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Abstract—This tutorial reviews the Holevo capacity limit as
a universal tool to analyze the ultimate transmission rates in a
variety of optical communication scenarios, ranging from conven-
tional optically amplified fiber links to free-space communication
with power-limited optical signals. The canonical additive white
Gaussian noise model is used to describe the propagation of the
optical signal. The Holevo limit exceeds substantially the standard
Shannon limit when the power spectral density of noise acquired
in the course of propagation is small compared to the energy of
a single photon at the carrier frequency per unit time-bandwidth
area. General results are illustrated with a discussion of efficient
communication strategies in the photon-starved regime.

Index Terms—Communication channels, channel capacity,
optical signal detection.

I. INTRODUCTION

I T HAS been recognized for a long time that quantum effects
set limits on the information capacity of optical commu-

nication links [1]. The simplest argument is that detection of
light based on the photoelectric effect is inherently noisy. The
lowest attainable noise level—usually referred to as the shot
noise level—can be determined from the quantum mechanical
description of the photodetection process [2]. The resulting Pois-
son channel model is directly applicable to intensity modulation-
direct detection communication systems [3]. Shot noise of the
photodetection process determines also the best attainable pre-
cision of measuring quadratures of the electromagnetic field by
means of homodyning or heterodyning [4] which are used as
detection techniques in coherent communications [5], [6].

The above argument assumes that information is encoded in
a well-defined classical property of the electromagnetic field
such as the intensity or the phase. However, one can adopt a
more fundamental quantum mechanical perspective on optical
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communication [7]. In general, the information to be transmitted
is carried by certain quantum states of the electromagnetic field.
These states should be discriminated by the receiver in a way that
maximizes the information rate. The receivers can implement
unconventional detection strategies that exhibit sensitivity be-
yond shot-noise-level direct detection or coherent detection [8]–
[10]. Another possibility is to use non-classical states of light for
communication, such as Fock states, that carry a well-defined
number of photons [1], [11], [12], or squeezed states, that exhibit
quadrature fluctuations below the shot noise level [13], [14]. In
order to identify the ultimate quantum limit of an optical com-
munication link, one should carry out optimization over all phys-
ically permitted measurement strategies [15] and all ensembles
of input quantum states used to carry information under relevant
physical constraints, such as a restriction on the average power
of the optical signal. Impressively, theoretical developments in
quantum information science have provided tools to derive the
ultimate quantum capacity limits in a closed analytical form
for common models of optical communication links. The basic
tool is Holevo’s theorem [16], which provides a tight bound on
the mutual information attainable for a given ensemble of input
quantum states [17]–[19]. For a scenario when a propagating
optical signal experiences linear attenuation or amplification and
acquires a random additive white Gaussian noise (AWGN) com-
ponent, a rigorous proof of the quantum capacity limit has been
presented recently [20] following earlier conjectures [21]–[23].

The purpose of this paper is to provide an introduction to the
Holevo capacity limit and to relate it to the standard Shannon
capacity limit for linear AWGN channels used as a benchmark
when evaluating the performance of optical communication
systems [24]–[27]. When discussing quantum capacity limits
it is essential to distinguish between noise contributed by the
propagation of the optical signal and that introduced by the
detection process. As this tutorial will emphasize, there is no
single universal figure for the detection noise, which needs
to be characterized specifically for a given detection scheme.
For clarity, the contribution from the noisy propagation of
an optical signal will be referred to as the excess noise. In
contrast to the Shannon capacity limit, which is customarily
expressed in terms of the signal-to-noise ratio, the Holevo
capacity limit uses an absolute scale for the signal and the
excess noise strengths defined by the energy of a single photon
at the signal carrier frequency. Only when the power spectral
density of the excess noise exceeds this energy per unit time-
bandwidth area, the Holevo capacity limit effectively coincides
with its Shannon counterpart. This tutorial will illustrate the
gap between the Holevo and the Shannon capacity limits using
the example of photon-starved communication, which provides
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Fig. 1. (a) A schematic representation of an optical signal composed of pulses
with complex amplitudes . . . , αj−1, αj , αj+1, . . . occupying slots of duration
B−1. (b) The slot rate B characterizes the extent of the spectrum. Generally,
the signal spectral support is larger than B [25]. (c) Pulses described by the
sinc profile specified in Eq. (6) overlap in time, but satisfy the orthogonality
condition (1). (d) The bandwidth occupied by a sinc pulse train is equal to the
slot rate B.

an interesting use case to develop unconventional detection
strategies.

The paper starts with a mathematical description of the optical
signal and its propagation in Section II. Shot noise level in
conventional detection techniques is discussed in Section III.
Section IV reviews the standard Shannon capacity limit paying
attention to distinction between the excess noise and the detec-
tion noise. Section V introduces the Holevo capacity limit and
identifies the regime where it can be related directly to the Shan-
non formula. Efficiency limits of photon-starved communication
are discussed in Section VI with examples of unconventional
detection strategies given in Section VII. Finally, Section VIII
concludes the paper.

II. OPTICAL SIGNAL

We will consider a narrowband, linearly polarized optical sig-
nal in the form of uniformly spaced pulses (wavepackets) located
in temporal slots of duration B−1, depicted schematically in
Fig. 1(a). The parameter B will be referred to as the slot rate.
A single pulse is described by a normalized complex profile
u(s) parameterized with a dimensionless time s that satisfies
the orthogonality condition∫ ∞

−∞
ds u∗(s− j)u(s) = δj0 (1)

with its replica displaced by any integer number j of slots. The
electric field E(t) of the optical signal can be written as

E(t) = e−2πifctE (t) + e2πifctE ∗(t), (2)

wherefc is the carrier frequency and E (t) is the complex analytic
signal envelope given by

E (t) =

√
hfc

2εAeff

∞∑
j=−∞

αjuj(t), uj(t) =
√
Bu(Bt− j).

(3)
Here h = 6.626× 10−34 J · s is Planck’s constant, ε is the per-
mittivity of the propagation medium, Aeff is the effective area of
the transverse spatial mode in which the signal propagates, and

Fig. 2. (a) Transformation of complex amplitudes αj in the linear additive
white Gaussian noise model. (b) One-dimensional Gaussian ensemble. (c) 2-D
Gaussian ensemble.

αj are the complex amplitudes of individual wavepackets. The
normalization factor in Eq. (3) is chosen such that the average
optical power carried by the signal can be expressed with the
help of Eq. (1) as:

P = lim
T→∞

1

T

∫ T/2

−T/2

dt

∫
Aeff

d2r 2ε|E (t)|2 = BhfcE[|αj |2].

(4)
The squared absolute value |αj |2 has the interpretation of the
mean photon number carried by the jth pulse and the expectation
value

n̄ = E[|αj |2] =
P

Bhfc
(5)

is the average signal photon number per temporal slot. The
amplitudes αj are usually drawn from a discrete set that can
be visualized as a constellation in the complex parameter plane.
Individual points in the constellation are referred to as symbols.
While practical communication is predominantly based on dis-
crete constellations, analysis of capacity limits should include
general, possibly continuous probability distributions for the
complex amplitudes αj .

A narrowband scenario with B � fc will be considered here.
The normalized spectrum of the signal is given by

∣∣ũ((f −
fc)/B

)∣∣2/B, where ũ(ν) =
∫∞
−∞ ds e2πiνsu(s) is the Fourier

transform of the pulse profile u(s). As shown in Fig. 1(b), the
slot rate B characterizes the extent of the signal spectrum in the
frequency domain [25]. The formalism used here includes also
the case of wavepackets overlapping in the temporal domain,
such as the commonly used sinc profile illustrated with Fig. 1(c)

u(s) =
sin(πs)

πs
. (6)
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In this particular case the signal spectrum has a rectangular form
depicted in Fig. 1(d) extending from fc −B/2 to fc +B/2 and
the slot rate B has direct interpretation of the signal bandwidth.

The propagation of the optical signal through the physical
medium will be described using the standard AWGN model, in
which complex amplitudes αj of individual pulses undergo a
transformation

αj → α′
j =

√
ταj + ζj . (7)

Here the transmission coefficient τ ≥ 0 specifies the change in
the optical signal power in the course of propagation and ζj
are random variables that characterize noise added in individual
slots. It is important to stress that these variables do not include
the noise contributed by the detection process, which will be
treated separately. For clarity, the field component contributed
by the variables ζj will be referred to as the excess noise. In the
AWGN model for the excess noise, ζj are mutually independent
complex-valued Gaussian random variables ζj ∼ CN (0, nn)
with zero mean and the variances of their real and imaginary
parts equal to

E[(Reζj)
2] = E[(Imζj)

2] = nn/2. (8)

The total variance nn = Var[ζj ] can be interpreted as the mean
number of excess noise photons added per one temporal slot. In
the white noise scenario, nn is independent of the slot rate B
and can be expressed as

nn =
N

hfc
, (9)

where N is the excess noise power spectral density. In order
to keep the notation concise, the average received signal photon
number per slot will be denoted as

ns = τ n̄ =
τP

hfc
. (10)

When the signal power is attenuated, i.e. τ < 1, the parameter
nn can assume any nonnegative value. In this regime, loss-only
propagation is defined by nn = 0. However, when the output
signal emerges amplified, i.e. τ > 1, the excess noise must be
added in the amount of at least nn ≥ τ − 1. This requirement
can be interpreted within the quantum theory of optical amplifi-
cation as a consequence of the Heisenberg uncertainty principle
[28], [29].

III. CONVENTIONAL DETECTION

Standard methods to measure the received optical signal are
direct detection and homodyne detection of one or both quadra-
tures of the electromagnetic field, shown in Fig. 3. This section
will briefly review statistical properties of these measurements
assuming that the photodetection process is free from technical
imperfections and operates at the shot noise level. The objective
is to identify the minimum amount of noise that has to occur
in the readout of an optical signal by conventional detection
methods.

The standard techniques to measure an optical field are based
on the photoelectric effect, when incident light ejects electrons

Fig. 3. (a) Idealized direct detection of an optical field E (t). The measurement
outcome over an interval lasting from t1 to t2 is a discrete number of k
photocounts. (b) Balanced homodyne detection of one field quadrature using
a continuous wave local oscillator with a complex amplitude ELO. (c) Measure-
ment of both I and Q quadratures using two balanced homodyne setups with
the local oscillator phases set respectively to 0◦ and 90◦.

from a photocathode or generates electron-hole pairs in a semi-
conductor. At the fundamental level the number of produced
elementary photocarriers is integer, and with a sufficiently low-
noise gain mechanism it can be read out from the photodetection
device in such discrete form as the photocount number [30].
Within the framework of the quantum theory of electromagnetic
radiation, generation of each photocarrier is associated with an
absorption of a single photon from the field illuminating the
photodetector [31]. However, equivalent statistical predictions
regarding the photodetection process can be obtained by treating
the electromagnetic field as a classical entity and using a quan-
tum mechanical model only to describe the charge carriers in
the photodetector [32]. Such a semiclassical description of the
photodetection process is valid as long as one does not deal with
non-classical states of light that cannot be legitimately described
within classical electrodynamics.

In an idealized scenario when the photodetector has unit
detection efficiency and produces no dark counts, the probability
of generating k photocarriers over a time interval lasting from
t1 to t2 by an incident electromagnetic field with a complex
envelope E (t) is given by the Poissonian statistics

pk = exp(−k̄)
k̄k

k!
, (11)

where the expectation value of the photocount number

k̄ = E[k] =
2ε

hfc

∫
Aeff

d2r

∫ t2

t1

dt |E (t)|2. (12)
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can be interpreted as the mean number of photons carried by
the field within the measurement interval. The variance of the
photocount number Var[k] = k̄ is referred to as the shot noise
level. Taking E (t) in the form given by Eq. (3), when the
integration interval contains only the jth signal pulse uj(t)

and
∫ t2
t1

dt |uj(t)|2 = 1, the mean photocount number k̄ can
be identified with the mean number of photons in that pulse,
k̄ = |αj |2.

Direct detection reveals information only about the intensity
of the incident electromagnetic field. A standard phase-sensitive
measurement technique is homodyning, where the incoming
signal is superposed on a beam splitter with an auxiliary local
oscillator (LO) beam that has the same frequency as the signal
carrier. We will consider a model of a homodyne setup shown
in Fig. 3(b), where LO is prepared as a continuous wave field
with a complex amplitude ELO = |ELO|eiφ. Both the signal and
LO fields are superposed on a balanced 50:50 beam splitter [33]
whose output ports are monitored by idealized photodetectors
producing photocount statistics described by Eq. (11). The
two fields leaving the beam splitter are described by

(
E (t)±

ELO
)
/
√
2. Let us divide the time axis into discrete intervals of

duration Δt indexed using an integer i = . . . ,−1, 0, 1, . . ., with
the ith interval centered at ti = iΔt. When the signal and the
LO fields do not fluctuate, the joint probability distribution of
registering ki+ and ki− photocounts on the two photodetectors
over the ith interval is a product of two Poissonian distributions
with respective expectation values

k̄i± = E[ki±] =
ε

hfc

∫
Aeff

d2r

∫ ti+Δt/2

ti−Δt/2

dt |E (t)± ELO|2

≈ εAeff

hfc
|E (ti)± ELO|2Δt, (13)

where the second approximate expression holds if Δt is shorter
than the temporal variation of the signal field envelope E (t). If
the LO field carries a macroscopic number of photons over the
integration timeΔt, i.e. ε|ELO|2Δt � hfc, the photocount num-
berski± can be treated as continuous variables [34] characterized
by normal distributions ki± ∼ N (k̄i±, k̄i±) that approximate
Poisson distributions for k̄i± � 1. Consider now the rescaled
differential photocurrent

Ii =
1

2|ELO|Δt

√
hfc

εAeff
(ki+ − ki−). (14)

Under present assumptions the differential photocurrent is a
Gaussian random variable with the expectation value

E[Ii] = 2

√
εAeff

hfc
Re[e−iφE (ti)], (15)

and the variance given by

Var[Ii] =
hfc

4εAeff|ELO|2(Δt)2
{Var[ki+] + Var[ki−]} ≈ 1

2Δt
,

(16)
where only the leading-order terms in |ELO| have been re-
tained when evaluating Var[ki±]. Provided that the signal and

the LO fields do not exhibit any fluctuations, the differential
photocurrent noise is uncorrelated between different time inter-
vals, Cov[Ii,Ii′ ] = 0 for i = i′. In the remainder, it will be
convenient to apply the limiting transition Δt → 0 and treat t as
a coarse-grained time variable. In this limit

E[I (t)] = 2

√
εAeff

hfc
Re[e−iφE (t)], (17)

and

Cov[I (t),I (t′)] =
1

2
δ(t− t′). (18)

Applying to I (t) a filter function [35] described in the temporal
domain by a normalized real profile v(t) yields a quadrature
variable

y =

∫ ∞

−∞
dt v(t)I (t). (19)

The expectation value of y can be directly calculated using
Eq. (17) for E (t) given by Eq. (3) to be equal to

E[y] =
√
2

∞∑
j=−∞

Re

(
e−iφαj

∫ ∞

−∞
dt v(t)uj(t)

)
, (20)

while Eq. (18) gives variance

Var[y] =
∫ ∞

−∞
dt

∫ ∞

−∞
dt′ v(t)v(t′)Cov[I (t),I (t′)] =

1

2
.

(21)
When the filter matches the profile of the jth signal wavepacket,
v(t) = uj(t), Eq. (20) reduces to E[y] =

√
2Re(e−iφαj), which

follows from the orthogonality condition (1). This requires that
the wavepacket profile is real. By selecting the LO phaseφI = 0◦

or φQ = 90◦ one can detect respectively either the I or the Q
field quadrature. Eqs. (20) and (21) imply that the measurement
outcome yI,Q is characterized by a Gaussian probability distri-
bution

p(yI,Q) =
1√
π
exp{−[yI,Q −

√
2Re(e−iφI,Q

αj)]
2}. (22)

Note that the variance of this distribution stems from the shot
noise in the photodetection process and its numerical value
Var[yI,Q] = 1/2 is determined by the rescaling of the differ-
ential photocurrent used in Eq. (14). Remarkably, quadrature
distributions have been recently measured at the shot-noise-level
for binary phase shift keyed (BPSK) signals sent from a geosta-
tionary satellite to an optical ground station equipped with a
homodyne receiver [36].

A way to measure both I and Q quadratures for a single
pulse is to split the input signal equally between two homodyne
setups and to use LO beams with phases φI = 0◦ and φQ = 90◦

[37]. This arrangement, known in the context of optical com-
munication as phase diversity homodyne detection [38]–[40],
is shown in Fig. 3(c). The rescaled differential photocurrents
I I(t) and I Q(t) are defined analogously to Eq. (14) using the
LO amplitude fed into an individual homodyne setup and taken
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in the limit Δt → 0. Their expectation values read:

E[I I(t)] =

√
2εAeff

hfc
Re[E (t)],

E[I Q(t)] =

√
2εAeff

hfc
Im[E (t)]. (23)

Note the reduction by a factor
√
2 compared to Eq. (17),

as each homodyne setup receives only half of the input sig-
nal power. Differential photocurrent noise is characterized by
Cov[I I(t),I I(t′)] = Cov[I Q(t),I Q(t′)] = 1

2δ(t− t′) and
Cov[I I(t),I Q(t′)] = 0. In the case of a two-quadrature mea-
surement one can take a complex normalized filter function v(t)
and define

yI + iyQ =

∫ ∞

−∞
dt v∗(t)[I I(t) + iI Q(t)]. (24)

When E (t) has the form given in Eq. (3) one obtains

E[yI + iyQ] =
∞∑

j=−∞
αj

∫ ∞

−∞
dt v∗(t)uj(t). (25)

and Var[yI ] = Var[yQ] = 1/2. If v(t) matches the profile uj(t)
of the jth wavepacket, the joint probability distribution for yI

and yQ can be compactly written as:

p(yI , yQ) =
1

π
exp[−(yI − Reαj)

2 − (yQ − Imαj)
2]. (26)

Note that in the present case the profile uj(t) can be complex.
Compared to the one-quadrature measurement described by

Eq. (22), the complex amplitude αj in Eq. (26) is reduced by a
factor

√
2 that stems from dividing the signal power between two

homodyne setups, while the variances of individual outcomes yI

and yQ remain at the same level, Var[yI ] = Var[yQ] = 1/2. In
the quantum theory of electromagnetic radiation I andQquadra-
tures are described by non-commuting observables. Simulta-
neous measurement of such observables on a single quantum
system has to be accompanied by additional uncertainty [41],
[42]. This can be viewed as the fundamental reason for the
reduced signal-to-noise ratio when both quadratures are detected
for one optical pulse.

Importantly, matched filtering allows in principle for shot-
noise-level determination of quadratures for individual symbols
even in the case of temporally overlapping pulses, provided that
the orthogonality condition (1) is satisfied. In contrast, standard
direct detection requires that the individual pulses are confined
to separate slots in order to discriminate between their contri-
butions to the photocount statistics. This restriction could be
lifted using the recently developed technique of quantum pulse
gating, which allows one to demultiplex individual temporal
wavepackets from an orthogonal set by carefully engineered
up-conversion in a χ(2) nonlinear medium [43]–[45].

IV. COMMUNICATION CHANNEL

In a generic communication scenario shown in Fig. 4, the
complex amplitude α for a pulse in a given slot is selected

Fig. 4. A generic communication scenario. The input x defines modulation
of the optical signal αx. After propagation, detection of the output signal α′

x
produces outcome y. The complete quantum mechanical scenario allows for
preparation of general quantum states described by density operators �̂x that are
mapped onto output states �̂′x.

according to the value x of an input random variable X char-
acterized by a probability distribution px. The outcome y of the
measurement performed at the detection stage is a realization of a
certain random variable Y . In the absence of memory effects the
communication channel is characterized by a set of conditional
probability distributions py|x. In the optical implementation
considered here, these distributions are determined jointly by
the map x → αx, the transformation of the optical signal in the
course of propagation, and the employed detection scheme. The
amount of information about X that can be recovered from Y is
quantified by the mutual information [46]

I(X;Y ) = H(Y )− H(Y |X), (27)

where H(Y ) = −
∑

y py log2 py and H(Y |X) = −
∑

x px∑
y py|x log2 py|x are respectively the marginal and the condi-

tional entropy of the measurement results. According to Shan-
non’s noisy-channel coding theorem [47], the maximum amount
of information per channel use that can be communicated reli-
ably at an arbitrarily low error rate is obtained by optimizing the
mutual information I(X;Y ) with respect to the input probabil-
ity distribution px. This defines the capacity of a memoryless
channel as

C = sup
{px}

I(X;Y ). (28)

A standard illustration of the above concept is the derivation
of the Shannon capacity limit. The basic theoretical tool is the
Shannon-Hartley theorem [48], which states that the capacity of
an analog communication channel with a real input variable x
and a real output variable y related through a Gaussian condi-
tional probability distribution

py|x =
1√
2πN

exp

(
− (y −√

ηx)2

2N

)
(29)

under the constraint E[x2] ≤ S is equal to C = 1
2 log2(1 +

ηS/N) and is attained by the Gaussian input distribution x ∼
N (0, S).

Consider first the case when only one field quadrature, taken
for concreteness to be the I component, is used for communica-
tion. Let the input variable x define the complex field amplitude
by Reαx = x/

√
2 and Imαx = 0. The average power constraint

can be expressed as

S = E[x2] = 2E[(Reαx)
2] = 2n̄. (30)

The last equality follows from Eq. (5) taking into account the fact
that in the present scenario the imaginary part of the complex
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Fig. 5. Shannon capacities for one-quadrature CS1 and two-quadrature CS2
communication with shot noise level homodyning compared to the Holevo
capacity CH for loss-only propagation with zero excess noise. The Holevo
capacity coincides with the value CFock attainable using non-classical Fock
(photon number) states over a lossless channel.

field amplitude is identically set to zero. The explicit form of
the conditional distribution (29) can be obtained in the current
case by inserting the right hand side of Eq. (7) into Eq. (22)
and averaging over the excess noise. The resulting scaling factor
η = τ is simply the power transmission coefficient for the optical
field. The varianceN is a sum of two contributions. The first one,
equal to E[(

√
2Reζj)2] = nn as implied by (8), stems from the

excess noise, while the second one comes from the homodyne
measurement itself. If the measurement is carried out at the shot
noise level, the latter contribution is 1/2 according to Eq. (21)
and N = nn + 1/2. Consequently, for single-quadrature com-
munication one obtains the Shannon capacity limit in the form

CS1 =
1

2
log2

(
1 +

4ns

2nn + 1

)
, (31)

where the enumerator has been expressed in terms of the average
received signal photon number per slot ns = τ n̄ defined in
Eq. (10).

In the scenario when both I and Q quadratures are used for
information transmission, two real variables xI and xQ are used
in each slot and αx = (xI + ixQ)/

√
2. Given that the average

optical power carried by one quadrature is now E[(Reαx)
2] =

E[(Imαx)
2] = n̄/2 one has S = E[(xI)2] = 2E[(Reαx)

2] = n̄
and analogously E[(xQ)2] = n̄. The scaling factor between the
input variables xI and xQ and the homodyne measurement
outcomes yI and yQ is η = τ/2 as in the present case only half of
the input power is directed to each of the two homodyne setups.
For the same reason, only half of the excess noise power should
be accounted for in the varianceN = nn/2 + 1/2. The Shannon
capacity in bits per slot for two-quadrature communication is a
sum of two equal contributions from I and Q components and
reads [49]

CS2 = log2

(
1 +

ns

nn + 1

)
. (32)

Fig. 5 compares Shannon capacities for one- and two-
quadrature encodings as a function of the average received
signal photon number ns for loss-only propagation, when the
excess noise is zero nn = 0, and quadratures are measured at the
shot noise level. It is seen that below ns � 2 it is beneficial to
use single-quadrature encoding, which however requires a local
oscillator phase-locked to the received signal. Around ns ≈ 2
the capacity is in principle optimized by time-sharing between
one- and two-quadrature communication [50], but the advantage
of this strategy is minuscule.

When excess noise dominates the homodyne shot noise,nn �
1, one can neglect the latter and write the Shannon capacity limit
in terms of the signal-to-noise ratio (SNR)ns/nn = τP/(BN ).
In this case, a straightforward comparison of one- and two-
quadrature Shannon capacity limits yields

CS1 ≈ 1

2
log2

(
1 + 2

ns

nn

)
< log2

(
1 +

ns

nn

)
≈ CS2, (33)

and for any SNR value it is beneficial to use both quadratures
for communication. Let us note that the transmission coefficient
τ and the noise density N may incorporate respectively the
non-unit detection efficiency and the excess noise contributed
by the detection process.

The maximum attainable transmission rate R in bits per unit
time for a given communication scenario is given by

R = B · C, (34)

where C is the corresponding capacity limit expressed in bits
per slot.

V. HOLEVO LIMIT

The Shannon capacity limit reviewed in the preceding section
relies on two assumptions. The first one is that the optical
field carrying information can be described within the classical
theory of electromagnetic radiation using the expression given
in Eq. (3). The second one is that the optical signal is detected
by means of homodyning, capable of measuring one or both
quadratures with shot-noise-level precision. In the case of a
lossless channel with unit transmission, τ = 1, and no excess
noise, nn = 0, there exists a very simple optical communication
scenario suggested by Gordon [1] which beats the Shannon
limit. Quantum mechanics permits preparation of a light pulse
in a state which contains exactly n photons, called a photon
number state or a Fock state [51]. In recent years, impressive
progress in generation of such states has been made in the context
of prospective applications in quantum information processing
and communication [52]–[54]. Suppose that the message to
be transmitted is encoded in Fock states, with the n-photon
Fock state sent with a probability pn. Because a pulse prepared
in an n-photon Fock state generates exactly n counts on an
ideal photodetector with unit detection efficiency and no dark
counts, the Fock state transmitted over a lossless channel can
be in principle identified unambiguously by direct detection.
For such a communication scenario the mutual information
reads I = −

∑∞
n=0 pn log2 pn. In order to identify the capacity

CFock in this communication scenario, the above expression
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needs to be maximized over the probabilities pn ≥ 0 under the
average power constraint

∑∞
n=0 npn = n̄. This task is a simple

exercise in the method of Lagrange multipliers with the result
CFock = g(n̄), where

g(υ) = (υ + 1) log2(υ + 1)− υ log2 υ. (35)

A graph of CFock = g(n̄) depicted in Fig. 5 shows that commu-
nication with Fock states over a lossless channel exceeds the
one- and two-quadrature Shannon capacities for any average
signal power. Although this scenario is highly hypothetical
due to rather unrealistic technical requirements, it indicates
that there are instances when the Shannon formula does not
specify the ultimate capacity of optical communication under
the average power constraint. In order to identify the ultimate
quantum capacity limits, one needs to describe the input states
of light, their propagation, as well as the detection of the optical
signal using the mathematical formalism of quantum mechanics.
Presenting this formalism in full detail would go beyond the
scope of the present tutorial paper. We will give here only a
brief, few-paragraph summary, referring an interested reader to
one of excellent textbooks [55]–[57].

Fock states used in the communication scenario proposed by
Gordon cannot be legitimately described within the classical
theory of electromagnetic radiation. In order to take into ac-
count Fock states and any other non-classical states of light,
the complex amplitudes α representing the electromagnetic
field in individual slots need to be replaced by more intricate
mathematical objects, namely density operators, denoted often
with a carret as ̂ and represented by infinitely dimensional,
Hermitian, positive semidefinite matrices with a unit trace. The
counterpart of well-defined complex field amplitudes is the class
of coherent states [58], [59]. In the quantum mechanical picture
of communication also shown in Fig. 4, the value x of the
input random variable X determines the quantum state ̂x of
the electromagnetic field in a given slot. Propagation through
the physical medium is described by a certain map ̂x → ̂′x
acting within the set of density operators. In our case, this
map is a generalization of the transformation given in Eq. (7).
After propagation, the measurement of the received optical
signal produces outcomes described by a random variable Y .
The conditional probability distributions py|x of measurement
outcomes y when the field arrives at the receiver in a state ̂′x
can be found using Born’s rule. This enables one to calculate the
mutual information according to Eq. (27).

The ultimate quantum mechanical capacity limit is obtained
by optimizing the mutual information I(X;Y ) in two domains.
The first one involves optimization over all measurements—
even hypothetical—that can be performed on the received quan-
tum systems. This task is greatly simplified by Holevo’s the-
orem [16], which states that for any physically permissible
measurement one has

I(X;Y ) ≤ χ = S

(∑
x

px̂
′
x

)
−
∑
x

pxS(̂′x), (36)

where S(̂) = −Tr(̂ log2 ̂) is the von Neumann entropy of a
density operator ̂. The Holevo quantity χ defined above has

formal structure analogous to mutual information in Eq. (27).
The first term is the von Neumann entropy of the average output
quantum state after propagation, while the second term is the
average von Neumann entropy of an individual output state
whose preparation is known.

In the second step, the Holevo quantity χ needs to be op-
timized over all ensembles of input quantum states ̂x with
respective probabilities px that satisfy relevant constraints, in
the case considered here an upper bound on the average optical
power. A rigorous mathematical proof of the quantum limit
for the AWGN propagation model has been presented only
recently [20]. The result confirmed the previously conjectured
expression in the form:

CH = g(ns + nn)− g(nn), (37)

where g(υ) has been defined in Eq. (35). In the following, CH

will be referred to as the Holevo capacity limit. Interestingly,
for any transmission coefficient τ and the excess noise value
nn, the Holevo quantity χ calculated according to Eq. (36) for a
continuous Gaussian ensemble of coherent states with complex
amplitudes α ∼ CN (0, n̄) yields the capacity limit CH. This is a
direct counterpart of the input probability distribution saturating
the two-quadrature Shannon capacity limit. However, the detec-
tion strategy that would achieve the Holevo quantity for this input
ensemble remains highly elusive. It has been demonstrated that
the inequality in (36) is tight [17]–[19], but the argument used in
the mathematical proof cannot be translated in a straightforward
manner into feasible detection schemes for optical fields. This
is somewhat analogous to the canonical proof of the Shannon
noisy channel coding theorem based on the statistics of random
codes, which does not necessarily provide a constructive recipe
to devise practical error correction algorithms.

It is insightful to compare the Holevo capacity limit with the
Shannon capacity limit in specialized parameter regimes. In the
absence of excess noise, when nn = 0, one has CH = g(ns).
Consequently, the curve shown in Fig. 5 as CFock depicts also
more generally the Holevo capacity limit for loss-only propaga-
tion [60]. Furthermore, for large average received signal photon
number per slot, ns � 1, one obtains the following power series
expansion in n−1

s :

g(ns) = log2(1 + ns) + log2 e−
log2 e

2ns
+O(n−2

s ). (38)

The leading-order term is simply the Shannon capacity of two-
quadrature communication derived in Eq. (32) in the special case
when there is no excess noise, nn = 0. The second-to-leading
term specifies the capacity advantage compared to the Shannon
limit when ns � 1. This advantage is equal to 1nat = log2 e ≈
1.44 bits of information per slot. On the other hand, when the
excess noise photon number per slot is much greater than one,
nn � 1, applying expansion (38) to both g(ns + nn) and g(nn)
yields

CH = g(ns + nn)− g(nn)

= CS2 +

(
1

nn
− 1

ns + nn

)
log2 e +O(n−2

n ). (39)
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It is seen that the log2 e terms cancel and the difference between
the Holevo capacity and the Shannon capacity becomes minute.

The above results indicate that the Holevo advantage is
negligible in scenarios where optical amplification, inevitably
generating substantial amounts of excess noise, is used to re-
generate propagating optical signals [61], [62]. Unconventional
communication strategies can be beneficial for short-haul loss-
only links, such as optical interconnects. A newly emerging
application area may be continuous-variable quantum key dis-
tribution (QKD) [63], [64]. In QKD protocols, generation of a
secure cryptographic key requires that the mutual information
between the sender and the receiver exceeds the information
about the transmitted signal or measurement outcomes that could
be gained by an eavesdropper with unlimited technological
capabilities [65]. Increasing the mutual information between
the legitimate users could improve the key rates or even enable
key generation over longer distances. Another potential use case
emerges in scenarios where signal regeneration is fundamentally
not possible, such as optical communication in space [66].

VI. PHOTON-STARVED COMMUNICATION

The difference between the Shannon and the Holevo capacity
limits is most strongly pronounced in the photon-starved regime,
when the average received number of signal photons per slot is
much less than one, ns � 1. This scenario, encountered e.g. in
deep-space optical communication [67]–[70], can be viewed as
an extreme version of power-limited communication, when the
received signal power τP is restricted but the utilized bandwidth
is so high that τP/B � hfc. In this parameter regime it is
convenient to express the maximum attainable information rate
defined in Eq. (34) as

R = B · ns · PIE =
τP

hfc
· PIE, (40)

where PIE = C/ns is the photon information efficiency (PIE)
specifying how much information is retrieved from one received
photon [71]. The product B · ns = τP/(hfc) is the number of
signal photons received in unit time. As a side note, PIE is closely
related to the information theoretic concept of the capacity per
unit cost which has been analyzed within the classical [72] as
well as the quantum mechanical [73], [74] framework.

When ns � 1, expansion of one- and two-quadrature Shan-
non capacity limits derived respectively in Eqs. (31) and (32) up
to the linear term in ns yields the following expressions for PIE:

PIES1 ≈ 2

1 + 2nn
log2 e, PIES2 ≈ 1

1 + nn
log2 e. (41)

When the excess noise is low, nn � 1, homodyne shot noise
dominates the denominator in both expressions and the PIE
is effectively equal to 2 nats ≈ 2.88 bits per photon for one-
quadrature communication and 1 nat ≈ 1.44 bits per photon for
two-quadrature communication. For high excess noise, nn �
1, both expressions in Eq. (41) coincide and are equal to
(log2 e)/nn. Reverting to the information rate according to
Eq. (40) one obtains for nn � 1 the standard formula for power-
limited communication in the form RS ≈ B(ns/nn) log2 e =
(τP/N ) log2 e.

Fig. 6. (a) The photon information efficiency implied by the one- and two-
quadrature Shannon limits compared with the Holevo limit as a function of
the average detected photon number ns. Thin lines depict PIE for the directly
detected PPM format with the PPM frame length (format order) specified in
boxes. The black dotted line represents the approximation derived in Eq. (46).
(b) M -ary PPM format with direct detection.

The above result is in stark contrast with the PIE obtained from
the Holevo capacity limit. Consider first loss-only propagation
with nn = 0. For ns � 1 the Holevo capacity limit CH = g(ns)
can be written as a sum of a logarithmic term and a remainder
admitting a power series expansion in ns, which yields:

PIEH =
g(ns)

ns
= log2

1

ns
+ log2 e +O(ns). (42)

As illustrated in Fig. 6(a), the above expression exhibits a
qualitatively different scaling with ns compared to the Shannon
limit and it can attain an arbitrarily high value with diminishing
ns.

A practical way to achieve high photon information efficiency
in optical communications is to use the pulse position modula-
tion (PPM) format combined with direct detection. As depicted
in Fig. 6(b), M -ary PPM format uses M equiprobable multislot
symbols defined by the location of one pulse within a frame of
M otherwise empty temporal slots. Thus one PPM frame can
encode log2 M bits of information. In order to ensure a fair
comparison with other communication scenarios, the duration
of a single slot will be kept at B−1. Hence time required to
transmit a single PPM symbol isT = MB−1. Under the average
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power constraint, the pulse carries the optical energy of the entire
frame, equal toMns after transmission. In the absence of excess
noise, ideal direct detection allows one to recover the input
symbol from the timing of the photodetection event, provided
that at least one photocount has been registered. According to
Eq. (11) specialized to the present scenario, the probability of
such an event is equal to p� =

∑∞
k=1 pk = 1− exp(−Mns).

When no photocount is produced over the entire PPM frame,
information about the transmitted symbol is erased. The mutual
information per slot for such an M -ary erasure communication
channel is a product of three factors I(M)

PPM = M−1 · p� · log2 M
corresponding respectively to renormalization to one temporal
slot, the probability that the erasure has not taken place, and the
number of bits encoded in one PPM frame [75]. The resulting
PIE is depicted in Fig. 6(a) for PPM orders that are integer
powers of 2. For a given PPM order M , in the limit ns → 0
the PIE approaches the value

PIE(M)
PPM =

1

ns
I(M)
PPM =

1

Mns
· p� · log2 M → log2 M (43)

which follows from the linear approximation p� ≈ Mns. This
approximation requires that Mns � 1.

When the average received signal photon number per slot
ns � 1 is fixed, one can identify the optimal PPM order by
expanding p� up to the quadratic term

p� ≈ Mns −
1

2
(Mns)

2 (44)

and inserting the result into the expression for PIE(M)
PPM given

in Eq. (43). Equating to zero the derivative of the resulting
approximate PIE(M)

PPM with respect to M , treated as a continuous
real parameter, yields a closed expression for the optimal PPM
order M ∗ in the form [76]

M ∗ ≈ 2

ns

[
W

(
2e

ns

)]−1

, (45)

whereW (·) is the Lambert function [77] defined by the transcen-
dental equation W (υ)eW (υ) = υ. The corresponding optimal
PIE value can be written as [78]

PIE∗
PPM ≈

(
W

(
2e

ns

)
− 2 +

[
W

(
2e

ns

)]−1
)
log2 e. (46)

As seen in Fig. 6(a), this expression slightly underestimates the
optimal value of PIE. For large arguments υ � 1 the Lambert
function admits expansion W (υ) = log υ − log log υ + o(1).
Using this expansion in Eq. (46) and comparing the result with
the Holevo PIE calculated in Eq. (42) reveals a gap between the
PIE of the optimized PPM format with direct detection on one
hand and the ultimate quantum limit on the other hand [79]. This
gap is characterized in the leading order by a double-logarithmic
term of the form log2 log(1/ns).

In practice, the propagating optical signal will always acquire
some excess noise, contributed e.g. by scattered stray light. Its
impact can be estimated using Fig. 7, which depicts the Holevo
limit on the photon information efficiency PIEH = CH/ns as a
function of the signalns and the excess noisenn photon numbers

Fig. 7. The photon information efficiency calculated from the Holevo capacity
limit as a function of the average signal ns and excess noise nn photon numbers
per slot.

per slot. It is seen that the noiseless analysis holds as long as
nn � ns. For a fixed non-zero excess noise figure nn, the PIE
remains finite with the maximum value attained when ns � nn:

PIEH =
1

ns

(
g(ns + nn)− g(nn)

)
−→
ns→0

log2(1 + n−1
n ). (47)

Thus the general Holevo limit on the maximum attainable in-
formation rate in the power-limited regime with unrestricted
bandwidth takes the form

RH ≈ B · ns · log2(1 + n−1
n ) =

τP

hfc
log2

(
1 +

hfc
N

)
. (48)

Notably, the second expression, involving dimensional physical
quantities, depends explicitly on the energy hfc of a single
photon at the carrier frequency. This energy defines the absolute
scale for the noise power spectral density below which the
quantum nature of light starts to play a non-trivial role. Only
when N � hfc one can expand the logarithm into a power
series to obtain the Shannon expression RS ≈ (τP/N ) log2 e.

In the model considered above only excess noise added to
the signal wavepacket profile has been taken into account in
accordance with Eq. (7). When standard direct detection is used,
one should include in the analysis excess noise present in the
entire time-bandwidth area measured by the photodetector [80].
In the basic model for such a scenario, when the time-bandwidth
area detected per slot is much larger than one, the effective
statistics of background counts generated by the excess noise
can be described by Poissonian distribution [81]. The photon
information efficiency of such a noisy PPM link can be analyzed
using a relative entropy bound [82]. If the photodetector discrim-
inates only between zero and at least one photocount in each slot,
the dependence of PIE on the signal and the noise strengths has
a qualitatively similar character to that shown in Fig. 7 [83],
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Fig. 8. The photon information efficiency (PIE) calculated from the one-
quadrature Shannon capacity limit and from the Holevo capacity limit (solid
lines) compared with the photon information efficiency for the BPSK constella-
tion assuming homodyne detection and general physically permissible detection
strategies included in the Holevo quantity (dashed lines).

[84]. It is worth noting that the technique of quantum pulse
gating [43]–[45] can be used as a noise-rejection mechanism
for the received optical signal that potentially has both unit
efficiency and unit selectivity [85]. This technique combined
with photon number resolving photodetection in principle could
allow one to approach the Holevo limit in photon-starved com-
munication [86].

VII. JOINT MULTISYMBOL DETECTION

As pointed out in Section V, the Holevo theorem does not
provide a systematic way to design practical measurements
that saturate the Holevo quantity for a given input ensemble
of quantum states. Nevertheless, it can motivate search for
detection strategies that go beyond conventional approaches. As
a simple example, consider the BPSK constellation, represented
in the quantum mechanical formalism by two equiprobable
coherent states with the same mean photon number and phases
0◦ and 180◦. Loss-only propagation attenuates their amplitudes
to ±α′, where α′ =

√
ns. In the photon-starved regime, when

ns � 1, shot-noise-level homodyne detection of the I quadra-
ture yields PIE that practically overlaps with that implied by
the one-quadrature Shannon capacity limit, as shown in Fig. 8.
In contrast, the Holevo quantity χBPSK calculated for the BPSK
constellation yields photon information efficiency that is very
close to the Holevo capacity limit. This result indicates that
photon-efficient communication can be in principle achieved
with the BPSK constellation, but conventional homodyning
needs to be replaced by another detection strategy.

In general, two prerequisites are required to saturate the
Holevo quantity. The first one is that quantum states drawn from
the input ensemble are assembled into words transmitted over
multiple channel uses (i.e. many temporal slots in the optical
scenario discussed here). This is a straightforward analog of
classical encoding. However, the second assumption is that
collective measurements are performed on blocks of received

Fig. 9. (a) The construction of Hadamard words of length M = 2m = 8.
For the lth word, l = 1, 2, . . . ,M , the integer l − 1 is expressed in the binary
representation by a bit string bm−1bm−2 . . . b1b0 which defines a hierarchy of
phase factors shown in the diagram. Vertical multiplication of the phase factors
along columns yields a Hadamard word corresponding to a given l. (b) The recipe
applied to the construction of Hadamard words of length M = 8, depicted as
sequences of optical pulses pointing up for the ‘+’ phase factor and pointing
down for the ‘−’factor, labelled with the corresponding bit strings b2b1b0.

elementary quantum systems that carry the entire words. Such
joint detection strategies can be much more powerful than mea-
surements performed individually on received quantum systems.
This is intimately related to the fact that any quantum mea-
surement reveals only partial information about the measured
physical system.

The above aspects can be illustrated with a very elegant
communication strategy utilizing the BPSK format that has been
described by Guha [87]. The basic idea is to transmit words
composed from BPSK symbols defined by rows of a Hadamard
matrix. We will refer to these sequences as Hadamard words.
Hadamard matrices are real orthogonal matrices with entries ±1
and exist for dimensions M = 2m that are integer powers of 2.
The construction of Hadamard words forM = 8 is shown graph-
ically in Fig. 9(a). The starting point to find the lth Hadamard
word of lengthM , l = 1, 2, . . . ,M , is to write l − 1 in the binary
representation using an m-bit string bm−1bm−2 . . . b1b0 so that
l − 1 =

∑m−1
i=0 2ibi. The ith bit contributes a multiplicative

phase factor alternating between 1 and (−1)bi every 2i positions.
Individual entries in the lth Hadamard word are products of all
these m factors and determine phases of BPSK symbols in the
corresponding Hadamard word, as depicted in Fig. 9(b).

The essence of the joint detection strategy for BPSK
Hadamard words is to use optical interference to concentrate the
optical energy of the entire word in a location that is different
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Fig. 10. (a) A time-domain interferometric module superposes the optical field
in two adjacent time intervals T . (b) The cascade of time domain interferometric
modules which implements all-optical mapping of BPSK Hadamard words of
duration T = MB−1 onto the PPM format shown forM = 8. The dashed lines
graphically separate a modification that consists in adding the −− . . .− word
and performing homodyne detection in the first temporal slot of the output from
the cascade.

for each input word. This goal can be achieved using a cascade
of interferometric modules [88]. As shown schematically in
Fig. 10(a), one module superposes the optical field in two adja-
cent time intervals of duration T . Because of the mathematical
construction of Hadamard words described above, sending the
pulse sequence defined by the lth word through a cascade of
interferometric modules that operate on time intervals that corre-
spond to one half, one quarter, etc. fractions of the word duration
T = MB−1 down to a single temporal slot B−1, concentrates
the entire optical energy in the lth temporal slot at the output of
the cascade, as depicted in Fig. 10(b). If ideal, shot-noise-level
direct detection is implemented at this output, the information
efficiency is equivalent to that of an M -ary PPM link analyzed
in Section VI. An interesting feature of communication using
BPSK Hadamard words is that high PIE is achieved with optical
power uniformly distributed across temporal slots, which is in
stark contrast with the PPM format. In the latter case increasing
PIE requires generating single pulses within frames covering
a larger number of temporal slots. This results in a demand
for the increasing peak-to-average power ratio of the optical
PPM signal, which may be constrained by the physics of the
transmitter laser system. In the case of BPSK Hadamard words,
the effective format order is increased by changing the phase
modulation pattern. The drawback is a much more complex in-
terferometric receiver whose construction depends on the format
order.

The fact that detection of individual symbols and postpro-
cessing of measurement outcomes is usually insufficient to
saturate the Holevo capacity limit is related to a phenomenon
known in quantum information theory as the superadditivity
of accessible information [89]–[91]. In the case of the BPSK
constellation, it can be shown that no physically permissible
measurement on individual symbols can beat the PIE limit of
2 log2 e ≈ 2.88 bits/photon that is achieved with conventional

homodyne detection in the photon-starved regime. Communi-
cation with jointly detected BPSK Hadamard words described
above can be viewed as an illustration of the superaddivity phe-
nomenon when a collective measurement is performed on at least
M = 8 symbols, as then PIE achieves log2 8 = 3 bits/photon for
ns � 1. Superadditivity of accessible information can be also
demonstrated with measurements on fewer than eight phase shift
keyed symbols [87], [92]–[94]. As an example also shown in
Fig. 10(b), consider the set of M -ary BPSK Hadamard words
enlarged by adding an (M + 1)st sequence −− . . .−. The
sequences ++ . . .+ and −− . . .− are sent with probabilities
p1/2 each, while the remaining M − 1 Hadamard words are
used with the same probability (1− p1)/(M − 1). At the output
of the interferometric cascade shown in Fig. 10(b) direct detec-
tion is performed in all temporal slots except the first one where
the optical energy of the sequences ++ . . .+ and −− . . .−
becomes concentrated. In this slot, homodyning is used to
measure the I quadrature. The complete detection outcome
consists of the continuous quadrature value for the first slot and
a discrete variable specifying in which slot, if any, a photocount
has occurred. Optimizing mutual information with respect to p1
yields for M = 2, 4, and 8 in the limit ns � 1 the respective
values of the photon information efficiency PIE = 2.98, 3.10,
and 3.39 bits/photon. These figures exceed the Shannon limit as
well as the performance of the directly detected PPM format.

VIII. CONCLUSION

The purpose of this tutorial paper was to provide an ele-
mentary introduction to quantum mechanical capacity limits of
optical communication links. The discussion was based on an
elementary model of a narrowband optical signal acquiring ex-
cess additive white Gaussian noise in the course of propagation.
The crucial issue is the comparison between the excess noise
power spectral density N and the energy hfc of a single photon
at the carrier frequency fc per unit time-bandwidth area. When
N � hfc, the standard Shannon capacity limit for conventional
quadrature measurements is applicable and the performance
of a communication link can be characterized in terms of the
signal-to-noise ratio.

The situation becomes more nuanced when N � hfc. In this
regime the particle nature of light plays a non-trivial role and
the energy of a single photon at the carrier frequency defines the
absolute scale for quantifying the signal and the noise strengths.
In the discrete slot model used in this tutorial, two relevant
figures of merit are the average number of signal ns and noise nn

photons per slot. The ultimate capacity limit given in Eq. (37)
follows from Holevo’s theorem and it depends explicitly on both
ns and nn rather than their ratio. This reflects the fact that the
Holevo capacity limit involves optimization over all physically
permissible detection strategies for which no single universal
noise figure can be defined. When the average signal photon
number per slot significantly exceeds one,ns � 1, the advantage
of the Holevo capacity limit is 1nat = log2 e ≈ 1.44 bits per slot
compared to the Shannon limit. So far not much is known about
practical designs for receivers that would beat the Shannon limit
in this case. In the photon-starved regime, when ns � 1, photon
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counting detection of intensity-modulated signals can approach
the Holevo capacity limit in the leading order, as exemplified by
the PPM format optimized with respect to the frame length.

Many interesting questions arise regarding quantum capac-
ity limits beyond the elementary linear AWGN model con-
sidered here. Examples include quantum effects in non-linear
signal propagation [95], [96] and unconventional communica-
tion strategies in the presence of non-Gaussian noise [97], [98].
Also, adopting a more general perspective on the time-frequency
structure of optical signals may inspire novel modulation formats
and receiver designs [99], [100].
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