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On the 2D Post-Processing of Brillouin Optical
Time-Domain Analysis

Simon Zaslawski”, Zhisheng Yang

Abstract—The benefits and limitations inherent to the 2D post-
processing of measurements from Brillouin optical time-domain
analyzers are investigated from a fundamental point of view. In
a preliminary step, the impact of curve fitting on the precision of
the estimated Brillouin frequency shift is analyzed, enabling a fair
comparison between the representative noise-reduction algorithms
studied in this article. The performances in terms of signal-to-noise
ratio, experimental uncertainty oz on the Brillouin frequency
shift and spatial resolution delivered by advanced image process-
ing methods—such as wavelet transform and non-local means
algorithms—are then compared with the impact of a 2D Gaussian
filter. The major discrepancies observed when comparing the gain
in signal-to-noise ratio to the o reduction are then determined
by exploiting the separability of the Gaussian filter, which reveals
that noise reduction is only effective along 1-D of the 2D array of
measurements and originates from a digital reduction of the system
analog bandwidth. The signal-to-noise ratio improvement obtained
from filtering in the spectral dimension is only illusory, since its
action is redundant with the curve fitting procedure to estimate
the Brillouin frequency shift. Finally, the maximum o g reduction
achievable by digital post-processing is theoretically given, hence
setting a fundamental limit to the improvement brought by data
processing.

Index Terms—Brillouin scattering, optical fibers,
processing, optical fiber measurement applications.

signal

I. INTRODUCTION

RILLOUIN scattering refers to the inelastic scattering
B of light over material compressive waves, i.e., acoustic
vibrations, in the propagation medium [1], [2]. This effect can
be optically stimulated through electrostriction (Stimulated Bril-
louin scattering or SBS) and has been widely exploited in optical
fibers to achieve distributed measurements of both temperature
and strain, a technique known as Brillouin optical time-domain
analysis (BOTDA). In BOTDA, an optical pulse (pump) counter-
propagating with a continuous-wave signal (probe) locally trig-
gers SBS, leading to an energy transfer between pump and
probe. This interaction shows a sharp resonance conditioned
to a strict phase matching realized when the optical interference
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beating and the traveling acoustic wave are synchronous. Under
this condition the frequency detuning between the two optical
waves in presence matches the frequency of the acoustic wave
involved in the scattering process, also known as Brillouin
frequency shift (BFS). Quite remarkably, the BFS varies linearly
with both temperature and strain in ambient conditions and a
spatially-resolved temperature or strain profile over the whole
length of the optical fiber can be obtained using BOTDA.

The first reports involving BOTDA for distributed temper-
ature and strain sensing were published in 1990 [3], [4]. The
technique has benefited since then from over three decades
of continuous development. The development has been so ex-
tensive that standard BOTDA configurations are now facing
physical limitations, such as the onset of modulation instability
for the pump [5] and pump depletion for the probe [6]-[9],
setting a hard limit to their power at fiber input. This in turns
bounds the signal-to-noise ratio (SNR) on the response for a
given spatial resolution at a certain distance as a simple con-
sequence of fiber attenuation. These limitations have been yet
partially circumvented by implementing sophistications such
as distributed Raman amplification [10] or optical pulse cod-
ing [11]-[14], which have successfully proved to outperform
the classical BOTDA configuration. More recently, the scientific
community started to pay a substantial interest to noise removal
techniques as used for image and video processing [15], since it
was believed to raise at negligible cost the signal-to-noise ratio of
the majority of existing setups, hence proportionally reducing
the final measurement uncertainty [16]. Post-processing is an
added layer in the system and can additively complement the
previously cited sophistications.

In most BOTDA configurations, BFS evaluation is a two
steps process: 1) the local Brillouin gain experienced by the
probe is first measured along the optical fiber on a grid of
equally spaced pump-probe frequency detuning values. 2) the
gain curve associated to each position, referred to as Brillouin
gain spectrum (BGS), is then processed in order to extract the
corresponding BFS. This is commonly addressed using a fitting
procedure, as the acquired data are inevitably corrupted by noise.
The shape and full width at half-maximum (FWHM) of the
Brillouin gain spectrum are dependent on the sensing fiber, the
preset spatial resolution (SR) and the pump pulse shape [17].
At broad SR, that is 3 m and above corresponding to pulse
widths equal or larger than 30 ns, the BGS matches a Lorentzian
distribution whereas it turns closer to a Gaussian function when
the SR is brought down to 1 m (10 ns pulse width). For such
reasons, the most common BFS retrieval techniques consist in
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Fig. 1.
RF: radio frequency, FBG: fiber Bragg grating.

either fitting a Lorentzian curve [ 18] over the whole BGS, or only
keeping the upper part before performing a quadratic fitting [16].
More recently, a Lorentzian cross-correlation technique [19],
[20] proved to be a promising alternative to the traditional fitting.

The first image processing techniques implemented for noise
removal in BOTDA measurements were the orthogonal discrete
wavelet transform (ODWT) and the non-local means (NLM) al-
gorithms, providing SNR improvements of 13 dB [15]. However,
it remains unclear whether such improvement will fully reflect
on the BFS uncertainty reduction while perfectly preserving
the original SR under any circumstance. Wu et al. reported
more recently similar results using another sophisticated image
processing algorithm called BM3D [21]. Interestingly, they also
compare the distortion induced to the BEFS distribution by the
different methods for different SNR improvements. Although
the general qualitative behavior of any noise removal technique
is well understood, in the sense of a tradeoff between noise
removal and signal distortion, to the best of our knowledge a
fundamental explanation is still missing to evaluate the SNR
improvement resulting from a given method and under what
condition the implemented algorithm will maintain the instru-
mental SR.

In this paper, we aim at clarifying the intricate relationships
linking signal-to-noise ratio, measurement uncertainty and BFS
distribution, while evaluating the impact of post-processing
on these quantities. First, we demonstrate the importance of
carefully optimising the procedure to estimate the BFS from
the measurements [22]; if not, the real SNR improvement
may turn out to be misevaluated by data post-processing. We
then challenge the observed SNR improvement after processing
experimental BOTDA measurements using either the ODWT
or NLM with the corresponding reduction in BFS uncertainty
op. Quite counterintuitively, we observe major discrepancies
between SNR improvement and op reduction, since a given
SNR improvement does not correspond to an identical uncer-
tainty reduction, as would be expected [16]. Although the SNR
improvement exceeds 10 dB for most techniques, o 5 could only
be reduced by a factor 3 without influencing the sensor SR. This
was later explained by comparing the results obtained using a
separable 2D Gaussian filter [22]. It turns out that noise removal

Experimental setup of the standard BOTDA sensor used for the different validations. EOM: electro-optic modulator, EDFA: erbium-doped fiber amplifier,

is only effective when applied to the time-domain Brillouin gain
traces, as the fitting procedure applied to each BGS already
filters out noise, thus making the use of another filter or noise
removal algorithm redundant. The observed noise reduction
was attributed to the numerical reduction of our photodetector
bandwidth, which is broader than our signal bandwidth and thus
collects the extra noise out of the signal bandwidth.

II. EXPERIMENTAL SETUP

Measurements were acquired at 1 m, 2 m and 5 m spatial
resolution based on the standard BOTDA setup depicted in
Fig. 1. The light from a laser operating at 1550 nm is split
in two branches using an optical coupler. A high extinction
ratio electro-optic modulator (EOM) is inserted in the upper
branch to shape the continuous-wave (CW) signal from the laser
into a pulse that is then amplified by an erbium-doped fiber
amplifier (EDFA) before being launched into the sensing fiber
through an optical circulator. The lower branch contains a second
EOM operating in double sideband carrier-suppressed mode and
driven by a tunable frequency RF signal to generate a probe
signal with proper frequency detuning with respect to the pump.
After its propagation through the sensing fiber, the probe sees
one of its sidebands filtered out by a fiber Bragg grating before
detection. The polarization-induced fading effects are mitigated
by use of a polarization scrambler on the pump branch. Finally,
the isolator prevents the strong residual pump pulse from further
circulating in the setup.

Though the sensing fiber is kept short (10 km), the pump and
probe powers were always maintained below 23 dBm [5] and
—6 dBm [6]-[9], respectively, in order to secure the absence
of spurious effects such as modulation instability and pump
depletion. The pump power was then finely tuned for each SR
in order to obtain a 3 dB SNR at the fiber distant end using
16 averages. Given the square root dependence of SNR on
the number of averages, the measurements were repeated by
quadrupling the averaging number in order to reach 6 dB (64
averages) and 9 dB (256 averages) SNR at the fiber distant end.
In addition, a reference profile was acquired at 12 dB SNR at the
fiber distant end (1024 averages) for every SR. Finally, ~5 m of



ZASLAWSKI et al.: ON THE 2D POST-PROCESSING OF BRILLOUIN OPTICAL TIME-DOMAIN ANALY SIS

the sensing fiber were placed in a thermal stabilized bath at 40
°C to create a hot spot to evaluate the sensor spatial resolution
for different post-processing approaches.

III. BRILLOUIN FREQUENCY SHIFT RETRIEVAL

Essentially BOTDA sensors aim at determining the Brillouin
frequency shift (BFS) of an optical fiber over its entire length.
This is generally realized by spectrally sampling the Brillouin
gain spectrum (BGS) before extracting the central frequency.
The problem of accurately and precisely determining the BFS
from a noisy BGS has been studied from the early stages of
BOTDA sensors development and is still a hot topic today [16],
[18], [19], [22]. It has been recently thoroughly addressed by
Haneef et al. [20] and will thus not be deeply analyzed here. A
succinct evaluation of the performances achieved by quadratic
fitting using various parameters is therefore carried out. This
preliminary step is crucial to figure out and fully evaluate the
real benefits from noise reduction algorithms, considering that
quadratic fitting is also applied to denoised data.

As mentioned in the introduction, the BGS spectral distri-
bution depends on the tested fiber, the preset spatial resolution
and the waveform of the pump pulse. In our case, the use of
an electro-optic modulator (EOM) driven by a 600 MHz pulse
generator produced quasi-rectangular pump pulses. At 5 m SR
and above, corresponding to >50 ns pump pulses, the BGS
measured is very similar to the natural Lorentzian Brillouin
lineshape. Decreasing the SR down to 2 m (20 ns) did not
significantly alter the BGS distribution, but already resulted in
a noticeable broadening. Bringing the sensor SR down to 1 m
(10 ns) modified the BGS even more, making its distribution
closer to a Gaussian curve than a Lorentzian. For a fair compar-
ison, the same fitting procedure was applied at all SR. In this
paper, BFS estimation was realized by fitting a second order
polynomial to the upper part of the BGS around the peak value.
As emphasized in [20], quadratic fitting requires a prior estimate
of the BFS location to deliver accurate results. This was carried
out by sweeping a moving average filter with N = 31 samples
and identify the maximum of the smoothed BGS. The complete
fitting procedure is illustrated in Fig. 2.

The precision of any BOTDA sensor is ultimately defined by
the uncertainty of the measured BFS o p. For a quadratic fitting
procedure, o p is inversely proportional to the SNR, and under
optimized conditions the following expression is given [16]

1 3(SAVB (1)
on —
BT SNR\ 8v2(1 — p)3/2

where 0 is the frequency detuning scanning step, Avg is the
BGS FWHM and 7 is a threshold level defining the subset
of data points relevant for the fitting. For a normalized gain
curve, for which values range from O to 1, the quadratic fitting
is restricted to points greater than 7. As intuitively anticipated,
raising the number of points over which the quadratic fitting
is performed by decreasing 7 is expected to lower op. This
behavior was experimentally verified by acquiring 10 repeated
BOTDA measurements, retrieving the BFS using a quadratic fit
for arange of fitting window sizes W4, and finally computing the
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Fig. 2.  Fitting procedure over a BGS measured at 6 dB SNR with 2 m spatial
resolution. After a prior coarse estimation of the BFS using a moving average
filter (a), a quadratic curve is fitted over a reduced set of points around this initial
value to estimate the final BES (b).
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Fig. 3. BFS standard deviation o g computed over 10 repeated BOTDA mea-
surements for three different SNR levels (color) and at three spatial resolutions
(ticks). SNR: 3 dB (blue), 6 dB (red) and 9 dB (black). Spatial resolution:
Im(G-x-9),2m¢-O-Yand5m(--Q ).

corresponding standard deviation o . The results are presented
in Fig. 3.

The results illustrate the need for a sufficiently wide fitting
window when estimating the BFS using a quadratic fitting and,
it turns out to be quite critical at low SNR (blue curves). For
instance, at 2 m SR, the BGS FWHM is approximatively equal
to 50 MHz. However, the improper choice of the window size
to this FWHM results in an uncertainty almost twice larger than
for a properly sized window, that is 80 MHz when the SNR is
equal to 3 dB (blue, squares). This is important to get results
that are more precise and it turns crucial for the comparison
between noise removal techniques, since the benefit brought by
an algorithm may be significantly overestimated. To illustrate
this feature, let consider a denoising method rising the SNR
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level from 3 dB to 6 dB at 2 m SR, i.e., moving from the blue
curve with square symbols to the red curve with square symbols.
For W4, equal to 50 MHz, the apparent uncertainty reduction is
almost 4 MHz (from 5.9 MHz to 1.8 MHz) while it is slightly
below 2 MHz (from 3.4 MHz to 1.6 MHz) for the proper window
size of 80 MHz. Note that in the first case, SNR improvement
(a factor 2) and uncertainty reduction (almost a factor 3) are
not consistent. By contrast a full consistency is observed for the
proper 80 MHz window (factor 2 on SNR and o).

IV. NOISE REMOVAL IN BOTDA MEASUREMENTS

From a signal processing point of view, daily-life images
contain by essence many abrupt transitions, for example due
to the presence of diverse objects or due to regions present-
ing complex textures. Using low-pass filters straightforwardly
on a noisy image will inevitably cause a blurring effect due
to the smoothing of the many edges present in most images.
Advanced non-linear algorithms such as NLM or the ODWT
raised considerable interest in the scientific community because
they enable to more accurately collect the information contained
in an image from a visual point of view [23], [24]. A BOTDA
measurement is a 2D matrix containing the values of the Bril-
louin gain at each position for each frequency detuning step.
By convention, we designate the measure of the Brillouin gain
versus distance at a given frequency detuning as the Brillouin
gain profile (BGP), in contrast to the Brillouin gain spectrum
(BGS) corresponding to the values of the Brillouin gain at a
given position as a function of frequency detuning. As such, its
structure does not differ fundamentally from a grayscale image,
for which a value is associated to each pixel. This stemmed
the use of the aforementioned image-processing techniques for
noise removal in BOTDA measurements, taking advantage of
the significant research dedicated to this field. The ODWT and
NLM immediately showed a great potential for noise removal in
BOTDA measurements, as improvements in SNR greater than
10 dB were reported [15].

Although BOTDA matrices may be processed as images,
they are yet radically different from most daily life images.
BOTDA measurements are actually very smooth and uniform
when compared to the different contents found in any image, and
thus their spectral content is expected to be essentially located
at low frequencies. Following this approach, we challenged the
results obtained using NLM and the ODWT with those using
a 2D Gaussian filter. Gaussian filters show several remarkable
features, such as excellent time-frequency confinement as well
as a straightforward design depending on a single parameter.
Gaussian filters were initially proposed by Le Floch et al. [25],
demonstrating a simple and effective approach to enhance the
performances of BOTDR setups. The filter tuning procedure
here employed is similar, yet complementary by exploiting
the separability of Gaussian filters to dissociate and analyze the
contribution from each dimension to the total filtering operation.

This section is devoted to the thorough analysis of the impact
brought by 2D noise removal on SNR, BFS uncertainty (o)
as well as effective spatial resolution (SR). SNR improvements
similar to those previously reported in the literature have been
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Fig. 4. Block diagram illustrating the comparison procedure employed to
evaluate the benefit brought by 2D noise reduction in BOTDA. The quadratic fit
was optimized before and after noise removal following the conclusions drawn
in Section III.

observed, regardless of the 2D method used. However, such
improvements did not result in a similar decrease in op, as
might have been expected (1). This apparent discrepancy can be
explained when splitting the 2D Gaussian filtering into two 1D
contributions. It turned out that noise removal is only effective in
one dimension, corresponding to the filtering of each acquired
BGP. This can be explained by observing that the bandwidth of
the photodetector - 125 MHz in our case - is broader than the
signal bandwidth, itself intrinsically related to the pulse width.
The benefit of filtering is thus to suppress the noise generated
by the photoreceiver at higher frequencies. Filtering of each
BGS in the other dimension is actually redundant with the fitting
operation and thus does not impact on the accuracy in the BFS
determination.

A. SNR Improvement and o g Reduction Using 2D
Processing Techniques.

This section addresses the influence of different 2D noise
removal on SNR, BFS uncertainty (o) reduction and spatial
resolution impairement as illustrated in Fig. 4. The methods
under evaluation are the NLM, the ODWT as well as 2D Gaus-
sian filtering. The procedure used to adjust the 2D Gaussian
filter is detailed hereafter. The parameters used for NLM and the
ODWT are mostly based on a previously published work [15]. A
succinct description of the operating principle for the Gaussian
filter, NLM as well as the ODWT can be found in Appendix A.

Taking advantage of the separability of the 2D Gaussian filter,
the two standard deviations (opgp) and (opgs) governing the
coverage of the filter in either dimension are set independently.
In BOTDA, these parameters depend almost exclusively on
the experimental SR. On one hand, the pulse width limits the
sharpness of the transitions observed in a given BGP. On the
other hand, the spatial resolution also shapes the measured BGS,
as its distribution results from the convolution between the fiber
fundamental Brillouin linewidth and the pulse spectrum [17].

FWHM

kBas

Wpulse
kscp

OBGP = , OBGS = ()
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TABLE I
SNR AND BFS UNCERTAINTY COMPARISON

SNR [dB] / o [MHz]

Raw data | 3.1/3.49 6.2/ 1.70 9.370.94
2D Filter | 13.9/1.23 | 17.1/0.53 | 20.0/0.34
NLM 125/ 1.13 | 15.7/0.49 | 18.8/0.31
ODWT 1257 1.15 | 157/0.55 | 18.7/0.37

The SNR (in dB) and BFS uncertainty (in MHz) were computed by
averaging 200 samples at the fiber end.

Here Wyuise and FWHM are the pulse width in seconds and
the BGS full width at half-maximum in Hz, respectively. The
parameters kggp and kpgs were introduced to provide some
flexibility in the filter tuning. It turns out that, even for a
fiber presenting a perfectly uniform BFS, neither the BGP nor
the BGS are expected to be Gaussian, such that a bandwidth
adjustment is mandatory. As will be detailed in Section IV-B,
the choice of kggp is very critical and a too low value results
in a spatial resolution impairment, while kpgs is somehow less
challenging, yet may lead to a bias in the determination of the
BFS. A procedure to properly set kggp and kpgs is provided in
Section IV-C. The parameters assigned to the different methods
are given here below:

e Experimental setup: The spatial resolution is 2 m (20 ns
pulse width) for a sampling interval of 0.5 m (5 ns) and a
detector bandwidth of 125 MHz. The frequency detuning
scanning step was set to | MHz

e 2D Gaussian filter: Following (2), we use kggp = 2 and
kpgs = 6. The FWHM is evaluated to be approximatively
50 MHz.

e NLM: The search and similarity windows are adjusted to
13 x 13 and 3 x 3 samples, respectively. The parameter
controlling the decay of the exponential response & is set
to 50, where o, is the white noise standard deviation
estimated using the details coefficients resulting from the
wavelet decomposition (see Appendix A—C for details).

e ODWT: The used mother wavelet is the symlet 7. The
threshold is set to 0.57, where T, is the universal
threshold (see Appendix A—C), using a hard-thresholding
approach.

Note that we conduct this study at 2 m spatial resolution,
although similar conclusions may be reached at 1 m and 5 m
spatial resolution. The SNR and op evaluated at the end of
our 10 km fiber before and after post-processing are reported
in Table I. As expected, we observe major SNR improvements
regardless of the used algorithm. All three techniques show sim-
ilar SNR improvements, although 2D Gaussian filtering seems
slightly more efficient in addition to preserving the instrumental
spatial resolution, as confirmed by Fig. 5. However, these results
are no longer consistent with equation (1). Overall, the SNR is
increased by 10 dB which should in turn decrease o g by a factor
10, whereas the effective BFS uncertainty is roughly reduced by
a factor 3. The 2D Gaussian filter moreover provides the highest
SNR enhancement but does not lead to the lowest measured BFS
uncertainty. The reasons behind such discrepancies are clarified
in the following section.
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Fig. 5. BFS profile measured at hotspot for a spatial resolution of 2 m and an

initial SNR of 3 dB before and after data post-processing.
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Fig. 6. Block diagram illustrating the comparison procedure employed to
evaluate the benefit brought by 1D noise reduction using the Gaussian filters
in BOTDA. The quadratic fit was optimized before and after noise removal
following the conclusions drawn in Section III.

B. Origin of Noise Removal in BOTDA Measurements

The fundamental reasons leading to a reduced experimental
uncertainty in BOTDA using digital post-processing are inves-
tigated. We take once more advantage of the separability of the
2D Gaussian filter to analyze in greater details its influence on
either dimension of the BOTDA matrix. Again, any improve-
ment in signal-to-noise ratio is compared to the corresponding
reduction in BFS uncertainty, while simultaneously evaluating
the preservation of the original spatial resolution. Note that the
original data (raw) used here are the same as in the previous
section. We apply a 1D Gaussian filter on each BGS or on each
BGP, as illustrated in Fig. 6. The spread, and thus the strength of
each filter is adapted by varying kggp between 1 and 3, and kpgs
between 2 and 6 in (2). Fig. 7 depicts the BFS profile obtained at
the hotspot location, together with the corresponding SNR and
oB.

The two considered cases considered show radically different
behaviors. In the first situation (a), application of a Gaussian
filter leads to a significant SNR improvement varying between
7 dB and 8 dB. However, there is almost no difference in
experimental uncertainty as evidenced by the value taken by
op when kggs is equal to either 4 or 6. When kpgs is too
small, contradictory results apparently show up, in a sense that
a greater SNR improvement (when compared to kggs = 4, 6)
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Fig. 7. BFS profile measured at hotspot for a spatial resolution of 2 m and an

initial SNR of 3 dB after 1D Gaussian filtering. The filter is applied either on
each BGS (a) or each BGP (b) for various filter strengths.

results in a poorer uncertainty. In addition, there is a noticeable
bias in the obtained BFS. This is analyzed in more detail in
Section IV-C, where we show that these observations stem from
excessive filtering, i.e., that is the applied filter distorts the
signal in addition to suppressing the noise. Furthermore, it must
be highlighted how the BFS profiles measured are rigorously
identical for kpgs = {4, 6}, rising the suspicion that the filter
plays no role in the determination of the BFS. This can be
better understood when considering the action performed by the
fitting procedure. Fitting a curve to a noisy data set corresponds
to searching the slowly-varying function that will best approx-
imate its general trend, since the sequence experiences rapid
variations due to noise. Alternatively, it can also be considered
as the extraction of the underlying low-pass information from a
high-frequency signal. Polynomial fitting is actually equivalent
to low-pass filtering using Savitzky-Golay filters [26]. To our
understanding, the use of a Gaussian filter on each BGS is
redundant with any BFS retrieval method as they all come down
to a low-frequency information extraction. For instance, BFS
retrieval by cross-correlation with a perfect Lorentzian curve is
completely equivalent to the application of a Lorentzian-shaped
low-pass filter, as cross-correlation and convolution provide, in
this case, an identical output. Bearing these considerations in
mind, digital filtering can provide alternate ways of evaluating
the fiber BFS. In particular, efficient filtering operations via
fast Fourier transform implementation can deliver remarkably
rapid BFS estimations compared e.g., to fitting using iterative
algorithm [20]. Finally, it must be pointed out that the use
of a Gaussian filter keep slightly reducing the measurement
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uncertainty, i.e., from about 3.5 MHz for raw data to approxima-
tively 3.1 MHz after filtering. This is certainly due to quadratic
fitting being not the optimum method for BES retrieval, as the
BGS distribution is not purely quadratic, and thus the use of a
Gaussian filter provides a marginal improvement.

We will now consider the application of a 1D Gaussian filter
on each BGP. Unlike the previous case, very distinct behaviors
in terms of o and BFS profile can be observed when varying
kggp from 1 to 3, as depicted in Fig. 7(b). First, SNR and o
are now again consistent with (1), as verified by comparing
the values obtained with those given in Table I for raw data.
Actually, the SNR improvement for kggp = {1, 2, 3} is equal to
4.6 dB (factor 2.88), 3.9 dB (factor 2.46) and 3.4 dB (factor 2.19),
respectively. Dividing the BFS uncertainty for unprocessed data
(o = 3.49 MHz) by the corresponding factor leads to theoreti-
cal values of 1.21 MHz, 1.42 MHz and 1.59 MHz when kggp =
{1, 2, 3}, respectively, in excellent agreement with the measured
uncertainty provided in Fig. 7.(b) (1.23 MHz, 1.40 MHz and
1.60 MHz). Besides, the filter significantly smoothes the BFS
profile when its strength increases, that is as kggp reduces. The
impairment on the original spatial resolution is accompanied
by a decrease in op, evidencing an inevitable trade-off when
using low-pass filters. We interpret the action of this 1D filter as
a digital reduction of the photodetector original bandwidth. As
commonly observed in BOTDA implementations, the detection
bandwidth is broader than the signal bandwidth, making the
system receptive to noise sources at frequencies containing no
signal information. A low-pass digital filter with proper cutoff
frequency will successfully suppress the noise originating from
this portion of the electrical spectrum, thus reducing the ex-
perimental uncertainty without impairing the spatial resolution,
whereas a stronger filter will start impinging on the signal
spectrum. Finally, attention must be paid to the cumulated
improvement brought by the individual filters for kggs = 6 and
ksgp = 2, which are equal to 7.1 dB and 3.9 dB, respectively, in
excellent agreement with the 10.8 dB SNR improvement mea-
sured using a 2D Gaussian filter with identical parameters (see
Table I), proving the separable action of this filter.

These observations are further illustrated by observing the
fiber BGS after filtering with either 1D Gaussian filter. This is
shown in Fig. 8 for an initial SNR of ~6 dB. For the sake of
clarity, we remind here that noise reduction using a linear filter
is carried out by performing a weighted average over the samples
surrounding a given point. For Gaussian filters, the weights
follow a Gaussian distribution and the corresponding kernel has
a finite size. This way, a given data point is only influenced by
neighboring points, which may induce smoothing, should the
filter coefficients be too strong. This is clearly visible for the BGS
filtered data (Fig. 8), which appears extremely smooth when
compared to raw data. However, this improvement is only ap-
parent since, as explained above, the fitting procedure performs
a similar action. In addition, the use of a strong BGS filtering
may lead to a bias in the BFS determination due to smoothing,
should the BGS present additional side lobes originating from
secondary acoustic modes or as a result of BFS non-uniformity
over the spatial resolution. This effect is visible from Fig. 7(a)
when kggs = 2 as a 1| MHz upwards shift of the estimated BFS
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Fig. 9. Frequency analysis of BOTDA measurements using 2D discrete
Fourier transform. The red lines indicate the axes over which this analysis is
carried out (see Fig. 10 and Fig. 12).

resulting from the influence of the additional acoustic mode seen
on the upper frequency side of the main lobe in Fig. 8. The
use of a BGP filtering results in clear noise reduction, without
apparent distortion on the raw BGS. Yet, and since the Gaussian
kernel mixes information from neighboring samples, a strong
BGS filtering may lead to SR loss, as shown in Fig. 7(b).

C. Spectral Composition of BOTDA Measurements

Our arguments can be further proved by computing the 2D
Fourier transform of BOTDA measurements and analyzing their
spectral content. Since BOTDA measurements are real-valued
signals, their Fourier transform is symmetric, such that we may
only focus on a single quadrant as illustrated in Fig. 9. We then
observe the 2D spectrum along two axes, indicated by red lines in
Fig. 9, corresponding to Figs. 10 and 12. It turns out that BOTDA
matrices are essentially low-frequency signals, suggesting why
advanced filtering techniques are not performing significantly
better than a low-pass filter.

1) Spectral Composition in BGP Direction: Fig. 10 depicts
the magnitude of the 2D Fourier transform evaluated along the
BGP axis. In other words, these spectra correspond to the fre-
quency content of the 2D BOTDA matrix in the direction of the
BGP. Fig. 10(a) illustrates the effect of averaging on SNR, which
results in a change of the noise level. This way, part of the signal
eventually merges in noise at low SNR (blue curve). Notice how
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Fig. 10. Magnitude of the 2D Fourier transform along the BGP axis:
(a) Comparison between raw data (3 dB SNR) and reference (12 dB SNR),
together with the Fourier transform of a Gaussian filter with kggp = 1, 2. The
vertical lines indicate the cutoff frequency. (b) The same normalized Fourier
transform before and after post-processing using a 2D Gaussian filter, NLM or
the ODWT.

the fine details observable at 12 dB SNR (cyan curve) between
5 and 20 MHz eventually lie below the noise floor for a SNR
of only 3 dB (blue curve). This enables to clarify two important
points: 1) it explains why a Gaussian filter with kggp = 1 results
in SR impairment (see Fig. 7), since its cutoff frequency is
still within the signal bandwidth. 2) a most important aspect
is that post-processing will never be able to compensate for a
poorer initial signal-to-noise ratio, as the noise within the signal
bandwidth cannot be eliminated without information loss. We
place a strong emphasis on this aspect, as this defines a limit for
noise removal in BOTDA measurements using post-processing.
The maximum improvement that post-processing can achieve is
to relegate the noise outside the signal bandwidth to negligible
levels.

Fig. 10(b) depicts the frequency content of BOTDA matrices
in BGP direction before and after post-processing. All tech-
niques perform well outside the signal bandwidth, reducing
the noise well below its original level. However, it appears
that NLM and the ODWT are also reducing energy within the
signal bandwidth, which should logically lead to worse SR.
Although, this is not dramatically evidenced when observing the
BFS at a transition (see Fig. 5), such a an impairment is much
more sever in regions where the BFS less varies, as shown in
Fig. 11.Itclearly appears that although all techniques worsen the
original SR, NLM and especially the ODWT induce a stronger
smoothing. The two main reasons for this are: 1) Unlike filtering,
NLM and the ODWT are local techniques, meaning that noise
removal is not uniform over the whole BOTDA matrix, so that
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Fig. 12. Magnitude of the 2D Fourier transform along the BGS axis:
(a) Comparison between raw data (3 dB SNR) and reference (12 dB SNR),
together with the Fourier transform of a Gaussian filter with kggs = 4, 6. The
vertical lines indicate the cutoff frequency. (b) The same normalized Fourier
transform before and after post-processing using a 2D Gaussian filter, NLM or
the ODWT.

regions containing abrupt transitions may be better maintained
than uniform ones. 2) Eventually, and as detailed in Section
IV-E, NLM and the ODWT turn out to perform like a low-pass
filter, which in the particular case of BOTDA measurements is
less adapted than the 2D Gaussian filter we designed.

2) Spectral Composition in BGS Direction: We analyze in
turn the frequency content of BOTDA measurements in BGS
direction, as depicted in Fig. 12. Note that the x-axis in Fig. 12
is time, because the original data has the unit of frequency
(Hz). Again, Fig. 12(a) illustrates the detrimental rising of the
noise floor for reduced averaging. The confinement of the signal
energy in the low-frequency region is even stronger than for the
other dimension (see Fig. 10(a)). As detailed in Section IV-D3,

Gaussian filter applied on each BGP (compare Fig. 7(a) and (b)).
Actually, the larger the fractional bandwidth exclusively covered
by noise, the more efficient is the noise removal. This figure also
illustrates why setting kpgs to 4 or lower may lead to a bias in the
BFS determination, as the filter cutoff frequency (vertical lines)
will lie within the signal bandwidth, thus leading to distortion. As
explained in Section IV-B, any BFS retrieval method will only
make use of the information contained within the low-frequency
region and discard the rest, making the prior use of a low-pass
filter redundant. In addition, the major inconsistencies observed
when comparing SNR improvement to o reduction after 1D
filtering of each BGS (see Fig. 7) can be explained by the fact that
(1) was derived assuming statistical independence between the
samples constituting the gain spectrum. Although this remains
valid when filtering each BGP independently, any method that
operates transversally or in both dimensions will inevitably lead
to correlating multiple points within the considered BGS, as all
techniques employ a finite-size kernel to achieve noise reduction.

D. Noise Removal Efficiency Using Gaussian Filtering

To the best of our knowledge, no study aiming at anticipat-
ing the SNR improvement brought by a given noise reduction
algorithm for BOTDA measurements has been conducted yet,
such that this benefit could only be measured by comparing the
initial SNR with the SNR reached after post-processing. In this
section, we address this issue and illustrate how to evaluate the
SNR enhancement brought by a Gaussian filter. We first recall
some important concepts related to signal processing, as they
are fundamental in understanding what kind of benefit digital
filtering can provide.

1) Sampling and Aliasing: Practically, the optical system
employed to perform BOTDA measurements is analog up to the
photodetector output, which delivers a continuous-time signal
proportional to the detected optical intensity. This signal is latter
sampled using for instance an acquisition card and stored in
a computer to further process it. According to the sampling
theorem, a bandlimited signal may be perfectly reconstructed
from its samples, provided that the sampling frequency f; is
at least twice greater than the signal’s maximum frequency. In
other words, a given sampling frequency enables reconstructing
without errors signals which do not extend further than f,/2. A
violation of the sampling theorem leads to a folding of the energy
lying above f5/2 back into the measurable frequency range, as
illustrated in Fig. 13, a phenomenon also known as aliasing.
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digital filtering. In any case, the filter cutoff frequency f. should be greater than
the signal bandwidth, such that the latter does not get distorted by the filtering
operation. In case of undersampling ( fs»), noise aliasing makes it impossible to
reduce noise as much as when using a proper sampling rate fs.

When considering deterministic signals, aliasing may lead to
signal distortion. Undersampling makes impossible an accurate
reconstruction of the original continuous-time signal, as some
high frequency information turns mixed with lower frequency
contents. Aliasing also occurs for random processes, i.e., noise,
however with a frequency folding to be performed over the
power spectral density [27]. Both types of aliasing may have
detrimental effects for BOTDA measurements and should be
strictly avoided in a proper design. In the following of this
section, we shall consider that the sampling rate is significantly
higher than the signal bandwidth while being lower than the
noise bandwidth.

2) Signal-To-Noise Ratio (SNR) and Filtering: Fundamen-
tally, signal-to-noise ratio is defined as the ratio between signal
power and noise power. As explained in Section I'V-C, proper
noise removal is achieved by digital filtering provided that the
signal remains unaffected by the filtering operation. This can
only be made optimal if the sampling frequency is at least
twice higher than the photodetector bandwidth, as illustrated in
Fig. 14. Additive white Gaussian noise (AWGN) aliasing occurs
when the noise intrinsic bandwidth exceeds f5/2, which defines
the observable frequency range upper bound. Fig. 14 depicts
both cases of proper (blue) and insufficient (green) sampling
rate. AWGN has constant power spectral density Ny over the
captured frequency range. In this example, halving the sampling
frequency results in reducing the measurable frequency range
by two, leading to severe noise aliasing. As a consequence, a
higher noise level is now observed over a reduced frequency
range. Note that although AWGN aliasing leads to an increase
in noise level [28], the integrated noise power remains the same,
because aliasing of random processes leads to a summation
in terms of power spectral density [27]. If no digital filter is
applied, the measured signal-to-noise ratio will remain identical,
independently of the sampling frequency. The importance of
proper sampling lies in the potential benefit brought by noise
removal. Actually, as the signal bandwidth is independent of the
sampling frequency, so is the used digital filter. It then turns out
from Fig. 14 that higher SNR can be achieved using f; instead
of fi, as the noise level within the filter passband is in this case
twice lower.

We evaluated the effect of AWGN aliasing by conducting
additional measurements at 5 m spatial resolution, reducing
this time the sampling frequency fs from 200 MHz down to
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50 MHz. A larger spatial resolution was deliberately set, making
it possible to reduce the sampling frequency without aliasing the
signal. Fig. 15(a) illustrates a rising of the noise level when the
sampling frequency decreases, thus undermining the potential
noise reduction, a conclusion corroborated by Fig. 15(b), which
displays the BFS uncertainty before and after filtering when
changing the sampling frequency. Notice how reducing the
sampling frequency by a factor 4, i.e., from 200 MHz to 50 MHz,
leads to an SNR increase difference of 3 dB, in agreement with
the simple model depicted in Fig. 14 and corroborated by a
theoretical analysis conducted in section IV-D3.

3) SNR Improvement and Noise Equivalent Bandwidth: In
BOTDA, SNR is usually not computed in terms of ratio between
signal and noise power; instead we may use

SNR = £~ 3)

On

where p is the signal mean value and o, is the noise standard
deviation, both evaluated at the fiber BFS [16]. In estimating the
improvement brought by Gaussian filtering, we will assume that
the filter does not impact the signal, such that x is maintained
through the filtering operation. SNR improvement results then
solely from noise reduction, which is estimated by replacing
the Gaussian filter with a perfect rectangular filter with iden-
tical noise equivalent bandwidth (NEB), a concept illustrated
in Fig. 16. The SNR improvement brought by a 1D Gaussian
filter with standard deviation oy is given by (see Appendix B for
calculation details)

SNR .
ASNR = W riy/2f0, “)
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area, such that the filtering of a perfectly white noise leads to identical power
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TABLE II
SNR IMPROVEMENT AFTER 1D GAUSSIAN FILTERING

Calculated | Measured

kpgp = 1 5.8 dB 4.6 dB

kpgp = 2 43 dB 3.9 dB

kpep = 3 3.4 dB 3.3 dB

kpgs = 2 9.7 dB 7.9 dB

kpgs = 4 8.2 dB 7.6 dB

kpgs = 6 7.4 dB 7.1 dB

The results were calculated using (4), as well as
directly measured with an initial SNR of 3.1 dB.

The results obtained using (4) are then compared with the ones
provided in section I'V-B, which are copied in Table II for conve-
nience. The sampling frequency f, for the case of the BGP filter
corresponds to the actual sampling rate of our acquisition card,
i.e., 200 MHz here. For the case of the BGS filter, the sampling
frequency corresponds to the inverse of the frequency detuning
scanning step (1 MHz), that is 1 ps. The standard deviation
o, for each filter is given by (2). The results are synthesized in
Table II. Overall, the calculated SNR improvements are in good
agreement with the measured ones. Notice than when kggp and
kpgs is small, i.e., when the filter is strong, (4) tends to highly
overestimate the SNR improvement. This is not surprising, as
for such values of kggp and kpgs, the corresponding filters cutoff
frequencies are within the signal bandwidth (see Fig. 10 and 12),
and thus the assumption we made in deriving (4) is no longer
valid. Finally, we acknowledge that our results could be slightly
improved, since our sampling frequency (200 MHz), is not twice
greater than our detector bandwidth (125 MHz). Unfortunately,
this was the maximum sampling frequency available on our
acquisition card.

E. NLM and the ODWT as Low-Pass Filters

In this section, we analyze the operating principles of NLM
and the ODWT for noise removal. It turns out that both methods
eventually act as low-pass filters, especially at low SNR. Yet,
this low-pass filtering is ill-adapted for BOTDA measurements,
for which we have a large amount of a priori knowledge. This
explains why for such a specific case, the proposed Gaussian
filter outperforms these two sophisticated techniques.
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TABLE III
IMPACT OF VARYING THE THRESHOLD LEVEL IN THE ODWT WHEN USING
HARD THRESHOLDING

Details coefficients

Threshold level after thresholding

Result observed

k=025 < 15% Low improvement
k=05 < 0.5% Optimal case
k=1 0 % Strong smoothing

1) ODWT:  Surviving Thresholding: As detailed in
Appendix A-C, the orthogonal discrete wavelet transform
decomposes a signal using two complementary filters. Such
filters partition the signal’s energy into low and high frequency
components, enabling if wanted a flawless reconstruction.
The samples collected at the output of the low-pass filter
are an approximation of the original signal, whereas the
remaining coefficients withhold information about the signal
high frequency content. The essence of noise removal using this
algorithm relies on focusing the signal’s energy into a reduced
set of high value details coefficients, which should capture its
features accurately. The low value details coefficients are then
assumed to originate from noise, or are considered insignificant
to reconstruct the signal, such that they are discarded by
thresholding.

The performances of the ODWT were evaluated by inspecting
the output SNR, BFS uncertainty and SR impairment over a
broad range of parameters. Namely, we managed to change
the mother wavelet, that defines the filters’ shape, the value
of the computed threshold as well as the type of thresholding
(soft or hard). The used mother wavelet was found somehow
irrelevant in our case, as similar performances could be obtained
by empirically adjusting the other parameters to each situation.
We focus therefore on the mother employed in the rest of this
paper for this explanation, which is the symlet 7.

The key parameter of the ODWT is the level of the thresh-
olding, which could be adjusted in our case by tuning a pa-
rameter k (see Appendix A—C for details). The two extreme
cases of k=0 and k — oo correspond to letting the signal
intact and completely removing any high frequency content,
respectively. For intermediate values, a trade-off is expected
between noise removal and signal smoothing, as intuitively
anticipated. The special case of kK = 1 corresponds to the uni-
versal threshold 7}, [29]. Optimal performances were obtained
for k = 0.5 using hard thresholding, whatever the preset spatial
resolution and initial SNR. Table III shows the fraction of detail
coefficients that survived the thresholding operation when k& =
{0.25, 0.5, 1}, as well as a qualitative description of the obtained
results.

The results indicate that in any case, all detail coefficients are
within [—T,,, T,,]. Setting k = 1 thus corresponds to discarding
all details coefficients, resulting in a low-pass filtering operation
using an ill-adapted filter. Even in the ideal case, most of the
coefficients do not exceed the threshold, so that the overall
operation is close to a low-pass filtering. Note that the threshold
value is independent of the type of thresholding, i.e., hard or
soft thresholding, and only the soft case shrinks the remaining
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(a) Heat map indicating the Brillouin gain at fiber end, together with the determined BFS. (b) to (i) kernel (¢, j) (5) computed at two different locations
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of the kernel is being observed.

coefficients by 7T, (wavelet shrinkage). For a fair comparison,
the threshold level using soft thresholding should be approxima-
tively half that used for hard thresholding [29]. In our case, we
found slightly better results using hard thresholding, although
the overall performances are similar.

2) NLM: Similarity and SNR: As detailed in Appendix A—
B, NLM performs noise removal by computing at each point
a weighted average over the direct neighbors surrounding the
processed sample. The size of this kernel is defined by the search
window, which was adjusted to 13 x 13 in our case, and its
values are defined by the similarities between two points. The
(unnormalized) kernel is given by

i Py) = f(P)II3
k(z,J)=exP<_||f( >h2f< >||)

where P; ; is a 3 x 3 window centered around 4, j and h is
a parameter governing the exponential function decay. In our
case, h was set to 5 times the white noise standard deviation,
which was first estimated using the wavelet decomposition (see
Appendix A—C for details). We investigate how NLM behaves
by computing the final weighted kernel k(i, j) at two positions
and two different SNR levels. The results are shown in Fig. 17.

(&)

Athigh SNR (9 dB), the kernel adapts to the underlying signal,
providing more weights to regions with higher similarity. For
example, consider Fig. 17(b) and (c) which correspond to a
location on the slope of the BGS, in a region where the fiber
BFS is quite uniform. On one hand, the Brillouin gain remains
approximatively constant with distance, such that the similarity
varies little in that direction. On the other hand, the Brillouin
gain follows the BGS distribution in the BGS direction, leading
to a decrease in similarity. The kernel also adjusts when the
BFS varies rapidly, as shown in (d) and (e), where this time both
directions present similarity variations. The adaptive behavior
of the NLM kernel is however suffering from a poor SNR, as
shown in Fig. 17(f) to (i). The noise level makes it impossible for
the algorithm to identify regions with higher similarities, such
that the adaptive kernel becomes flat, and produces an effect
similar to a moving average filter. Note that this filter is stronger
when the underlying signal is regular ((f) and (g) compared to (h)
and (i)), which might explain why NLM produces such strong
smoothing on regions of regular BFS (see Fig. 11). We found
no major difference in terms of response when trying to correct
this effect by changing either the size of the similarity window
or h.



3734

V. CONCLUSION

In this study, we thoroughly analyzed the impact of 2D
signal processing on BOTDA measurements. Using the sepa-
rability property of a 2D Gaussian filter, we clarify the reasons
supporting the improvements observed in both signal-to-noise
ratio and in uncertainty op on the estimation of the Brillouin
frequency shift (BFS). Such gain in performance cannot be made
arbitrarily high yet, and must somehow face fundamental limits.
For convenience, we here highlight the most important aspects
relevant to the post-processing of BOTDA measurements, and
provide some guidelines on the potential benefits and limitations
of this tool.

1) Any denoising process on the measured spectral distribu-
tion of gain at one location (BGS) will bring no decisive
improvement in uncertainty oz on the BFS estimation, as
it is fundamentally redundant with functionally targeted
BFS estimation methods, e.g., quadratic fitting. In other
words, SNR improvement resulting from noise removal
over the BGS will not benefit the experimental uncertainty.

2) BFS uncertainty can be reduced proportionally to the SNR
improvement resulting from the processing of each tem-
poral trace at a given frequency, namely the Brillouin gain
profile (BGP). However, no BFS uncertainty reduction can
be obtained should the analog bandwidth of the acquisition
system match that of the measured signal. Under such
conditions, the maximum achievable SNR may be readily
evaluated [30].

3) Essentially, SNR improvement by post-processing over
each BGP results from an a posteriori reduction of the
system initial analog bandwidth to make it match the
signal response, hence suppressing noise lying outside
of the signal bandwidth. This may be made optimal by
designing and using e.g. a matched filter. For optimal
performances, i.e., to achieve highest noise removal, the
sampling frequency must be at least twice greater than the
bandwidth of the overall acquisition system (i.e., initial
analog bandwidth), thus strictly disabling signal or AWGN
aliasing.

4) After a careful optimization of the system bandwidth,
special care [20] must be given to optimize the method
used to estimate the BFS (fitting, cross-correlation, etc.),
since the full potential of a given setup would otherwise
not be fully exploited, in addition to invalidate any further
comparison with other systems or methods.

As a final word, we firmly believe that the aforementioned
items draw a theoretical limit to the lowest achievable uncer-
tainty on the BFS estimation for BOTDA distributed systems,
since this proper match of the system bandwidth combined to
an optimized and targeted BFS extraction method fully take
best advantage of all the information content in the BOTDA
matrix. We come to the clear conclusion that any processing —
even extremely sophisticated, such as image processing, deep
learning, etc., — brings no tangible benefit on a configuration
optimized in terms of detection bandwidth and fitting procedure.
Such a processing can be helpful to correct imperfections in
the design and sometimes screen poor intrinsic performance.
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Nevertheless, we keep convinced that a proper and well thought
experimental design must be the preferred avenue to reach the
best performance.

APPENDIX A
IMAGE PROCESSING TECHNIQUES

A. Separable 2D Gaussian Filter
A 1D Gaussian filter gip(«; ) is solely defined on a given axis
x; by its standard deviation o; as:
(0) = —m——c = (©)
Ti) = (& i
gip o

A 2D separable Gaussian filter gop(x1,x2) is built upon this
definition by simple multiplication:

gn(x1,22) = gip(1)gip(w2) @)

2D filtering using a separable filter is thus equivalent to the
successive application of the separate one dimensional filters on
the rows and column of a 2D matrix. The filtering operation may
be conducted either in time domain using a convolution, or in
the frequency domain by Fourier transform multiplication.

B. Non-Local Means

Low-pass filters lie among the simplest methods employed for
noise removal in images. They replace the value of each pixel
by a weighted average of the surrounding pixels, based on the
assumption that the underlying signal shows some continuity.
This explains why low-pass filters may smoothen sharp transi-
tions, resulting in the blurring of some contours in images. The
non-local means (NLM) algorithm [24] is based on the obser-
vation that pixels sharing a similar value might not necessarily
lie in close vicinity. It associates to the pixel ¢ a weight w(i, j):

» 1 B) = f(2)II3
w(z,j)zz(i)exp<—||f( )th( )II)

where Z (i) is a normalization factor given by

) 12
20~ S ewp (FLPLSBIEY

®)

Here f(P; ;) designates the value taken by the image over square
patches centered around pixel ¢ or j respectively while h is a
parameter controlling the exponential decay and consequently
the filtering strength. The NLM algorithm thus compares the
similarity between patches based on their Euclidean distance.
Practically, the searching range S is limited to a given region
around the considered pixel as the algorithm would otherwise
require excessive computation times. Based on the similarity
search performed in (8), each pixel f (i) is replaced by:

FG) =" w(i, 4)f()

vjes

(10)

C. The Discrete Wavelet Transform

Wavelets designate a specific class of zero-average functions
that found countless applications in signal processing, notably
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Fig. 18. 2D signal decomposition and perfect reconstruction based on the
orthogonal discrete wavelet transform (ODWT). Here h*[n] = h[—n] and

g'[n] = gln].

for image compression. Although the scope covered by wavelets
is extremely broad, we shall restrict their application to noise re-
moval in images using the so called orthogonal discrete wavelet
transform (ODWT). It relies on a multiscale decomposition of
the image I thanks to the use of tightly related filters denoted h
and g as illustrated in Fig. 18.

These filters build a perfect reconstruction filter bank, since
they enable to recover the original image I without information
loss. Note that such filter banks have originally no connection
with wavelets; rather it was found that wavelets based filters
enable to build such banks. The filters h and g make a unit
partition of the signal spectrum. In other terms, h is a low-pass
filter such that its output a (for approximation coefficients) is a
low-pass version of the original signal whereas g is a high-pass
filter which output d (for detail coefficients) contains the signal
high-frequency information. 2D signals such as images are
decomposed in four distinct regions: the low-pass approximation
of the original image (a), the vertical details (dl,), the horizontal
details (dgn) and the diagonal details (d,g). The decomposition
can be carried further at coarser scales on a, leading to a multi-
scale representation of the original image. The ODWT relies
on the concept that most of the details coefficients d will be
of low magnitude, except for regions where I exhibits rapid
variations. Noise removal is achieved by assuming that details
coefficients which value fall below a certain threshold carry no
valuable information and can be discarded before reconstructing
1. The threshold T, used in this paper is called the universal
threshold and is defined as:

T, = kon/21og(N) (11)

Here o, is the noise standard deviation and NN is the number
of samples in the image. The parameter k£ does not appear in
the original definition but was introduced to finely adjust the
threshold value. A remarkable feature of the wavelet transform
is that it enables estimating the noise level based on the details
coefficients dg; computed at the finest scale:

_ median(d,,)

- 12
4 0.6745 (12)

After estimation of the threshold level, thresholding is ap-
plied on the detail coefficients d only following a hard or soft
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thresholding operation:
Hard threshold:  dy = d - {|d| > Ty} (13)
Soft threshold:  dg = sgn - max(|z| — Ty, 0) (14)

Hard thresholding discards coefficients which magnitude is
smaller than T, and preserve the others while soft thresholding
also reduces the magnitude of the remaining coefficients by 73,.

APPENDIX B
NOISE EQUIVALENT BANDWIDTH

We provide here the expression of the Fourier transform in
terms of frequency for a temporal Gaussian signal denoted g(t)
and defined as

L (1)
e t
\V2moy
where o, is the standard deviation of the Gaussian function and
g(t) is assumed to be centered at ¢ = 0. This assumption has

no consequence on the final result and slightly simplifies the
calculation. The Fourier transform g(f) of g(t) is given by

9(f) = / g(t)e 2 Itdt = e=2m s

oo

g(t) =

(16)

which enables to calculate the noise equivalent bandwidth
(NEB)

1
Tdoy

MB=/ 9(1)1df = (17)
0

where a one-sided spectrum is considered. For a constant noise
power spectral density /Ny spanning over a bandwidth NEB, the

noise variance o3, is by definition
o2, = 2NoNEB (18)

where we considered integration over a double sided spectrum.

The initial noise variance is given by
on = Nofs (19)

such that the SNR improvement obtained following the defini-
tion (3) and assuming ;. = constant is given by

SNR 2
ASNR = >t — [Tn _ 25 /of g,

20
SNRini g filt ( )
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