
tical carrier into the phase modulator (Thorlabs LN66S) after
being polarized by a polarization controller (PC1). A 25-Gb/s
PAM4 baseband signal generated from a PAM4 signal generator
(Anritsu MP1800A), with an amplitude of 1.2 Vpp, is mixed
with a 25-GHz MMW carrier to produce a 25-Gb/s/25-GHz
PAM4 passband signal. Since PAM4’s linearity is imperative, a
passive linear equalizer (Anritsu J1646A) is employed to drive
the PAM4 electrical signal. A mixer (HMC337), with frequency
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Fig. 1. Two bidirectional FSO communications employing a downstream phase-modulated 25-Gb/s/25-GHz PAM4 passband signal and an upstream intensity-
modulated 25-Gb/s NRZ baseband signal through a 600-m free-space transmission.

range of 17–25 GHz/maximum local oscillator input power of
13 dBm/maximum RF output power of 13 dBm, is utilized to mix
the PAM4 signal with the 25 GHz carrier. After traveling through
a modulator driver, this 25-Gb/s/25-GHz PAM4 passband signal
is supplied in the phase modulator with a half-wave voltage
of 3.9 V at DC, 7 V at 1 GHz, and 10 V at 25 GHz. As the
lightwave is modulated by a phase modulator, several sidebands
will be produced depending on the amplitude of the driven PAM4
passband signal. We drive the phase modulator with 3.4% optical
modulation index, by which resulting in only the first-order (±1)
sidebands are generated. The peak of first-order sidebands is
25 GHz away from the zero-order carrier. Then, a PC (PC2)
is employed to adjust the optical signal’s polarization state.
The 25-Gb/s/25-GHz PAM4 passband signal is boosted by an
erbium-doped fiber amplifier (EDFA), decreased by a variable
optical attenuator (VOA), circulated by an optical circulator
(OC1), and communicated over 600 m free-space transmission
via a set of doublet lenses. As EDFA’s input power is 0 dBm,
its output power and noise figure are 17 dBm and 4.5 dB,
respectively. A VOA after the EDFA optimizes the optical power
sent to the free-space. Doublet lenses emit the laser light from

doublet lens 1 to the free-space and direct the laser light from the
free-space to doublet lens 2. The downstream optical signal is
sent to system I [Fig. 1(a)] and system II [Fig. 1(b)], respectively,
over 600 m free-space transmission.

In system I, the downstream optical signal is circulated by
an OC2, and then passed through an FBG tilt filter to perform
a PM-to-IM conversion. Following with the FBG tilt filter, the
optical signal is received by a broadband PD (Optilab PR-30-A)
with 30 GHz bandwidth, and envelope-detected by an envelope
detector with 0.5-43.5 GHz frequency range (Analog Devices
ADL6010). After driven by a low-noise (LN) driver (Anritsu
AH34152A), the 25-Gb/s PAM4 baseband signal experiences
real-time BER measurement by a 28-Gb/s error detector (ED)
(Anritsu MP1800A 28-Gb/s ED). Further, a digital storage oscil-
loscope (DSO) (Keysight N1000A DCA-X) catches the 25-Gb/s
PAM4 signal’s eye diagrams.

For uplink transmission, a 25-Gb/s NRZ data stream is
driven by a linear driver (Picosecond PSPL5866) and fed into
the DFB LD2 (λc = 1540.40 nm). Next, the upstream optical
signal is boosted by an EDFA, reduced by a VOA, circulated
by an OC2, and transmitted through 600 m free-space link by
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Fig. 2. (a) The optical spectrum before injection locking. (b) A remote injection locking will enhance the lower sideband’s intensity.

a pair of doublet lenses. Subsequently, the upstream signal is
circulated by an OC1, detected by a 25-GHz PD (Newport
1414), amplified by a 25-GHz low noise amplifier (LNA) (SHF
115 AP), recovered through a 25-Gb/s clock/data recovery
(DSC-25G-CDR), and sent to a BER tester (BERT) (Anritsu
MP2101A) to measure the BER.

In system II, the downstream optical signal is circulated by an
OC2, travelled through an optical isolator, and injected into the
DFB LD2 to operate a PM-to-IM conversion and detect a 25-
Gb/s/25-GHz PAM4 passband signal. Given that the DFB LD2
is remotely injection-locked, the lower sideband (−1 sideband)
of the phase-modulated optical signal is enhanced. Whereas
the upper sideband (+1 sideband) remains unchanged. The
optical spectrum before injection locking is shown in Fig. 2(a)
[Fig. 1(b) insert (i)]. A remote injection locking will enhance
the lower sideband’s intensity and generate the optical spec-
trum as presented in Fig. 2(b). An optical isolator between the
OC2 and DFB LD2 prevents the upstream optical signal from
the injection-locked DFB LD2 to ensure it has been entirely
delivered for uplink transmission. Afterward, the 25-Gb/s/25-
GHz PAM4 passband signal is circulated by an RF circulator
with a frequency range of 17.7–26.5 GHz (Wenteq F3796),
envelope-detected by an envelope detector, and driven by a LN
driver. Subsequently, a high-sensitivity ED measures the BER in
real-time, and a DSO takes the 25-Gb/s PAM4 baseband signal’s
eye diagrams.

For uplink transmission, a 25-Gb/s NRZ data stream is driven
by a linear driver, circulated by an RF circulator, and inputted
into the injection-locked DFB LD2. Next, the upstream optical
signal is boosted by an EDFA, controlled by a VOA, circulated
by an OC2, and transported through 600 m free-space transmis-
sion via a couple of doublet lenses. Afterward, the upstream
signal is circulated by an OC1, detected by a 25-GHz PD,
amplified by a 25-GHz LNA, recovered through a 25-Gb/s CDR,
and inputted into a BERT to evaluate the BER performance.

The setup for measuring the downstream/upstream modula-
tion response of bidirectional FSO communications is presented
in Fig. 3. For downstream modulation response, a continuous
sweep signal (DC – 26 GHz) produced from a network analyzer

is supplied in the phase modulator. After detection by the DFB
LD2 and circulation by an RF circulator, the sweep signal
is returned to the network analyzer. Thereby, the downstream
modulation response is measured in the scenarios of DFB LD2
with remote injection locking and non-injection locking. As
for upstream modulation response, a continuous sweep signal
(DC – 26 GHz) is circulated by an RF circulator, and then
supplied in the free-running/injection-locked DFB LD2. After
circulation by an OC1 and detection a PD, the sweep signal
is returned to the network analyzer. Accordingly, the upstream
modulation response is measured in the scenarios of DFB LD2
with free-running and injection locking.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this demonstration, a couple of doublet lenses emit and
receive laser light over 600 m free-space link for building a bidi-
rectional FSO communication. For indoor application, a 600-m
free-space transmission with plane mirror on each corner can
avoid the transmission interruption due to physical obstructions
[2]. For outdoor application, a 600-m free-space transmission
can meet the target of two building’s communication [7]. As a
laser light travels through a 600-m FSO link, the laser light’s
natural expansion [30] makes it difficult to totally couple the
laser light with the fiber ferrule. Doublet lens at the receiving
side is a reduction scheme to match the laser light with the fiber
ferrule’s field of view (FOV). If fiber ferrule’s FOV is larger than
doublet lens’s FOV, as illustrated in Fig. 4(a), then fiber ferrule
accumulates more transmitted laser light. Thus, the received
optical power increases and improves the BER performance.
Nevertheless, if doublet lens’s FOV is larger than fiber ferrule’s
FOV, as illustrated in Fig. 4(b), then fiber ferrule accumulates
less transmitted laser light. Thus, the received optical power
decreases and worsens the BER performance.

Table I gives the status of the DFB LD2 with injection at
different wavelength detuning (Δλ=λ1 – λ2). Notably, an injec-
tion locking behavior emerges within the wavelength detuning
range of −0.2 to 0.3 nm. However, severe oscillation appears
outside the wavelength detuning range [31], [32]. Within the



HUANG et al.: BIDIRECTIONAL FSO COMMUNICATION EMPLOYING PHASE MODULATION SCHEME 5887

Fig. 3. The setup for measuring the downstream/upstream modulation response of bidirectional FSO communications.

Fig. 4. (a) Fiber ferrule’s FOV is larger than doublet lens’s FOV. (b) Doublet lens’s FOV is larger than fiber ferrule’s FOV.

injection locking range, the DFB LD2 functions as a PM-to-IM
converter with an optical detector. Outside the injection locking
range, however, the DFB LD2 will not function as a PM-to-IM
converter with an optical detector. Moreover, it is to be found
that optimum injection locking occurs at a wavelength detuning
of ±0.2 nm. With optimum injection locking, this proposed
bidirectional FSO communication performs best in view of the
lowest BER value.

Fig. 5 shows the downstream/upstream modulation responses
of bidirectional FSO communications in the conditions of
DFB LD2 with injection locking and non-injection locking
(downstream)/free-running (upstream). For downstream
modulation, it is to be observed that only noise is attained as

the DFB LD2 has not injection-locked by the phase-modulated
PAM4 passband signal. With injection locking, nevertheless, a
great enhancement in resonance frequency and a considerable
improvement in 3-dB modulation response are obtained. Result
shows that DFB LD2 with injection locking is powerful for an
optical detector to detect downstream 25-Gb/s/25-GHz PAM4
passband signal and an optical transmitter to transmit upstream
25-Gb/s NRZ baseband signal simultaneously. The downstream
and upstream transmission rates can be further enhanced
by employing a bidirectional FSO communication with a
3-dB modulation response higher than 25.4 GHz, indicating
that they can be further increased by employing a remotely
injection-locked DFB LD2 with a 3-dB resonance frequency
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TABLE I
THE STATUS OF THE DFB LD2 WITH INJECTION AT DIFFERENT WAVELENGTH DETUNING (Δλ = λ1 – λ2).

Fig. 5. The downstream/upstream modulation responses of bidirectional FSO communications in the conditions of DFB LD2 with injection locking and
non-injection locking (downstream)/free-running (upstream).

(modulation response) higher than 25.4 GHz. If a downstream
phase-modulated 50-Gb/s/25-GHz PAM4 passband signal and
an upstream intensity-modulated 25-Gb/s PAM4 baseband sig-
nal are adopted, then there would be two PAM4 signal generators
to build such a bidirectional FSO communication. In this manner,
complexity and cost increase due to the use of two PAM4 signal
generators for downlink and uplink transmissions. For a practical
implementation of bidirectional FSO communication, it is vital
to have a framework with simple and cost-effective advantages.
Moreover, at a 10−9 BER operation, since the receiver sensitivity
of 50-Gb/s PAM4 signal is higher than that of 25-Gb/s PAM4
signal, the power penalty in BER performance will be paid for
the 50-Gb/s/25-GHz PAM4 passband signal. In addition, given
that PAM4 is more susceptible to noise than NRZ, the upstream
performance for delivering a 25-Gb/s PAM4 baseband signal
will be worse than that for transmitting a 25-Gb/s NRZ baseband
signal.

Fig. 6(a) shows the downstream BER performances of FSO
communications with phase-modulated 25-Gb/s/25-GHz PAM4
passband signal in the states over 600-m FSO link (system I),
over 600-m FSO link (system II; with 3 dBm injection), over

600-m FSO link (system II; with 0 dBm injection), and over
600-m FSO link (system II; with −3 dBm injection), respec-
tively. Over 600-m FSO link, the atmospheric attenuation varies
from 1.4 dB (good visibility) to 50 dB (poor visibility) [33]. In
this study, an atmospheric attenuation of around 1.6 dB exists
because of 600 m free-space transmission, a coupling loss of
about 2.2 dB emerges due to laser light travelling through a
couple of doublet lenses, a coupling loss of approximately 1.2 dB
appears on account of laser light coupling into fiber ferrule
(receiving side), and an insertion loss of around 1 dB happens
as laser light passing through an OC2 with an optical isolator.
Thereby, a link budget of 6 dB (1.6 + 2.2 + 1.2 +1) exists. With
a link budget of 6 dB and an injection power of 3 dBm, thus, the
transmitted laser power at the doublet lens 1 is 9 dBm [6 (dB)
+ 3 (dBm) = 9 (dBm)]. Although 9 dBm laser power is higher
than the eye safety of laser power level regulation, however,
the risk of eye damage can be avoided by erecting a couple
of doublet lenses on two building’s roofs (outdoor) and can be
mitigated by transmitting laser light from the ceiling to the floor
(indoor) to keep away from looking straight at the laser. At a
BER value of 10−9, there is a power penalty of approximately
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Fig. 6. (a) The downstream BER performances of FSO communications with phase-modulated 25-Gb/s/25-GHz PAM4 passband signal in the states over 600-m
FSO link (system I), over 600-m FSO link (system II; with 3 dBm injection), over 600-m FSO link (system II; with 0 dBm injection), and over 600-m FSO link
(system II; with −3 dBm injection). The eye diagrams of down-converted 25-Gb/s PAM4 signal delivered (b) over a 600-m FSO link (system I), (c) over a 600-m
FSO link (system II; with 3 dBm injection), (d) over a 600-m FSO link (system II; with 0 dBm injection), and (e) over a 600-m FSO link (system II; with −3 dBm
injection).

4.1 dB between systems I and II (with 3 dBm remote injection).
To have the same BER performance for systems I and II (with
3 dBm injection), the received optical power of system I has
to be decreased 4.1 dB (power penalty) to achieve the same
BER performance. In system I, a BER value of 10−9 is attained
at a received optical power of −9.3 dBm. In system II (with
3 dBm injection), therefore, a BER value of 10−9 is derived
at a received optical power of −5.2 dBm. The 4.1-dB power
penalty mainly results from the injection-locked DFB LD2’s
large dynamic nonlinearity at the resonance frequency [34].
As DFB LD2 is injection-locked, dynamic laser nonlinearity
becomes large when the modulated frequency is closer to the
resonance frequency. As modulated signal around the resonance
frequency is utilized for PAM4 passband signal transmission,
nonlinear distortion becomes large and thus worsens the BER
performance. To avoid large dynamic laser nonlinearity (large
nonlinear distortion), the modulated frequency must be lower
than the resonance frequency of the injection-locked DFB LD2.
Nevertheless, system II’s (with 3 dBm injection) BER perfor-
mance still meets the target of FSO communications (≤10−9).
Moreover, it is to be found that system II’s BER performance
is obviously influenced by the DFB LD2’s injection power
level. With a 10−9 BER operation, a 1-dB power penalty ap-
pears between the states over 600-m FSO link (system II; with
3 dBm injection) and that over 600-m FSO link (system II;
with 0 dBm injection). At a BER value of 10−9, a 1.1-dB
power penalty occurs between the states over 600-m FSO link
(system II; with 0 dBm injection) and that over 600-m FSO
link (system II; with −3 dBm injection). It discloses the DFB
LD2 with remote injection locking can practically function as
a PM-to-IM converter with an optical detector. The conversion
and detection efficiencies are proportional to the injection power

level. Remote injection locking with higher injection power
level yields higher conversion and detection efficiencies, thus
improving the downstream BER performance.

Figs. 6(b), 6(c), 6(d), and 6(e) display the eye diagrams of the
down-converted 25-Gb/s PAM4 signal delivered over a 600-m
FSO link (system I), over a 600-m FSO link (system II; with
3 dBm injection), over a 600-m FSO link (system II; with 0 dBm
injection), and over a 600-m FSO link (system II; with −3 dBm
injection), respectively. In the state over 600-m FSO link (sys-
tem I), open eye diagrams [Fig. 6(b)] are attained with a BER
operation of 10−9 and a received optical power of −9.3 dBm. In
the state over 600-m FSO link (system II; with 3 dBm injection),
clear eye diagrams [Fig. 6(c)] are observed at a BER value of
10−9 and a received optical power of −5.2 dBm. Over 600-m
FSO link (system II; with 0 dBm injection), somewhat clear eye
diagrams [Fig. 6(d)] are obtained with a BER operation of 10−9

and a received optical power of −4.2 dBm. Over 600-m FSO
link (system II; with −3 dBm injection), a little worse than clear
eye diagrams [Fig. 6(e)] are acquired at a BER value of 10−9

and a received optical power of −3.1 dBm.
Figs. 7(a), 7(b), and 7(c) exhibit the electrical spectra of the

downstream 25-Gb/s PAM4 signal in the conditions over 600-m
FSO link (system I), over 600-m FSO link (system II; with
3 dBm injection), and over 600-m FSO link (system II; non-
injection locking), respectively. The PD (system I), the injection-
locked DFB LD2 (system II; with 3 dBm injection), and the
non-injection-locked DFB LD2 (system II; non-injection lock-
ing) are compared. Fig. 7(b) shows that an injection-locked DFB
LD2 (system II; with 3 dBm injection) can detect the delivered
25-Gb/s PAM4 signal but with a lower amplitude in comparison
with the PD (system I). The amplitude of the 25-Gb/s PAM4
signal detected by the injection-locked DFB LD2 (system II;
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Fig. 7. Electrical spectra of the downstream 25-Gb/s PAM4 signal in the conditions (a) over 600-m FSO link (system I), (b) over 600-m FSO link (system II;
with 3 dBm injection), and (c) over 600-m FSO link (system II; non-injection locking).

Fig. 8. (a) The upstream BER performances of FSO communications with intensity-modulated 25-Gb/s NRZ signal in the scenarios over 600-m FSO link
(system I) and that over 600-m FSO link (system II; with 3 dBm injection). The delivered 10-Gb/s NRZ signal’s eye diagrams for the state of (b) free-running DFB
LD2 (system I) and (c) DFB LD2 with an injection power of 3 dBm (system II).

with 3 dBm injection) [Fig. 7(b)] is around 5.1 dB lower than that
detected by the PD (system I) [Fig. 7(a)]. This 5.1-dB amplitude
penalty is mostly attributable to the responsivity lower than that
of the PD [17]. As an injection-locked DFB LD2 functions as
a PM-to-IM converter with an optical detector, its responsivity

is lower than that of the PD, thus lowering its amplitude output.
As for the state of non-injection-locked DFB LD2 (system II;
non-injection locking), no PAM4 signal is acquired [Fig. 7(c)]
when the DFB LD2 has not injection-locked by the downstream
optical signal.
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The upstream BER performances of FSO communications
with intensity-modulated 25-Gb/s NRZ signal in the scenarios
over 600-m FSO link (system I) and that over 600-m FSO link
(system II; with 3 dBm injection) are presented in Fig. 8(a).
Contrary to the downstream BER performances [Fig. 6(a)], it is
to be found that system II’s upstream performance (with 3 dBm
injection) is better than that of system I. With a 10−9 BER
operation, a 2.1-dB power penalty emerges between systems
II (with 3 dBm injection) and I. Given that the LD’s chirp
due to direct modulation is associated with the optical signal’s
phase deviation, a chirp reduction can be achieved by a LD with
injection locking [35], [36]. A higher optical power injected into
the DFB LD2 (3 dBm injection) will further suppress the DFB
LD2’s chirp in the upstream transmission, thus enhancing the
upstream BER performance. As for NRZ eye diagrams, for the
free-running DFB LD2 (system I), clear eye diagrams [Fig. 8(b)]
are attained with a BER operation of 10−9 and a received optical
power of −8.9 dBm. The DFB LD2 with an injection power of
3 dBm (system II) yields open eye diagrams [Fig. 8(c)], at a
BER value of 10−9 and a received optical power of −11 dBm,
due to the DFB LD2’s chirp being effectively suppressed.

IV. CONCLUSION

A bidirectional FSO communication with downstream phase-
modulated 25-Gb/s/25-GHz PAM4 passband signal and up-
stream intensity-modulated 25-Gb/s NRZ baseband signal
through a 600-m free-space transmission is established. With
optimal injection wavelength and injection power, a remotely
injection-locked DFB LD is sufficient for a duplex transceiver.
A DFB LD with remote injection locking not only operates
as a PM-to-IM converter with an optical detector to detect
the phase-modulated optical signal, but it also operates as an
upstream optical carrier to provide better upstream performance.
With the adoption of PM scheme and remotely injection-locked
DFB LD, a satisfactorily low BER of 10−9 and clear PAM4/NRZ
eye diagrams are acquired through a 600-m FSO link. This
bidirectional FSO communication with a low-complexity duplex
transceiver satisfies the need of high-speed FSO communication
given its practicality for giving a two-way high-transmission-
rate over a long-range free-space transmission. Such established
bidirectional FSO communication opens up an innovative way
for developing two-way high-speed optical wireless communi-
cations.
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