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Abstract—Imaging through optical fibres has recently emerged
as a promising method of micro-scale optical imaging within a
hair-thin form factor. This has significant applications in endoscopy
and may enable minimally invasive imaging deep within live tissue
for improved diagnosis of disease. Multi-mode fibres (MMF) are the
most common choice because of their high resolution but multicore
fibres (MCF) offer a number of advantages such as widespread
clinical use, ability to form approximate images without correction
and an inherently sparse transmission matrix (TM) enabling simple
and fast characterisation. We present a novel experimental investi-
gation into properties of MCF important for imaging, specifically:
a new method to upsample and downsample measured TMs with
minimal information loss, the first experimental measurement of
MCF spatial eigenmodes, a novel statistical treatment of behaviour
under bending based on a wireless fading model, and an experimen-
tal observation of TM drift due to self-heating effects and discussion
of how to compensate this. We next present practical techniques
for imaging through MCFs, including alignment, how to paral-
lelise TM characterisation measurements to improve speed and
how to use non-interferometric phase and polarisation recovery
for improved stability. Finally, we present two recent applications
of MCF imaging: polarimetric imaging using a robust Bayesian
inference approach, and entropic imaging for imaging early-stage
tumours.

Index Terms—Endoscopy, medical imaging, optical fibre, quan-
titative phase imaging.
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I. INTRODUCTION

OVER the past decade, optical fibre imaging has developed
to the point where it now enables microscale optical

imaging in hard-to-reach environments, such as fluorescence
imaging of neuronal activity in live animal brains [1]–[3]. Many
different types of optical fibre imaging have been demonstrated
including confocal [4], two-photon [5], [6], brightfield, darkfield
and fluorescence [7], quantitative phase and polarimetric [8], [9],
speckle [10] and structured illumination [11]. The key technical
advance that has made this possible is the ability to characterise
the complex but deterministic linear function that describes
how light propagates down the fibre, which when discretised
is termed the transmission matrix (TM) [12].

The majority of these methods use multimode fibre (MMF)
[13]–[16] with a circularly symmetric graded- or step-index
refractive index profile. The main alternative to MMF is mul-
ticore fibre (MCF) (or imaging fibre bundle), which comprises
up to 100,000 light-guiding elements (termed cores or fibrelets)
fused together into a single solid ‘super’ fibre. The positions
and sizes of the cores is typically randomised so as to minimise
core-to-core coupling while maximising core density [17]. They
therefore lack any strong symmetry despite being quasi-periodic
in appearance.

MCFs with single-moded cores have a lower mode density
(and hence imaging resolution) than the equivalent size MMFs
[18], but many commerical MCFs have closely spaced cores (e.g.
<4μm [19]) and support multimodal propagation within cores
[20], closing this gap at the expense of increased core-to-core
coupling [21]. The light-confining properties of MCF mean it
has a sparse TM (see Sections III-D, IV-B and [8], [9]) enabling
approximate amplitude images to be formed through it with no
compensation, particularly at shorter visible wavelengths where
core-to-core coupling is less. For this reason MCF is already
widely used in commercial medical endoscopes [22], which has
the advantage of lowering barriers to clinical approval for new
devices.

Though MCF allows approximate uncorrected amplitude
imaging, it introduces significant distortion in phase and po-
larisation with coherent light [8], [23]. This can be minimised
using bespoke MCF designs [24], [25] but these require large
core-to-core spacing and hence have very low mode-density.
While suitable for scanning confocal imaging, this results in
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Fig. 1. Experimental set-up used for characterisation and imaging through multicore fibre (adapted from [8]). The input (X) and output (Y) planes are indicated
for reference. SLM = spatial light modulator, M = mirror, HWP = half-waveplate, PBS = polarising beam splitter, L = lens.

poor resolution for wide-field imaging. For phase and polarisa-
tion control it is therefore necessary to measure the MCF TM.
However, the sparse nature of MCF, even with relatively large
core-to-core coupling enables parallelised TM characterisation
measurements (see Section IV-B and [8]). Further, the ability
to form approximate amplitude images without correction and
the lack of radial symmetry make alignment significantly easier
(see Section IV-A).

Given these advantages of MCF, they remain a popular choice
for imaging both in clinical settings [22] and in research (see [18]
for a review of endoscopic imaging with MCF). In this paper
we first present empirically derived properties of MCFs im-
portant for coherent imaging, namely: choice of representa-
tion basis, including a novel method of performing up- and
down-sampling of measured TMs and, for the first time, exper-
imental measurement of eigenmodes; a novel statistical treat-
ment of the effects of bending on the TM; and the effect of
time-dependent self-heating on the TM. Next, we present im-
portant practical strategies that enable imaging through MCF,
specifically: dual-polarisation alignment, parallelisation of mea-
surements for increased TM characterisation speed, and use
of non-interferometric phase and polarisation reconstruction
for improved stability. Finally, we discuss two novel practical
applications of MCF fibres: polarimetric imaging via a robust
Bayesian inference approach, and phase entropy imaging.

II. EXPERIMENTAL SET-UP

Figure 1 shows the experimental set-up used to produce data
here. The dual-polarisation design has been presented previously
[8], [26], though other dual-polarisation designs are possible
[15], [27]. Notably, the imaging is non-interferometric, which
has experimental advantages (discussed in Section IV-C). The
wavelength chosen is 852 nm, which falls within the ‘opti-
cal window’ [28] where tissue fluorescence minimal. Light is
therefore predominantly elastically scattered, enabling accurate
imaging of structural features. The laser diode (DBR852S,

Thorlabs) has a coherence length of ∼1 m and power output of
35 mW. The 2 m long MCF (Fujikura FIGH-06-350G) has 6000
cores, core diameter ∼2.9 μm, core spacing 4.4 μm, and outer
diameter 350 ± 20 μm. In order to reduce computational load
and experimental time, only around 75% of the available facet
area is used and this is sampled with a period of approximately
double the expected core spacing (see Figure 3a). The TM is
then characterised using the process presented in [8] at 824
spatial points in the input plane,X , taking 50.8 minutes. Despite
under-sampling, we can still determine a great deal about the
fibre TM.

III. MATHEMATICAL PROPERTIES OF MCF
TRANSMISSION MATRICES

A. Basis Representation

Using SLM1 of Figure 1 we can project optical fields with
arbitrary amplitude, phase and polarisation profiles onto the
distal fibre facet (plane X). With the system aligned these fields
can be accurately simulated via Fraunhofer diffraction from the
hologram displayed on the SLM surface to plane X . Computer
simulations require discretisation so some sampling scheme for
the fields must be chosen. Similarly, at the proximal facet of the
fibre (plane Y ) amplitude, phase and polarisation are measured
via multiple measurements on the camera (see Section IV-C).
The sampling here is performed by the camera pixels (resolution:
1200 × 1200, pixel pitch 5.5 μm).

We first consider sampling the input field’s horizontally po-
larised component on a regular M ×M grid and then stacking
the rows in column-major order (or alternative orderings such
as Z-ordering or space-filling curves). The result is an M2 × 1
vector. Repeating for the vertically polarised component pro-
duces a secondM2 × 1vector. Interleaving the two polarisations
(to preserve spatial locality) gives a 2M2 × 1 vector, termed x,
made up of complex elements representing coherent light (i.e.
x ∈ C2M2

).
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Next, we consider the pixels of the camera sampling an
M ×M area at plane Y . Considering the two polarisations this
can be converted to a 2M2 × 1 vector y ∈ C2M2

. Treating the
fibre as a linear scattering medium, the input and output fields,
x and y are related by linear propagation integrals [12], which
manifest as a TM, A, when discretised so that:

y = Ax (1)

where A is a 2M2 × 2M2 complex matrix. Imaging through
fibres usually requires the recovery of x based on measured y.
This in turn requires the recovery of A either directly [8] or
indirectly [9], both of which require measuring pairs of known
input-output relations (x,y).

Sampling at points on a regular grid (often called the canon-
ical basis [29]) is not the only way of representing input and
output fields. If vectors x and y are 2M2 dimensional, we
first consider arbitrary coordinate transformations represented
by square 2M2 × 2M2 matrices,T. Equation (1) then becomes:

y = T−1A′Tx (2)

where A′ is the TM expressed in the transformed coordinates
(i.e. T−1A′T = A). If the rows of T are linearly independent
they form a new basis for expressing input/output vectors and
this transformation is termed a change of basis. This basis
need not be orthonormal, but orthonormality is experimentally
preferrable as it minimises redundancy and ensures numerically
stable inversion.

B. Upsampling and Downsampling

The coordinate transformation matrix, T, need not be square:
it can be 2N2 × 2M2 (with N < M ), representing a linear
projection or downsampling of the input. Equation (1) then
becomes:

y = TUA
′TDx (3)

where TD is the forward downsampling matrix and TU is the
forward upsampling matrix, and we require that TDTU = I,
where I is the 2N2 × 2N2 identity matrix. The transformed TM,
A′, is of size 2N2 × 2N2 which has significant computational
benefits. A 1000 × 1000 resolution camera (i.e. M = 1000)
might require a 2× 106 × 2× 106 TM, consuming 58.2 TB of
memory with double-precision floating point complex numbers.
Downsampling to N = 100 shrinks the memory requirement to
6.0 GB while still accounting for 20,000 propagating modes.

The minimum value for 2N2, the dimension of the down-
sampled TM, without loss of information can be determined by
considering A as a multiple-input multiple-output information
carrying channel [30]: 2N2 should be ≥ Q, the number of
non-zero singular values of A. This cutoff can be computed
at a particular wavelength for well-defined waveguides (e.g.
MMF [31]) or determined empirically using a very large number
of measurements [32], [33]. If the number of experimental
measurements, P , is known to be less than Q then minimal
information loss is achieved with 2N2 = P .

There are multiple methods of downsampling (i.e. deter-
mining TD of Equation (3)). A simple approach is to select

2N2 pixels from the 2M2 available pixels. For example, if a
scanned spot basis is used, the pixel nearest the centre of each
spot position could be selected. TD would then resemble a
permutation matrix with each row containing a single 1 and no
other non-zero elements. For MMF a suitable downsampling is
achieved with a basis of eigenmodes computed for circularly
symmetric refractive index profiles (e.g. Laguerre-Gauss or
Hermite-Gauss). This is achieved experimentally by displaying
a sequence of holograms on the SLM that act as complex spatial
filters for this basis and then measuring the complex correlation
coefficient [31]. In both these examples, downsampling enables
fewer experimental measurements to be recorded, significantly
reducing memory usage as discussed above. However, the actual
measured TM now available for image reconstruction is the
matrix productTUA

′, determined by measuring pairs of vectors
(TDx,y).

When recovering a distal image, x, from a measured field, y,
we require the inverse TM so rewrite Equation (3) as:

x = T+
D(A′)−1T+

Uy (4)

where (..)+ represents a general inverse such that TDT+
D = I

andT+
UTU = I.T+

U is now termed the backward downsampling
matrix and T+

D is termed the backward upsampling matrix and
it follows from Equation 3 that T+

UT
+
D = I. T+

U has the implicit
role of determining which pixels in y carry the most relevant
information required for reconstructing x. T+

D has the role of
interpolating recovered points to form an image,x, of dimension
larger than the fundamental TM,A. In the simplest case, this can
be defined to implement a linear interpolation between points.

Next, we consider the inverse of the recorded matrix product,
denoted B:

B = (A′)−1T+
U (5)

Given some appropriate interpolation, T+
D, we can directly

reconstruct x from a recorded y using B. However, since T+
U is

dependent on the exact imaging system and basis used, we wish
to decouple its effect from that of A−1 which is considered a
more fundamental fibre property that can be used to examine,
for example, the fibre eigenmodes.

There are many possible candidates for T+
U given a known

TD. For the MMF case, one can be constructed using the con-
jugate transpose of the Laguerre-Gauss or Hermite-Gauss basis,
which effectively uses prior knowledge of the ideal waveguide
modes (and optical reciprocity) to optimally utilise all available
power [34], [35].

For the MCF case we consider an example using data from
[8] where TD is a downsampling permutation matrix that
selects 1648 rows (the number of measurements, chose for
experimental practicality) of the 2.88 million (1200× 1200 in
2 polarisations to match camera) available at plane X . The
requirement T+

UT
+
D = I could be satisfied trivially by setting

TU = TD but this implies that T+
U is a permutation matrix

like TD and that there is no useful power between sampling
points, which is physically unlikely. To find a more realistic
T+

U , we define some required properties of the factorisation
of the measured matrix product, B, using its singular value
decomposition, B = UBSBV

H
B :
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1) T+
UT

+
D = I. This ensures that the upsampling and down-

sampling bases invert one another.
2) The singular value decomposition ofBwill have the same

left singular vectors, UB , as the singular value decompo-
sition of (A′)−1. This is because (A′)−1 is the leftmost
term in the factorisation of B.

3) T+
U should ideally be an orthogonal basis, i.e. it should

not discard information during downsampling. Therefore,
the singular values of (A′)−1 should be the same as the
singular values of B.

4) Ideally, (A′)−1 should be symmetric so as to ensure its
eigenvectors are orthogonal. However, optical losses or
improper sampling can create the appearance of asymme-
try so this requirement is not strict.

Again, selectingT+
U = TD, a permutation matrix in this case,

tends to produce a poorly-conditioned (A′)−1 (violating the
third requirement) because only a small fraction of power is
coupled to the specific pixels sampled.

An improved approach is to sum pixels in the neighbourhood
of each sample point (e.g. all pixels that are closest to that
point than any other, the Voronoi cell). This approach utilises
the expected light confining and wave-guiding properties of
the MCF structure. We generate an estimated sampling matrix,
termed T̂+

U , by setting the appropriate columns in the Voronoi
region to 1 for each of the 2N2 rows. This is still suboptimal, as
the elements of the optimal T̂+

U might take any complex value.
To proceed, we approximate the expected amplitude profile of
(A′)−1, termed Aamp:

Aamp = |B| (T̂+
U )

+ =
∣
∣(A′)−1T+

U

∣
∣ (T̂+

U )
T (6)

where | · | is the element-wise modulus and we use the trans-
pose of T̂+

U as an approximate inverse because each row (T̂+
U )

comprises an approximately equal number of non-overlapping
1 s. Next, we determine the left singular vectors and the singular
values of (A′)−1 by finding the left singular vectors and singular
values ofB, using a singular value decomposition such that these
are both 2N2 × 2N2 matrices.

Finally, we estimate the full complex (A′)−1 using a novel er-
ror reduction (or alternating projection) iterative algorithm [36].
The algorithm developed here alternates between constraining
the estimated right-hand singular vectors of (A′)−1 to form a
unitary matrix and constraining the amplitude of (A′)−1. The
projection operator is a multiplication byUBSB (or its inverse).
This process is depicted in the flowchart of Figure 2. The appro-
priate backward downsampling matrix, T+

U can be determined
from (A′)−1 and the measured B. The final step is to set the
appropriate elements of T+

U to 1 to satisfy TDTU = IN . The
resultant basis satisfies the first 3 requirements and is comprised
of spots translated across the fibre facet with randomised phase
profiles (Figure 3a shows an example element). The average
amplitude envelope, with a full-width half-maximum of 40 μm,
is shown in Figure 3b. An example estimated (A′)−1 is shown
in Figure 3c and it can be seen that the matrix is approximately
symmetric.

Fig. 2. Flowchart detailing algorithm used to find the downsampled TM,
(A′)−1. The result of this can then be used to estimate the backward down-
sampling matrix, T+

U .

C. Approximating Eigenmodes of MCF

The upsampling and downsampling matrices can be used to
express the TM as a square matrix and therefore compute the
eigenmodes (or eigenvectors) and eigenvalues. The magnitudes
of the eigenvalues are all close to 1 (Figure 4b), showing that
there is near-minimal loss (equivalently, near-maximal informa-
tion transfer) through (A′)−1. The eigenmodes can be plotted
in the original 1200 × 1200 pixel frame of plane y using the
upsampling matrix and are seen to have power uniformly spread
across the fibre facet with randomised phase (example shown
in Figure 4a). This agrees with theoretical work predicting that
the eigenmodes of MCF are supermodes filling the entire facet
[21].
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Fig. 3. Results of the algorithm for determining an upsampling matrix
(Figure 2): a) Visualisation of a selected basis element showing amplitude
and phase in the vertical polarisation. Only a subsection of the full fibre is
characterised to reduce computational load (indicated by the coloured or black
areas) and the shape is due to the rectangular array of spots used to parallelise
measurements (see Figure 11). Other basis elements appear similar but translated
with randomised phase. b) By averaging the amplitudes of many basis elements
and taking a cross section, an approximately Gaussian (or perhaps hyperbolic
secant) amplitude envelope is observed. c) Visualisation of the reduced inverse
matrix, (A′)−1. It is observed that it is broadly, though not exactly, symmetrical
suggesting that an approximately orthogonal eigenbasis can be found.

D. Other Useful Bases for MCF

In MMF the theoretical eigenmodes (e.g. Laguerre-Gauss
basis) typically produce a sparse TM in which most of the
elements are zero [31]. The sparsity enables parallelised char-
acterisation (see Section IV-B) and the theoretical model aids
physical insight.

By contrast, the MCF eigenmodes are highly complex with
very heterogenous phase profiles and so any slight pertubation
(e.g bending) may result in a very different set of eigenmodes.
These eigenmodes are not then a robust choice for a sparse basis.
A more robust sparse basis can be constructed with inspiration
from the upsampling basis of Section III-B each basis element is
a spot with Gaussian amplitude profile and flat phase, translated
to different positions. New basis elements are easily created
on the fly by tilting a mirror or displaying a blazed grating on
an SLM, instead of needing to store large libraries of bespoke
holograms as with the MMF sparse bases. This basis is a Fourier
conjugate of the ‘angled plane wave’ basis [14], [37]. Physically,
the sparsity arises from the lateral confinement of light and can
be exploited to parallelise measurements (Section IV-B).

There are other practical considerations when deciding an
experimental basis. For example, if the basis is being projected

Fig. 4. Example of an eigenmode of the MCF over the characterised region
(shaded). a) Amplitude and phase profile in two polarisations. The eigenmode
is seen to have power uniformly spread across the facet with randomised phase.
b) Plot of the magnitude of the eigenvalues for the MCF, which are all close to
unity.

onto to the MCF facet via a lens, there is a trade-off between
minimising distortion at the edge of the MCF facet, achieved
with long focal length lenses and having a small of the Gaussian
spot, achieved with short focal length lenses. Phase-only SLMs
can only redistribute light, rather than block it, so it is difficult
to fully ‘turn off’ a polarisation arm (with reference to Figure 1)
to create a pure linear polarisation basis. An elliptical polarisa-
tion basis with phase-delay between polarisation may be more
reliable in such cases [8]. If using binary phase or amplitude
SLMs to increase speed, a Hadamard basis may be appropriate
as it is easy to generate [29]. The basis choice may also be
application specific: for example, Fourier and wavelet bases
enable examination of scattering properties useful for diagnostic
tissue imaging [9].

E. Effect of Bending

In order to reduce core-to-core coupling, commercial MCFs
have randomised numbers of, spacings between and diameters of
cores [17] making it difficult to model bending deterministically
as has been demonstrated for MMF [35]. We therefore adopt
a statistical treatment based on experimental measurements.
Using the set-up of Figure 1, we measure the TM of a 2 m
piece of MCF bent in Q different configurations around a series
of posts, creating a range of different bend radii down to 35 mm
(to avoid breakage).

We first perform a singular value decomposition of each
of the measured TMs, Aq . The singular values hardly change
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Fig. 5. Singular values/principal components of MCF under different bending
conditions: a) Singular values of TMs for 5 bending conditions showing little
difference. b) Principal values comparing 5 TMs, showing that different bending
conditions produce near-orthogonal matrices.

under the different bending conditions covering both large and
small bend radii (Figure 5a). This suggests that under typical
bending conditions the power (or information) loss of the MCF
is not significant. This agrees with studies on MMF that have
shown that very tight bend radii (<14 mm) are required before
significant information is lost [38]. We then produce a matrix
C by vectorising the measured TMs in column-major order and
concatenating:

C = [vec(A1) · · · vec(AQ)] (7)

We perform a principal component analysis of C (equivalent
to a singular value decomposition) to check for any bend-
invariant modes. The resulting principal values are all nearly
unity (within 0.1%) indicating that the TMs are nearly perfectly
orthogonal and that no signficant bend-invariant modes are
found (Figure 5b). By contrast, MMFs with precise parabolic
refractive index profiles possess a set of bend-invariant eigen-
modes [39].

Next we wish to characterise how these TMs change with
bending. We do not expect to observe a significant memory
effect, as seen in previous work [40], because our fibre is longer
(2 m vs. <30 cm) and we are using a longer optical wave-
length (850 nm vs 530 nm) resulting in increased core-to-core
coupling. We therefore model the TMs as random variables.
First, we investigate correlations between TM elements. For 7
different bending conditions (denoted by matrices A1 · · ·A7)
we compute the cross-correlation between TM elements at row
r, column s and row t, column u as:

ξrstu =
[
ars brs · · · grs

] ·

⎡

⎢
⎢
⎣

a∗tu
...

g∗tu

·

⎤

⎥
⎥
⎦

(8)

where a denotes an element of A1, b denotes an element of A2

etc. Each TM element, e.g. ar,s, represents a coupling between
a point on the input facet (xr, yr) and a point on the output
facet at location (xs, ys). Because correlation compares pairs of
TM elements we consider a second point, (t, u) and define the
following quantities:

Δx1 = (xr − xt) Δy1 = (yr − yt)

Δx2 = (xs − xu) Δy2 = (ys − yu)
(9)

Fig. 6. Statistical properties of MCF TM under a range of bending conditions.
a) Correlation between matrix elements of the full TMs as a function of physical
separation of the input and output points. b) Parameters of Rician distribution
independently fitted to each element of downsampled TMs across 7 bending
conditions. The zoomed inset shows coupling of non-zero mean between fibre
cores (Rician fading), which appears as stripes, and zero-mean coupling between
cores and cladding (Rayleigh fading), which appears as black speckle.

S =
√

Δx2
1 +Δy21 +Δx2

2 +Δy22 (10)

For fixed input coordinates (e.g. elements ar,s and ar,u), S
simply represents the distance between output points. We might
then expect an inverse relationship between ξ and S. We next
compute S and ξ for a random subset spanning 10% of possible
TM element pairs (to reduce computational load) and observe
an inverse relationship (Figure 6a).

Correlation drops to 0.5 by S = 0.3 μm, the physical distance
mapped to adjacent camera pixels, and is comparable to the
diffraction limit of ∼λ/2 ≈ 0.42μm. This decorrelation within
a core may be due to multimodal propagation [42] or to fields
in the cladding [43]. The correlation drops further to 0.2 by
S = 1 μm, the average core radius [41], followed by a long tail
extending to 50 μm, the approximate width of the amplitude
envelope of the ideal upsampling basis (Figure 3).

The low correlation enables the TM elements to be modelled
as independent random variables. Each element is formed by
the coherent addition of light propagating via many paths so its
amplitude can be modelled by a Rician distribution, borrowed
from the concept of Rician fading in wireless communications



GORDON et al.: COHERENT IMAGING THROUGH MULTICORE FIBRES WITH APPLICATIONS IN ENDOSCOPY 5739

[44]. The Rician distribution is derived as the amplitude of a
complex circularly symmetric Gaussian distribution and has
two parameters: ν, representing the distance of the mean of the
underlying Gaussian from the origin, and σ representing the
standard deviation.

We determine maximum likelihood Rician parameters across
7 bending conditions using TMs downsampled via the process
of Figure 2. The results are shown in Figure 6b. There is a
strong diagonal element meaning that a significant amount of
light is confined or guided. This is expected because MCF forms
approximate images without correction.

Zooming in, we observe that ν exhibits significant off-
diagonal components forming a ‘streaked’ pattern (Figure 6b).
This is because the input and output sampling functions may
be centred either on a core or in the cladding. Core-core and
cladding-cladding coupling results in non-zero mean, ν, and thus
Rician fading, while core-cladding or cladding-core coupling
is more likely to have zero mean and thus Rayleigh fading
(producing the black speckle observed in Figure 6b). Just as
Rayleigh fading in radio systems is due to indirect reflections
off objects, here it is due to indirect coupling caused by bending.
This indicates that in terms of mean power coupling, core-core or
cladding-cladding modes are less sensitive to bending. However,
the Rician fading model does not specify phase and we observe
empirically that the phase of all TM elements is uniformly
distributed ∼U(0, 2π), making useful prediction difficult and
preventing the existence of truly bend-invariant modes.

F. Correcting for TM Drift

Over time the TM of the fibre will vary due to perturbations
such as bending or temperature changes. If these perturbations
can be tracked or predicted the TM can be adjusted to avoid
deteriorating image quality [35], [45]. A zero-order model tracks
the global phase over time relative to a ‘reference beam’. In
interferometric systems this entails tracking drift between the
signal and reference arms [45]. With MCF an alternative refer-
ence beam is created by projecting a constant field onto a small
set of cores (see Figure 7a and b).

A first order model tracks phase tilt, which arises due to the
memory effect that is observed when MCFs are bent very small
[40]. The tilt can be considered to arise from bending-induced
path length differences. By displaying a constant reference pat-
tern on SLM1 of Figure 1 and repeatedly imaging the field at
plane Y , a time-varying phase tilt is observed (Figure 7c).

Further insight is gained by observing the phase tilt drift under
different bending conditions (Figure 8). Bending is quantified by
averaging the absolute value of curvature over the fibre length.
Curvature is measured by fitting an osculating circle to the fibre
path traced from an image. It is noted that higher curvature is
linked with a higher rate of tilt drift, with an upper bound that is
approximately a negative exponential curve with a time constant
of the order of minutes. This is consistent with a simple heating
model (e.g. Newton’s law of cooling). We therefore hypothesise
that a small amount of light couples out of the MCF (especially
at sharp bends) and is absorbed by the protective sheath, slightly
heating it which in turn induces small differential bending. This

Fig. 7. Correcting for TM drift: a) A hologram displayed on an SLM during
fibre characterisation or imaging creates a global phase ‘reference beam’ that
stays in a fixed position. b) Experimental image showing a low-power reference
beam during a characterisation measurement. c) Experimental image showing
phase difference between two reference images recorded at different times
showing first-order drift. A first-order Zernike polynomial phase tilt is fitted,
and can be tracked with time.

Fig. 8. Drift of phase tilt with time for 11 different bending scenarios. The
upper bound seems to follow an exponential trend with a time constant of 22.8
minutes, suggesting a small thermal effect. At a tilt magnitude of ∼0.04 the
phase tilt is still relatively clear above the noise (lower inset), but above this the
phase drift becomes spatially randomised as the memory effect weakens (upper
inset).

‘micro-bending’ may fall within the memory effect range of this
fibre hence producing a phase tilt. At lower curvature the drift
of phase tilt is observed to be slower, but still with the same
general increasing trend. Further experimental investigation of
the effect of varying laser power, which is here fixed at 35 mW,
is required to fully verify this thermal drift hypothesis.

Superimposed on this exponential trend, we observe random
fluctuations with time scale of order ∼1 minute which limits the
minimum time between tracking measurements. If this time is
less than the TM characterisation time, then phase tilt correction
must be applied to each of the characterisation measurements
[8]. Failure to do so results in significant TM error and poor
image recovery (Figure 9). The relative stability of polarisation
retardance (i.e. birefringence) suggests that the cause of this drift
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Fig. 9. The effect of correcting for time-dependent phase tilt. If the TM
is reconstructed using uncorrected characterisation measurements, significant
amplitude and phase error is introduced. Polarisation information is more robust.
Scale bar: 50 μm.

in tilt is minor path length changes and that there is negligible
contribution from stress and strain [35].

If the tilt magnitude drifts above 0.04 there is significant
residual noise in the reference phase images even after cor-
recting for tilt (Figure 9). This is because bending has moved
beyond the memory effect range and has changed the TM in
an unpredictable way, requiring it to be re-measured in full.
To avoid this for most realistic bending configurations, matrix
characterisation and imaging ought to be performed within about
4 minutes, as per Figure 8.

IV. PRACTICAL IMAGING THROUGH MCFS

A. Aligning MCFs

A key advantage of MCF over MMF is that TM character-
isation in a pixel (or canonical) basis does not require precise
transverse alignment but still provides a reliable sparse repre-
sentation basis for the TM (see Section III-A). By contrast, the
Laguerre-Gauss basis that provides sparse TMs in MMF requires
extremely precise transverse alignment with the central axis of
the fibre, often to within fractions of a micron. However, MCFs
do require some alignment: first, the characterisation patterns
on the fibre facet (plane X of Figure 1) must be in focus. The
relatively high lateral confinement of light (Section III-E) means
amplitude images are approximately formed through the fibre
without correction and so can be used to evaluate focus, for
example by using a recognisable text sequence.

Next, the two polarisations much be aligned for reliable pro-
duction of elliptical polarisation states. To do this, the vertically
polarised beam is first ‘turned off’ by displaying a random
pattern on the appropriate half of SLM1 to scatter light. The
other half of SLM1 (i.e. horizontally polarised beam) displays
a blazed grating and scans the x and y pitch, which in turn
scans a spot across the distal facet. The camera measures the

Fig. 10. Aligning the horizontally and vertically polarised characterisation
beams for dual polarisation MCF characterisation. a) For each polarisation a
grating is used to scan a spot in two dimensions and the centroid of each on the
output facet is determined. b) A hyperplane is then fitted to each polarisation to
average distortion introduced by the fibre TM. This is then used to adjust the tilt
on the vertical polarisation so that it is aligned with the horizontal polarisation.

distorted spots at the other end of the MCF and the centroids
are determined (Figure 10a). A 2D plane embedded in 4D space
is then fit to the centroid positions to average out distortions
introduced by the fibre TM. The result is a precise map between
grating pitch and spatial position. We repeat the process for
the vertically polarised beam with the horizontally polarised
beam ‘turned off’, and find the relative spatial offset between
the two fitted planes. This offset is used to adjust the pitch of the
vertically polarised grating and hence align the two polarisations
(Figure 10b).

B. Parallelising Calibration Measurements

The sparse structure of MCF TMs when using a spot basis
(see Section III-D) means that separate areas of the TM can be
characterised in parallel. This is because there are rows of the
TM that have no power overlap with any other rows. Power can
also be coupled into two or more locations at the input facet that
will not produce overlap at the output facet – for example, two
spots at opposite sides of the fibre. By selecting sets of rows
for which this property holds between all pairs, a maximally
efficient parallel set of measurements can be achieved. For a
spot basis this means determining how far apart spots needs to
be spaced to avoid significant power overlap at the output.

Empirical measurement for the MCF used here leads us to
the spot array of Figure 11a. Each single physical measurement
is split into ‘virtual’ independent measurements by isolating
each spot (Figure 11b). This enables a dramatic speed-up in
experimental time – 12-fold here – and 1600 modes can be
characterised in 50.8 minutes [8]. Characterisation speed could
be improved significantly further by using high-speed digital
micromirror devices (DMDs) instead of liquid crystal spatial
light modulators [2], [46].

When using measured input and output fields to reconstruct
the TM, sparsity can be further exploited by noting that most
elements of any given column of the TM will be zero and
can be excluded from calculations, thus reducing computational
requirements (Figure 11c).
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Fig. 11. Exploiting sparsity to parallelise TM characterisation: a) Using an
array of spots spaced sufficiently far apart that the output fields do not overlap.
b) After measurement, the data can be masked to split each single measurement
into several effective measurments (12 in this case). c) If reconstructing the
inverse TM (A−1) column by column, only rows within the specificed subregion
for a given input (which is different for every input/column of A−1) will be
non-zero – the rest can be excluded from calculations. Adapted from [8].

Such parallelisation is possible in other systems that exhibit
sparsity, for example a MMF with a Laguerre-Gauss basis. In
the MMF case, however, the strong axial symmetry means that
precise alignment is required to achieve parallelisation making
it practically difficult. Further, a large pre-generated library of
holograms is required whereas here we simply need to generate
different blazed gratings [47].

C. Non-Interferometric Phase Recovery

Much fibre characterisation and imaging work uses interfer-
ometry to determine phase from camera measurements [15],
[23]. This approach is fast but requires high coherence lasers,
ruling out most low-cost diode lasers, and is very sensitive to
drift, thermal fluctuations and vibrations [40].

Non-interferometric phase imaging (or phase retrieval) pro-
vides greater stability and permits less coherent lasers at the
expense of increased experimental and computational time.
The experimental set-up of Figure 1 uses a non-interferometric
method that involves generating a through-focus stack of images
at many different focal planes. This is achieved by displaying
a parabolic phase mask on one half of SLM2 (representing
one polarisation) that defocusses the beam [8], [48], shown in
Figure 12a. The other half of SLM2 displays a random hologram
to scatter light, effectively deactivating the other polarisation. An
iterative algorithm then simulates optical propagation between
the focal planes using Fresnel diffraction and constrains the
amplitude at each plane. After typically 200 iterations, this
converges to the desired phase profile [49].

Fig. 12. Non-interferometric imaging of amplitude, phase and polarisation.
a) A parabolic phase mask displayed on the horizontally polarised half of
SLM2 is used to generate defocussed images of the object on the camera.
7 different parabolic masks are used to generate a through-focus stack, from
which phase is recovered using an iterative algorithm [49]. b) Phase stepping
the vertically polarised half of SLM2 and interfering it with the horizontally
polarised image via a 45◦ polariser enables phase-shift interferometry between
the two polarisations.

To measure the full polarisation state, both halves of SLM2
are enabled and are interfered on the camera via a 45◦ polariser.
One half of SLM2 is then stepped through different phase levels
from 0 to 2π, effectively performing phase-shift interferometry.
A curve is fit to the amplitude sequence at each pixel giving
the relative amplitude and phase of the second polarisation
(Figure 12b).

V. APPLICATIONS

A. Measurement of Polarimetric Parameters

Polarimetric imaging measures how objects alter the polar-
isation state of incident light. Applications include examining
molecular structure, e.g. chiral molecules like glucose [50], and
quantifying optical heterogeneity for detecting diseases such as
cancer [8], [51]. Polarimetric data is typically represented using
either the Mueller-Stokes formalism or the Jones formalism,
although with temporally and spatially coherent light, as is the
case here, the two become equivalent [52].

The Jones formalism is a special case of the dual-polarisation
transmission/reflection matrix formalism presented in Equation
(1) where light couples only between polarisations and not
spatial locations. This gives a 2× 2 matrix at each point (termed
a Jones matrix) that relates a 2D input field vector to a 2D output
field vector (termed Jones vectors). We must create at least
2 distinct Jones vectors incident on the sample and measure
the associated Jones vectors after transmission to unambigu-
ously determine the Jones matrix at a point on the sample. At
some location on the sample, (x, y), consider n output Jones
vectors, Vx,y = [v1(x, y) · · ·vn(x, y)], arising from n distinct
input Jones vectors, Ux,y = [u1(x, y) · · ·un(x, y)]. The 2 × 2
complex Jones matrix, Jx,y , can be determined through:

Vx,y = Jx,yUx,y ⇒ Jx,y = Vx,yU
†
x,y (11)



5742 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 37, NO. 22, NOVEMBER 15, 2019

Fig. 13. Polarimetric imaging through MCF: a) A 5-parameter model com-
prising an elliptical polariser with parameters of retardance (η), retardance
axis orientation (θη) and circularity (ξ), followed by a partial polariser with
parameters of diattenuation (D) and diattenuation axis orientation (θD).
b) Experimental results showing polarimetric imaging through MCF (Figure 1)
of a birefrigent test target (R2L2S1B, Thorlabs). Parameters were extracted from
raw data via Bayesian inference in the STAN package [55] using the model of
Equation 16. Scale bar: 100 μm (Figure adapted from [8]).

where † indicates a Moore-Penrose pseudoinverse. The mul-
tiple distinct input Jones vectors could be generated either
through a separate fibre, e.g. a polarisation maintaining fibre
[53], or by illumination through selected cores of the MCF
[54], though the latter may require advance knowledge of the
fibre TM.

The Jones matrix can be further factorised to produce more
easily interpretable parameters. This requires defining a model
and fitting data to it – here, we use a model of an elliptical
retarder followed by a partial polariser (Figure 13a).

Factorising Jx,y in terms of these two components gives:

Jx,y = ApolAret (12)

Apol = (R(θD))−1

(√
1 +D 0

0
√
1−D

)

R(θD) (13)

Aret =

(
1 0
0 eiξ

)

(R(θη))
−1

(
eiη/2 0
0 e−iη/2

)

·R(θη)

(
1 0
0 e−iξ

)

(14)

where R(θ) is a rotation matrix and the 5 resolved polarimetric
parameters are diattenuation, D, diattenuation axis orientation,
θD, retarder circularity, ξ, retardance, η, and retardance axis
orientation, θη with the following ranges:

θη, θD ∈ (−π/2, π/2], η, ξ ∈ (−π, π], D ∈ [−1, 1] (15)

For each set of parameters, there is a 7-fold degeneracy and
so for display purposes the degenerate set closest to some fixed
point is used [8]. We perform this factorisation using Bayesian
inference due its robustness to noise and overfitting [56]. We first
apply Bayes’ theorem to model the joint probability distribution
of parameters (θθθ = [D, θD, ξ, η, θη]) at location (x, y) condi-
tional on the known input and measured output Jones vectors,
termed the posterior distribution:

p [θθθ|Ux,y,Vx,y ] ∝ p [Vx,y = Jx,y(θθθ)Ux,y] · p(θθθ) (16)

The elements of Vx,y , denoted vab(x, y), represent measured
complex quantities and are assumed to be independently dis-
tributed complex Gaussian variables (see Section III-E):

vab(x, y) ∼ CN [

Jx,y(θθθ)uab(x, y), σ
2I
]

(17)

where uab(x, y) is element (a, b) of Ux,y , σ2I is the covariance
matrix, and CN (μ,Σ) is a 2-D complex Gaussian distribution
of mean μ and covariance Σ. σ, the noise standard deviation,
can be inferred from the data along with the other parame-
ters. This enables evaluation of the first term of the RHS of
Equation 16.

The second term, p(θθθ) represents the prior distributions
of parameters, which we will assume are independently dis-
tributed (i.e. p(D, θD, η, θη, ξ) = p(D)p(θD)p(η)p(θη)p(ξ)).
Joint prior distributions could be derived using more restrictive
physical models or empirical methods such as copulas. The prior
distributions could be uniform distributions across the parameter
ranges of Equation (15), giving broad uninformative priors.
However, more restrictive priors based on physical intuition
improve results: for example, biological samples rarely exhibit
high degrees of linear diattenuation [57] so our prior forD would
have a peak at zero. Phase values require a circular distribution:
here we use the von Mises distribution, which can be made more
restrictive using a non-zero κ value.

With the priors selected to suit the application, parameters
are estimated from Equation (16) either via optimisation (to
find maximum likelihood), or Monte-Carlo simulations (to ex-
amine parameter distributions). Figure 13b shows Bayesian
polarimetric imaging of a birefringent test target (R2L2S1B,
Thorlabs) through an MCF using the experimental set-up of
Figure 1 with a spatial resolution of 36.0 ± 10.4 μm (adapted
from [8]). The target should have a background θη = 0 and
a foreground θη = π/4 ≈ 0.78, but the measured mean θη is
slightly lower at 0.65. This discrepancy may arise because the
target is used outside the design wavelength range, resulting
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in different behaviour of the birefringent polymer. The grid-like
artefacts arise from the slightly non-uniform illumination within
each single frame becoming pronounced when multiple single
frames are stitched together as the target is translated. More
details of the experimental set-up, as well as validation of
additional polarimetric properties can be found in [8].

Though we select a particular physical model to fit here,
the Bayesian approach can actually compare many different
possible models by evaluating their likelihoods, a process called
Bayesian model selection. The approach is easily extended to
consider the joint probabilities with neighbouring pixels and
perform spatial smoothing (see [8] for further detail).

B. Entropic Imaging for Tissue Analysis

Another emerging application of imaging through MCF fibres
is imaging spatial entropy. This represents a measure of the
variation of some parameter across a surface and has proved
useful in identifying amorphous structures arising in diseased
tissue [58]–[60].

Coherent imaging through MCF provides multiple parameters
for which entropy could be computed either individually or
jointly: amplitude, phase and inferred polarimetric properties.
Spatial entropy can be computed approximately by a windowed
filtering process: values within the filter window are binned and
the resulting histogram integrated to compute entropy [61]. This
has the downside that selecting the appropriate binning level
can significantly affect results, a problem that grows signifi-
cantly worse when estimating joint entropy between multiple
parameters.

Alternatively, we can consider the Kullback-Leibler diver-
gence, which measures the similarity of probability distributions
P and Q with density functions p(x) and q(x) (the 1-D case)
respectively:

DKL(P ||Q) =

∫ ∞

−∞
p(x) log

p(x)

q(x)
dx (18)

Setting Q to be a uniform distribution, DKL(P ||Q) becomes
a measure of how ‘spread out’ the distribution P is termed the
differential entropy, H:

H = −
∫ ∞

−∞
p(x) log p(x)dx (19)

This measure can be extended to multivariate distributions,
p(x1, . . . , xm), simply by integrating over the additional vari-
ables. We then compute spatial entropy by fitting a multivariate
distribution the desired parameters within a spatial window and
computing entropy via Equation (19). Figure 14 shows how
imaging of phase entropy through MCF can be used to detect
small tumours in tissue due to increased light scattering (adapted
from [8]). The spatial resolution is of the order of 100 μm due
to the spatial windowing required for entropy, and the precision
of phase entropy is ∼±20%.

Fig. 14. Using images of entropy measured through MCF (via the experimen-
tal set-up of Figure 1 to identify small tumours (lesion) in mouse oesophageal
tissue. The fluorescence images provide a reference that confirms the increased
density of cell nucleii indicative of tumours. The amplitude entropy images
show relatively little contrast but the phase entropy images indicate increased
light scattering arising from the disordered microstructure of tumour tissue.
Scale bar: 400 μm. Figure adapted from [8].

VI. CONCLUSION

In this paper we presented new empirical results useful for
imaging through MCF. We first presented a new method of de-
termining appropriate upsampling and downsampling schemes
for experimentally measured non-square matrices and used this
approach to, for the first time, experimentally determine the
eigenmodes of an MCF. Next, we presented a novel statis-
tical analysis examining the effects of bending on MCF in-
spired by wireless fading models. We experimentally observed
bending-dependent TM drift, conjectured to be produced by
a self-heating effect, and discussed strategies to compensate.
Three important practical techniques for enabling MCF imaging
were then discussed: alignment, parallelisation of transmission
matrix characterisation, which offers greatly improved speed,
and non-interferometric phase recovery, which offers improved
stability. Finally we discussed two recent applications of MCF
imaging: polarimetric imaging using a Bayesian inference ap-
proach to compensate noise, and entropic imaging for examining
light scattering properties of samples with applications to cancer
imaging.

The range of biomedical imaging techniques demonstrated
through MCF continues to expand. Implementing these in a very
thin form factor is a significant step towards minimally inva-
sive in vivo biomedical imaging, as early experiments in mice
brains have demonstrated [1]–[3]. To develop these techniques
towards clinical translation, two key challenges remain. First,
fibre TM characterisation must be fast enough to compensate
dynamic bending and temperature-induced fibre distortions in
vivo and allow imaging at several frames per second. Some
progress towards this has been achieved with high-speed digital
micro-mirror devices (frame rates >22 kHz) and high speed
cameras [2], [46]. The second, more fundamental problem is
the need to precisely measure the dynamic effect of bending and
temperature on the TM during use and without compromising
the ultra-thin form factor. One proposed method is to adjust a
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pre-measured TM using precise modelling of bent MMF [35]
but in the case of MCF with randomised and complex refractive
index profiles, precise modelling is likely infeasible. Guide star
approaches provide another option but may compromise the
ultra-thin form factor by adding bulk at the distal facet [62],
[63]. A recently proposed approach aims to overcome this by
exploiting a compact reflector structure at the distal facet [64],
though experimental implementation remains to be achieved.
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