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Abstract—Accurate optical monitors are critical for automating
operations of fiber-optic networks. Deep neural network (DNN)
based optical monitors have been investigated as accurate optical
monitors to leverage a large amount of data obtained from fiber-
optic networks. Although DNN-based optical monitors have been
trained and tested to ensure the given accuracy criteria, this does
not ensure sufficient accuracy under unexpected conditions, that
is, out of test conditions, e.g., a newly developed modulation for-
mat that is not included in the test dataset. Thus, it is necessary to
prepare a monitor to assess the current accuracy of a DNN-based
optical monitor’s output for robust automation of networks. We
present a DNN-based optical monitor that simultaneously outputs
an optical signal-to-noise ratio and its uncertainty information us-
ing a dropout method at the inference phase. This monitor was
evaluated in cases in which the DNNs were trained with either a
limited number of records or partially missing records in a train-
ing dataset. The proposed monitor successfully informed that own
output has large uncertainties due to a limited amount of training
data or a missing part in training dataset. Additionally, to improve
an accuracy of estimated uncertainty, the number of partial neural
networks by dropout at the inference phase was optimized. This
is a valuable step toward designing robust “self-driving” optical
networks.

Index Terms—Coherent detection, deep neural networks, optical
fiber communication, optical monitoring.

I. INTRODUCTION

MACHINE-LEARNING-BASED optical monitoring [1],
which can learn a mapping between the optical-fiber-

channel parameters and the properties of the detected signal
at the receiver, is vital to automate network operations and
managements in future optical fiber communications [2], [3].
Figure 1 shows a schematic diagram of network automation
based on such optical monitoring, which is able to perceive a
real-time optical physical state and feed the information back
to the network controller. On the network controller, a work-
flow enabling a decision-making based on the optical-monitor
results is carried out, e.g., adjusting launch power, varying the
adopted modulation format, and re-routing light-paths. Here
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Fig. 1. High-level concept of optical network automation assisted by optical
monitor providing self-confidence information. NW: network.

the decision-making in the workflow relies on measured values
from the optical monitor, such as the optical signal-to-noise ratio
(OSNR).

Considering practical situations, a measurement process in
an optical monitor often produces an error that is difference be-
tween a monitored output and a true value. Thus, the automated
workflow based on the monitor results may result in sub-optimal
operation and/or an unexpected side-effect due to the error. To
assess this risk, it is necessary to determine the uncertainty of
the measured value from the optical monitor, which is the basis
of the decision in the workflow. Workflows are automatically
processed based on the monitored results without human inter-
vention in normal cases. If the uncertainty of the monitor output
is higher than a given threshold, the automated process should
be stopped and all the monitored results should be passed to a
human operator for better decision-making.

From the viewpoint of an optical monitor providing uncer-
tainty information, there have been many investigations on shal-
low and deep neural network (DNN)-based optical monitors for
accurate estimation but point-estimated values without model
uncertainty. With various pre-process to extract features that are
fed into a neural network, relatively simple neural networks have
been proposed and investigated [4]–[10] to estimate various
physical parameters such as the OSNR, chromatic dispersion
(CD), polarization mode dispersion (PMD), and nonlinearity.
To overcome manually provided pre-process to extract features,
the use of more layers that act as automatic feature extractors by
representation learning, i.e., using DNNs, has been investigated
[11]–[17]. A DNN-based optical monitor that can skip man-
ual feature engineering still only provides point estimations and
cannot provide model uncertainty (or “confidence” in a model’s
output).
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Fig. 2. Schematic diagram of deep neural network (DNN)-based optical
monitor.

Besides neural networks, Gaussian process regression [18],
[19] (GPR) is also used as another tool to enable optical mon-
itoring. GPRs are mathematically grounded tools to determine
model uncertainty. This is a powerful alternative to an optical
monitor providing uncertainty information [20], [21]; however,
there is an issue with GPRs in that there is computational com-
plexity at the inference phase with a large amount of training
data points. This is further discussed in Section II.C.

To overcome the above limitations, we previously presented
an enhanced DNN-based OSNR monitor to output not only
point-estimated OSNR but also predicted model uncertainty as
auxiliary output [22]. This is enabled by random dropout of
a trained DNN’s neurons at the inference phase [23]. Unlike
GPRs, the computation complexity of DNN with dropout at
the inference phase does not depend on the number of training
data points. Thus it is suitable to a situation characterized by an
enormous number of available training data points.

In this study, we extended this work [22] by optimizing the
number of partial DNNs generated in dropout at the inference
phase to minimize the fluctuation in the predicted model uncer-
tainties. We discuss the pros and cons of this extended DNN-
based optical monitor by comparing DNN/dropout with a GPR.
We also experimentally evaluated the model uncertainty pre-
dicted with this extended DNN-based monitor in two cases:
a limited number of points and partially missing points in a
training dataset. The evaluation results for the predicted model
uncertainties correlated with actual uncertainties that were the
standard deviation of point-estimated OSNR values.

The paper is organized as follows. In Section II, we
presents our extended DNN-based optical monitor providing
self-confidence as auxiliary output by using dropout at the
DNN’s inference phase. In Section III, we presents the ex-
perimental setup and DNN used in this study. After present-
ing the experimental results and accompanying discussion in
Section IV, we conclude in Section V with a brief summary.

II. DNN-BASED OPTICAL MONITOR WITH

UNCERTAINTY INFORMATION

A. Deep Neural Network-Based Optical Monitor

Figure 2 illustrates a schematic diagram of the DNN-based
optical monitor [15]. A DNN-based optical monitor, which is
composed of an off-the-shelf digital coherent receiver as a mea-
surement component and a DNN as a processing component, is
used to extract useful information for human network operators
and/or network control programs.

Fig. 3. Schematic diagrams of dropout at inference.

The digital coherent receiver measures an incoming optical
signal and captures the waveform corresponding to the in-phase
and quadrature phase of both horizontal and vertical polariza-
tion of the signal. The measured waveform data contain all
information of the received optical field within the receiver
bandwidth. Note that this measurement component can pro-
vide an enormous amount of data necessary for training DNNs
thanks to the high-speed sampling rate (typically several dozen
GSa/s) of analog-to-digital converters (ADCs) in the coherent
receiver.

The processing component is used by the DNN that provides
flexibility and versatility for processing. The DNN can program
itself through its training phase and has the potential for versa-
tile transformation to extract the value that corresponds to any
waveform distortion embedded in the signal received from co-
herent reception. Thus, a DNN-based optical monitor has the
potential to estimate many types of transmission impairments
that are not only OSNR but also other physical impairments
such as CD and PMD, which is unexpected in the design stage
but needed later, from a measured dataset.

B. Auxiliary Output for Uncertainty Information

In our previous study [22], we enhanced the DNN-based
optical monitor with auxiliary output that returns a result that
provides the confidence level of the main monitored result. The
key to developing such a monitor is using dropout in the DNN
of the optical monitor. Standard dropout [24], [25] is widely
used in training a DNN to avoid overfitting. Standard dropout
samples a partial DNN from a full DNN by probabilistically
deleting the full DNN’s nodes with a probability of p for every
input point and every forward and backward pass through the
model training. At the inference phase, we use all nodes scaled
by 1/(1 − p). Standard dropout can improve the performance of
a DNN but only provides point estimation results.

To predict model uncertainty as well as point estimation,
dropout must be used at the inference phase, as shown in
Fig. 3. This method for obtaining information on uncertainty
from trained DNN models was proposed and developed by Gal
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TABLE I
COMPARISON DNN/DROPOUT WITH GP

†number of training data points ‡number of neurons

et al. [23]. Their method [23] for predicting model uncertainty
performs an N-times forward pass through a DNN with dropout
at the inference phase. Note that the scaling of 1/(1 − p) is not
used in this inference. The N results generated from N stochas-
tic partial networks from dropout are averaged to predict the
point-estimation results. To predict uncertainty, we collect the
N results and take their standard deviation.

Using dropout at the inference phase can extract uncertainty
information from existing trained DNNs without changing those
DNNs. We introduce dropout at inference to DNN-based optical
monitors so that they can provide both point-estimated monitor-
ing results and their uncertainties.

C. Comparison of DNN/Dropout With GPR

In this section, we discuss and compare DNN with dropout
at the inference phase described in the previous section with
another method that is more established to treat uncertainty, i.e.,
a GPR [18], [19]. A standard DNN is a parametric model, which
is a nonlinear mapping y = f(x,w) from input x to output y
that is governed by a weight vector w of adaptive parameters
[24]. During the learning phase, a set of training data is used to
obtain a point estimate of the parameter vector. Once the training
is complete, the training data are discarded and predictions for
new inputs are based on the learned w. On the other hand, a GPR
is a class of machine learning methods in which the training
data points are kept and used also during the inference phase. A
GPR is a non-parametric and probabilistic method of machine
learning, which measures the similarity between training data
points as the kernel function to predict the value for an unknown
test point. Note that GPRs can naturally provide not only point-
estimates but also a model’s uncertainty information thanks to
these probabilistic properties. This is a significant advantage
of GPRs for our current objective, i.e., to obtain uncertainty
information of model output.

Table I is a summary of the pros and cons of the two meth-
ods (GPR and DNN with dropout at the inference phase) to
obtain uncertainty information of model output. Naturally, both
methods support uncertainty output. Thanks to the Bayesian
approach, a GPR is free from overfitting. On the other hand,
we still have to be concerned with overfitting with DNNs, al-
though it has been proved that simple learning algorithms such
as stochastic gradient descent (SGD) [24] are guaranteed to find

global minima on the training objective of DNNs in polynomial
time according to latest research [26]. This result may relax our
concern regarding overfitting on over-parameterized DNNs.

One of the possible issues with using a GPR is the need to
construct valid kernel functions specialized for each specific
task. For the application considered in this paper, valid kernel
functions, which include the similarity of any two inputs that
correspond to two of HI, HQ, VI, and VQ at different OSNRs, is
not clear (note that H, V, I, and Q respectively represent horizon-
tal and vertical polarizations and the in-phase and quadrature-
phase components of an optical field). Thus it is difficult to find
valid kernel functions specialized for this task. Although this is
still a practicality issue, from a mathematical viewpoint, recent
research [27] suggests a possible solution through emulating
a DNN with any activation function (e.g., rectified linear unit
(ReLU) [28]) by using a GPR with a specific kernel function.
This research revealed that an equivalence between infinitely
wide ‘deep’ neural networks and GPs, expanding well-known
previous results of a single-layer neural network [19].

From a practical viewpoint, a major drawback of a GPR is that
the required computational complexity at the inference phase
depends on the number of training data points. This hinders the
application of GPRs for many domains characterized by large
training data sets. Traditionally in a GPR, it is likely difficult
to calculate a large data set that contains over a few thousand
data points even with various approximation techniques. On the
other hand, the required computational complexity of DNNs
at the inference phase does not depend on the number of the
training data points, but mainly depends on the number of their
neurons. In other words, GPRs are suitable for a case with a small
number of data points; in contrast, DNNs have an advantage for
cases with a large number of data points.

In our current application, i.e., optical monitoring at a digital
coherent transceiver, available computational resource for in-
ference a trained model should be restricted. Nevertheless, the
number of measurable data points (i.e., the available number of
training data points) might be enormous thanks to high-speed
ADCs on the digital coherent transceiver. This may justify the
use DNN/dropout to evaluate the uncertainty of model output in
this specific case. Moreover, when we assumed that DNN-based
optical monitors that were trained to output point-estimates
have already been deployed over fiber-optic networks, we can
reuse the existing DNN-based optical monitors for obtaining the
uncertainty information without re-training of the DNN-based
monitors. This enables the continuous update of a monitoring
framework of fiber-optic networks without additional effort such
as either replacement or re-training of monitors.

III. DEEP NEURAL NETWORK AND EXPERIMENTAL SETUP

A. Deep Neural Network Used in This Study

Figure 4 shows the DNN used in this study. The input for the
DNN has four channelized electric fields in the digital coherent
receiver: 512 samples × 4 channels to each HI, HQ, VI, and
VQ sampled and digitized by the receiver. We convolved these
time-series data over the time axis in the convolutional (conv.)
layers, i.e., 1D convolution with trainable filter weights. We used
multiple filters for these convolutional layers; thus, the number
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Fig. 4. DNN used in this study.

Fig. 5. Experimental and simulation setup. InP IQM: indium phosphide in-
phase and quadrature-phase modulator, LD: laser diode, EDFA: erbium doped
fiber amplifier, VOA: variable optical attenuator, ASE: amplified spontaneous
emission source, OBPF: optical band-pass filter.

of output and input channels differed through each layer. All
convolutional layers had the activation function of an ReLU
[28]. The pooling layers used max pooling with strides of 2.
These layers reduced the length of data by half, e.g., from 512 to
256. The data were flattened before the first fully connected (FC)
layer, going from 64 samples × 32 channels to 2048 samples, as
shown in Fig. 4. The flattened data were served to the FC layers.
In FCs 1 and 2, dropout (p = 0.5) was used at both training and
inference phase. For output, linear regression was used in FC 3.
A batch normalization technique [29] was also used to prevent
overfitting.

The DNN was trained with supervised learning with a back-
propagation and mini-batch SGD algorithm with a controlled
learning rate by using the Adam optimizer [30] with the Ten-
sorFlow library [31]. The losses intended to be minimized were
defined as the mean squared error.

B. Experimental Setup

Figure 5 shows the experimental setup. At the transmitter, an
external cavity laser (∼25 kHz linewidth) was used as a light
source for the channel at 193.3 THz. An Indium Phosphide DP-
IQ-modulator was driven by the drive signals generated by a
four-channel digital-to-analogue converter (DAC) with a sam-
pling rate of 64 Gsample/sec and physical resolution of 8 bits.
The DAC generated Nyquist-filtered (roll-off factor = 0.01)
16-Gbaud (GBd) dual-polarization quadrature phase shift

Fig. 6. Actual and predicted model uncertainty as a function of number of
records in training datasets.

keying (DP-QPSK) signals with pilot CW tones for carrier
recovery (details of the transceiver digital signal processing
(DSP) are given in a previous study [32]). The modulated sig-
nal was sent to an erbium-doped fiber amplifier, and additional
amplified spontaneous emission noise was loaded to vary the
received OSNR from 11 to 30 dB. The actual received OSNR
was measured using an optical spectrum analyzer (OSA) and
used as the desired DNN output in the training (this information
is not necessary at the test/inference phase).

At the receiver, the local oscillator (∼25 kHz linewidth) was
superimposed with the signal in a polarization-diversity optical
90° hybrid. The outputs of the hybrid were connected to four
balanced photo-detectors. The resulting signals were digitized
using four ADCs with a sample rate of 80 Gsample/sec. The
digital samples were processed in an offline manner with a
desktop computer equipped with 512-GByte memory, 2.2-GHz
Intel Xeon E5 CPUs, and an Nvidia Tesla P100 GPU. Note that
the DP-QPSK signals were modulated by different random bit
sequences generated using the Mersenne Twister method with a
different seed for each training and test/inference of the DNN to
avoid an over-fitted evaluation. We confirmed correct reception
of data by evaluating the bit error rate after demodulation DSP
(not shown in this Fig. 5).

IV. RESULTS AND DISCUSSION

First, we investigated the relationship between the actual
standard deviation of point-estimated outputs and predicted
model uncertainties. To generate different DNN models, DNNs
were trained with datasets having different numbers of records:
10,000, 50,000, 100,000, 300,000, and 375,700. At the infer-
ence phase, we generated 200 partial networks to obtain one
point-estimated OSNR and one piece of uncertainty informa-
tion. The actual standard deviation of point-estimated DNN
outputs, which was calculated using the 10,000 pieces of test
data including different OSNRs from 11 to 30 dB, was in-
creased while decreasing the number of records in the training
datasets. Figure 6 shows predicted model uncertainties and the
actual standard deviation of the point-estimated outputs of our
extended DNN-based OSNR monitor.

The predicted model uncertainty correlated with the actual
uncertainty that was the standard deviation. Thus, in possible
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Fig. 7. Actual OSNRs vs. DNN-estimated OSNRs (upper) and predicted
model uncertainties (lower) from DNN trained with (a) full and (b) partial
dataset, N = 2.

use cases, the monitor could output high model uncertainty, i.e.,
a low confidence level in its output, to a network controller when
the monitor output has large variance due to a limited amount
of training data.

Next we investigated the model uncertainty with a lack of
certain training data. To highlight the effect of this, we prepared
artificial training datasets; data with OSNR of 17, 18, and 19 dB
were deleted in the complete training dataset. To keep the total
number the same, i.e., 375,700 records, the number of records
of the other data (w.r.t. OSNR = 11–16 and 20–30 dB) was
increased instead of that of the deleted data. After training the
DNN by this “partial dataset” or the reference dataset having
full data, we evaluated bias errors and standard deviations of the
point-estimated outputs by using the trained DNNs.

To investigate the effect of N, i.e., the number of partial neu-
ral networks generated by the dropout at inference, we car-
ried out inference of the trained DNNs with N = 2. The upper
graphs in Figs. 7(a) and (b) show DNN-estimated OSNRs (i.e.,
point-estimated results) as a function of actual OSNRs for full
and partial datasets, respectively. The whiskers on the point-
estimated OSNRs show the standard deviation over multiple
point-estimated OSNRs for different incoming signals. A lack
of training data led to an increase in the standard deviation of
DNN-estimated OSNRs (see points at OSNR of 17, 18, and
19 dB in the upper-right graph).

The lower graphs in Figs. 7(a) and (b) show predicted uncer-
tainties (i.e., auxiliary channel outputs) from each DNN trained
with the full or the partial dataset, respectively. The dropout
at the inference phase successfully predicted the deviations of
estimated OSNRs, as shown in the lower-right graph. The mean
values of predicted uncertainties increased from 17 to 19 dB due
to a lack of corresponding training data. The whiskers on the
predicted uncertainties show the standard deviation over mul-
tiple outputs of the auxiliary channel (predicted uncertainties).
Even with N = 2, the predicted uncertainty correlated with the
actual standard deviation; however, the observed values of the
predicted model uncertainty had a large variance. This large
variance may introduce a risk that misleads decision-making in
the field.

Fig. 8. Actual OSNRs vs. DNN-estimated OSNRs (upper) and predicted
model uncertainties (lower) from DNN trained with (a) full and (b) partial
dataset, N = 500.

Fig. 9. Normalized standard deviation of predicted uncertainties as a function
of number of partial DNNs at inference.

To mitigate this risk through reducing the fluctuation in pre-
dicted uncertainty by a DNN, we evaluated the fluctuation de-
pendency against N. Figures 8(a) and (b) show DNN-estimated
OSNRs as a function of actual OSNRs and show predicted un-
certainties by each DNN trained with the full and partial dataset,
respectively. We conducted inference of the trained DNNs with
N = 500. While the mean values of predicted uncertainties also
increased from an OSNR of 17 to 19 dB due to a lack of corre-
sponding training data, it was observed to reduce the whiskers
of predicted uncertainties (i.e., reducing the fluctuation in pre-
dicted model uncertainties) on both the DNNs trained with the
full and partial datasets.

An increased N means that more randomly generated partial
DNNs are used to predict uncertainty at inference. This suggests
that we (possibly) use a more diverse ensemble of partial neu-
ral networks to estimate both OSNR and its uncertainty. This
may be the reason we can reduce the fluctuation in predicted
uncertainties with N = 500, compared with N = 2.

For detailed investigation of the fluctuation reduction, we
focused on two cases: (1) high uncertainty corresponding to an
OSNR of 18 dB and (2) low uncertainty corresponding to an
OSNR of 23 dB in the DNN trained with the partial dataset.
Figure 9 shows the standard deviation of predicted uncertainties
normalized by the mean value of predicted uncertainties for
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Fig. 10. Histograms of predicted uncertainties at high uncertainty (OSNR:
18 dB) and low uncertainty case (OSNR: 23 dB) for (a) row auxiliary channel
output and (b) after 10-times averaging.

each OSNR. This graph shows that the fluctuation in predicted
uncertainty decreased with an increase in N, and the reduction
might be saturated around N = 200 for the high uncertainty case.

For a more detailed investigation, we analyzed the distribu-
tion of the predicted model uncertainty at an OSNR of 18 dB
(high uncertainty case) and 23 dB (low uncertainty case). In
this analysis, N was fixed at 200, as discussed in the previ-
ous paragraph. As shown in Fig. 10(a), we observed “long-tail”
characteristics on the distribution of the predicted uncertainties
for the high-uncertainty case. In other words, even by opti-
mizing N, the observed values for predicted model uncertainty
had a large variance. Unfortunately, there is still some risk in
under/overestimating them. To solve this problem, we can sim-
ply delete this long-tail by averaging predicted uncertainties.
Figure 10(b) shows a histogram of predicted uncertainties after
10-times averaging. The averaging mitigated the underestima-
tion of predicted uncertainty and enabled the distinguishing of
the high-uncertainty case from the low one.

V. CONCLUSION

We presented a deep neural network-based optical monitor
that outputs both the optical signal-to-noise ratio and its con-
fidence level at the same time by using dropout at the infer-
ence phase. The monitor was experimentally investigated with
partially missing data and a limited number of training-data
cases. By optimizing the number of partial neural networks at
the inference phase and averaging, we distinguished the high-
uncertainty case from the low one.
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