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Abstract—We review probabilistic constellation shaping (PCS),
which has been a key enabler for several recent record-setting op-
tical fiber communications experiments. PCS provides both fine-
grained rate adaptability and energy efficiency (sensitivity) gains.
We discuss the reasons for the fundamentally better performance of
PCS over other constellation shaping techniques that also achieve
rate adaptability, such as time-division hybrid modulation, and ex-
amine in detail the impact of sub-optimum shaping and forward
error correction (FEC) on PCS systems. As performance metrics
for systems with PCS, we compare information-theoretic measures
such as mutual information (MI), generalized MI (GMI), and nor-
malized GMI, which enable optimization and quantification of the
information rate (IR) that can be achieved by PCS and FEC. We
derive the optimal parameters of PCS and FEC that maximize the
IR for both ideal and non-ideal PCS and FEC. To avoid plausi-
ble pitfalls in practice, we carefully revisit key assumptions that
are typically made for ideal PCS and FEC systems.

Index Terms—Modulation, optical fiber communication, proba-
bilistic constellation shaping, quadrature amplitude modulation.

I. INTRODUCTION

I T HAS been known since 1948 when information theory was
first established in Shannon’s seminal paper [1] that a contin-

uous Gaussian source distribution achieves the capacity of the
additive white Gaussian noise (AWGN) channel when ideal for-
ward error correction (FEC) is assumed. Between the late 1980s
and the early 1990s, many studies developed discrete modula-
tion techniques to mimic continuous Gaussian signaling, com-
monly referred to as constellation shaping [2]–[6]. Constellation
shaping, however, did not find broad applications, except for the
V.34 voice band modem over telephone lines that was standard-
ized by the International Telecommunications Union (ITU) in
1994 [7]. While constellation shaping attempts to approach the
Shannon limit from a modulation perspective, approaching the
Shannon limit from a coding perspective saw a new wave of
substantial progress with the invention of turbo codes in 1993
[8]. The success of turbo codes led to the rediscovery of low-
density parity-check (LDPC) codes [9]–[11], which reduced
the coding gap to the (modulation-constrained) Shannon limit
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Fig. 1. (a) Geometric and (b) probabilistic constellation shaping.

to within tenths of a decibel. Remarkably, capacity-approaching
soft-decision (SD) FEC codes have a good structure for low-cost
parallel application-specific integrated circuit (ASIC) imple-
mentation, and have hence been adopted as a quasi-standard
in almost every field of communications [12]–[18]. A tremen-
dous amount of research has been published in the golden era of
FEC since 1993, and research on constellation shaping was rel-
atively unpopular except for a small number of isolated papers,
e.g., [19]–[25]. This may be partly because the shaping gain
relative to a square quadrature amplitude modulated (QAM)
constellation is fundamentally limited to ∼1.53 dB, while the
coding gain with modern SD FEC codes easily reaches 10 dB
at a bit error ratio (BER) of 10−15 , and partly because there
was no effective method to implement capacity-approaching
constellation shaping up until very recently.

In the context of optical communications, geometric constel-
lation shaping (GCS) in the form of multi-ring constellations
was used to estimate the Shannon limit of the nonlinear optical
fiber channel [26], and in the form of iterative polar modulation
(IPM) to achieve experimental spectral efficiency (SE) records
[27], [28]. Using GCS, the location of the constellation points
in the complex plane is arranged to approximate a Gaussian
distribution, cf. Fig. 1(a). However, GCS has some serious prac-
tical disadvantages that have prevented its commercialization:
(i) there is no simple solution to finding locations of the GCS
constellation points for arbitrary channel conditions; (ii) the ir-
regular constellation points of GCS increase the complexity of
coherent digital signal processing (DSP) for robust signal re-
covery prior to decoding; and (iii) the general infeasibility of
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Fig. 2. Architectures for PCS.

Gray mapping increases the complexity of demapping symbols
to soft-decision bit metrics.

It is only four years ago that constellation shaping began to
attract significant attention, both in research and in rapidly fol-
lowing productization, in the form of probabilistic constellation
shaping (PCS), which shapes the probability of occurrence of
the constellation points rather than their locations to approxi-
mate Gaussian signaling, as shown in Fig. 1(b). In contrast to
GCS, (i) it is simple to optimize these probabilities through a
single parameter to match any given channel condition, (ii) con-
stellation points are placed on the rectilinear grid of a square
QAM template, which facilitates coherent DSP by robust state-
of-the-art square-QAM algorithms, and (iii) Gray mapping fa-
cilitates symbol demapping for subsequent SD FEC.

Combinations of PCS and GCS have also been studied in the
context of optical communications [29], [30], but these have
yielded little gain over pure PCS based on square QAM tem-
plates, which already approach the Shannon limit to within
0.1 dB in the AWGN channel. Nevertheless, the combination
of GCS and PCS to combat channel nonlinearities [31], [32] is
not yet a completely resolved problem.

PCS is practically enabled by the probabilistic ampli-
tude shaping (PAS) architecture [33], which shows capacity-
approaching performance with a practical shaping and cod-
ing implementation and elegantly resolves the long-standing
problem of PCS in terms of combining shaping and coding, as
visualized in Fig. 2: The problem with previously known PCS
architectures is that performing coding after shaping at the trans-
mitter distorts the shaped symbol distribution, as FEC parity
bits are generally not shaped, see Fig. 2(a). On the other hand,
performing coding before shaping at the transmitter can cause
error bursts upon de-shaping erroneously received symbols at
the receiver, see Fig. 2(b). The PAS architecture elegantly cir-
cumvents this problem by optimally intertwining shaping and
coding in a capacity-approaching and efficiently implementable
way, cf. Fig. 2(c). Coding and shaping are decoupled through a
parallel transmitter architecture (as reviewed in Section II-A.)
such that their independent optimization leads to jointly optimal
performance. This greatly simplifies the implementation of en-
coder and decoder by allowing the use of off-the-shelf modern

Fig. 3. Schematic illustration of the AIR of the auxiliary AWGN channel mod-
eling an optical fiber channel. Upper solid line: Gaussian signaling (i.e., AWGN
capacity), lower solid line: uniform QAMs with arbitrarily rate-adaptable FEC
(i.e., modulation-constrained AIR), staircase lines: uniform QAMs with nine
different fixed-rate FEC codes (i.e., modulation- and code-constrained AIRs).

SD FEC codes, with minimum to no specific tailoring for the
use in a PCS application.

PCS based on the PAS architecture in optical communica-
tions was first demonstrated by full-field simulations [34] and
transmission experiments [35] in 2015. Record SEs using PCS
were then demonstrated across a wide range of transmission
distances from 500 km to 4,000 km [36], and a capacity of
65 Tb/s was demonstrated at a record SE using PCS, exploiting
C and L bands over 6,600 km in a laboratory experiment [37].
The first field trial over a trans-oceanic submarine cable using
PCS achieved a record SE over 5,500 km and 11,000 km [38].
Over a short distance of 50 km, a record SE of 17.3 b/s/Hz was
demonstrated using PCS on a 10-subcarrier superchannel [39],
[40]. The first commercial transponder using PCS was recently
announced [41]. The first real-time experimental demonstration
of PCS was reported in [42]. The numerous milestones that have
been achieved in only 4 years and the rapid adoption of PCS in
the commercial sector bear testimony to the significance of PCS
in improving the performance of optical fiber communications.

II. BENEFITS OF PCS IN OPTICAL TRANSMISSION

A. Fiber Channel Capacity and Achievable Information Rates

The trade-off between the achievable information rate (AIR)
and the transmission distance in a fiber-optic transmission sys-
tem is illustrated in Fig. 3; as the figure merely visualizes general
trade-offs, the exact axis labels that vary depending on the un-
derlying system assumptions are omitted. While the nonlinear
fiber channel is a non-AWGN channel with memory, whose gen-
eral capacity has been estimated but is not exactly known [26],
[43], it can under certain assumptions be accurately modeled
as a memoryless AWGN channel [26], [44]–[46]. The AIR for
this auxiliary AWGN channel can then be maximized over all
possible input distributions, assuming ideal FEC coding with
infinite code length and unlimited decoder complexity, lead-
ing to a capacity estimate of the fiber channel as represented
by its auxiliary AWGN channel. The capacity of the auxiliary



1592 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 37, NO. 6, MARCH 15, 2019

AWGN channel, however, does not represent the fundamental
fiber channel capacity, but rather a lower bound of it, in the
sense that a higher AIR may be obtained if one could further ex-
ploit intra- and inter-channel nonlinear interference to enhance
the signal-to-noise ratio (SNR). The largest recovered SNR of a
fiber channel depends on the network scenario and on assump-
tions about what information is and is not known to the various
transponders within the network. This leads to a variety of capac-
ity estimates for the optical fiber channel [26], [46]. Regardless
of the sophistication of the optical fiber channel model, it is a
general observation that capacity is maximized by a certain op-
tical signal power. Furthermore, as both optical amplifier noise
[26] and nonlinear interference noise (NLIN) at optimized opti-
cal channel powers [44]–[46] are, either exactly or to an excel-
lent approximation for Gaussian signaling, linearly proportional
to the transmission reach, the channel capacity decreases loga-
rithmically with transmission distance in the high SNR regime,
as illustrated by the upper solid line in Fig. 3 [46]. Achieving
the auxiliary AWGN channel capacity implies, at each trans-
mission distance, the use of the optimally chosen variance of
a Gaussian-shaped modulation as well as optimal FEC perfor-
mance at an optimally chosen code rate Rc ∈ (0, 1]; hence, at-
taining the capacity involves the continuous adaptation of both
modulation and FEC code rate. If we restrict ourselves to uni-
form square QAM constellations, the modulation-constrained
AIR is decreased to below the modulation-unconstrained AIR
(i.e., the capacity of the auxiliary channel), as indicated by the
lower solid line in Fig. 3, suffering a loss called the shaping gap
due to the non-Gaussianity of the signal. In principle, the QAM-
constrained AIR can be reached by optimizing the FEC code rate
for each transmission distance with uniform square QAM for-
mats. However, in practical ASIC implementations, only a few
code rates may be available, which lets the AIR decrease in the
form of a staircase function versus distance, as shown for nine
different FEC rates Rc = 1/2, 2/3, . . . , 9/10 in Fig. 3. Despite
these many FEC rates, there is still a significant gap to the opti-
mal AIR, as well as a step-like rate/reach trade-off. Compared to
uniform QAM, PCS achieves both an arbitrarily fine rate/reach
trade-off, even for a single FEC code rate, and bridges the shap-
ing gap to closely approach ultimate performance. These two
distinct benefits of PCS will be discussed in the context of con-
tending techniques in the subsequent Sections II-B and II-C.

B. Rate Adaptation

1) Uniform Square QAM With Multi-Rate FEC: In order to
perform rate adaptation by FEC alone, as discussed along with
Fig. 3, the most common way in communication standards is to
use a small family of base matrices for LDPC coding, which are
highly optimized using, e.g., density evolution [11] or extrinsic
information transfer (EXIT) chart analyses [47], to approach
the (modulation-constrained) AIR. Every matrix in the family
of FEC codes is made to be a sub-matrix of a larger matrix to
establish a good structure for ASIC implementation. The base
matrices are then lifted by replacing each non-zero element with
a z × z circulant matrix such that larger matrices can be derived
for actual LDPC codes. This construction limits the derived code

Fig. 4. (a) Optimal code rate R∗
c for uniform QAM, and (b) optimal code rate

R∗
c (solid lines) and optimal shaping rate R∗

s normalized by m (dashed lines)
for PS QAM.

rates to the form

Rc = zkb

znb
= kc

nc
, (1)

resulting in a coding overhead of (nb − kb)/kb , with kb and
nb being small positive integers. Hence, practically achievable
code rates have a relatively coarse granularity and do not
fall on a uniform grid; e.g., the 9 code rates of Fig. 3,
Rc = 1/2, 2/3, . . . , 9/10, have increments of 0.167, 0.083,
. . . , 0.011. Together with a set of uniform M 2-ary QAM
constellations, this leads to IRs of1

IR = 2mRc (2)

in bits/symbol (per two dimensions: in-phase I and quadrature
Q), where m = log2M . Therefore, with uniform QAM and
multi-rate FEC, one can only obtain coarse and irregular IR
increments, as shown in Fig. 3.

The AIR is determined through the mutual information (MI)
or generalized MI (GMI), which will be discussed in Section III
in more detail. We denote the AIR under a given transponder
constraint by IR∗. Once IR∗ is obtained for a given QAM order
and SNR, the required code rate R∗

c is found as, cf. (2),

R∗
c = IR∗/ (2m) , (3)

which is depicted in Fig. 4(a) for various uniform square QAM
formats as a function of the SNR. Note that R∗

c denotes the
theoretically largest code rate that leads to error-free decoding;
any actually used FEC code must have a rate smaller than R∗

c .
The available code rates may potentially be far from the op-
timum rate R∗

c , which consequently leads to the step function
behavior of Fig. 3. In order to obtain finer granularity than given
by the “mother codes”, codes can be shortened or punctured
[48]–[52]. By shortening or puncturing s code symbols in each
codeword, with s � nc , code rates of (kc − s)/nc < Rc or
kc/(nc − s) > Rc can be derived with a step size ΔRc

≈ 1/nc ,
letting the resulting code rate more closely approach R∗

c . Since
the code length nc is generally beyond tens of thousands in

1Note that the IR is a property of the transponder parameters alone, while the
AIR is a property of the channel, possibly constrained by assumptions on the
transponder as well (cf. Table I in Section III).
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Fig. 5. The PAS architecture [33].

optical fiber communications, the rate discrepancy � 1/(2nc)
between the optimal R∗

c and the realized Rc could then be made
negligible and one could thereby make the steps finer and more
closely approach the modulation-constrained AIR of Fig. 3.
However, shortening or puncturing induces two problems in
practice: (i) shortened or punctured codes generally have a wider
gap to the AIR than the mother code [48]–[50], which can often
be significant in practice [51], [52], because the optimal degree
distribution for the rate of children codes may not necessarily
be derived by shortening or puncturing the mother codes, and
(ii) their error floor may be raised compared to the mother codes
due to the change of their cycle properties, whose adverse effect
must be minimized by a laborious optimization process [53].
The impact of suboptimum codes on system performance will
be discussed in detail in Section IV.

2) PCS With Variable-Rate and Fixed-Rate FEC: As an al-
ternative to uniform square QAM with variable-rate FEC, PCS
can be used for rate adaptation in conjunction with variable-rate
or even with fixed-rate FEC. As shown in Fig. 5, the PAS archi-
tecture [33] achieves PCS by independently shaping each signal
dimension on an M -ary pulse amplitude modulation (PAM)
template to construct a probabilistically-shaped (PS) M 2-QAM
constellation. This is possible since the in-phase and quadrature
dimensions of a modulated signal are orthogonal.

In what follows, we use the convention that a scalar random
variable is denoted by a capital letter (e.g., X), a realization of
a scalar random variable by a lowercase letter (e.g., x), and an
alphabet (i.e., a set of allowed symbols) by a script letter (e.g.,
X , with elements xi). A vector of random variables is denoted
by a boldface capital letter (e.g., X), and a realization of a vector
random variable by a boldface lowercase letter (e.g., x).

Given the M -PAM symbol setX = ±1,±3, . . . ,±(M − 1),
the probability of a constellation point x ∈ X is commonly gen-
erated according to the Maxwell-Boltzmann (MB) distribution

PX (x) = e−λx 2

∑
x ′∈X e−λx ′2 (4)

with λ ≥ 0, which is the maximum-entropy distribution for
X under an average-power constraint. The rate parameter λ

controls the entropy rate2 2H(X) of the PS QAM signal
in bits/symbol, where H(X) = −∑x∈X PX (x)log2PX (x) de-
notes the binary entropy. When λ = 0, the MB distribution de-
generates to a uniform distribution with H(X) = m bits/symbol

2A stationary memoryless information source produces an entropy
H(X1 , . . . , Xn ) that grows linearly with time n at a rate H(X ), hence the
name “entropy rate.”

per dimension. As λ increases, the MB distribution contains
fractional numbers of 1 ≤ H(X) < m bits/symbol per dimen-
sion, hence realizing rate adaptation with a reduced average
symbol energy. The functional block that performs rate-adaptive
shaping in the PAS architecture is the distribution matcher (DM),
which transforms uniformly distributed input information bits
to MB-distributed PAM output symbols, cf. Fig. 5. The DM
generates only the positive amplitudes of the M -PAM symbols
(a “half-PAM” constellation). A binary systematic FEC encoder
generates parity bits that are equally distributed in {−1,+1}.
Since the FEC code is systematic, it does not affect the infor-
mation bits, so the positive-amplitude DM output remains un-
changed by FEC encoding. A symmetric M -PAM distribution
is then created by multiplying each of the half-PAM symbols
with a parity bit acting as a sign bit. In some cases, the sign bit
stream also includes some information bits in addition to parity
bits, see [33], [54] for details.

In the PAS architecture with code rate Rc and entropy rate
2H(X), the IR can be calculated as [33], [54]

IR = 2 (H (X) − m (1 − Rc)) , (5)

in bits/symbol per two dimensions. The term 2H(PX ) on
the right-hand side of (5) is the largest number of informa-
tion bits that can be contained within a complex symbol (i.e.,
per two dimensions) with the distribution PX , which is con-
trolled by the rate parameter λ for an MB distribution, and the
term 2m(1 − Rc) quantifies the FEC overhead in bits/symbol
per two dimensions. Assuming bit-metric decoding (BMD, cf.
Section III-B), IR∗, i.e., the largest AIR for a given SNR and
QAM template, can be obtained by maximizing the GMI over
all possible MB distributions PX . The result then also repre-
sents the capacity of PAS in the auxiliary AWGN channel. The
maximization can be done numerically by an exhaustive search
or by the bisection method, since the MB distribution has only
one free parameter λ. Rigorously speaking, IR∗ obtained this
way does not represent the unconstrained AWGN channel ca-
pacity since (i) the finite number of constellation points in the
underlying QAM template imposes a weak constraint on the
modulation and (ii) the decoding is BMD. However, the gap
between IR∗ and the capacity of the auxiliary AWGN channel
is negligible [55].

From (5), the required code rate Rc to achieve an IR with a
channel input distribution PX can be calculated as

Rc = 1 − H(X )−IR/2
m . (6)

If the DM produces a length-ns amplitude block from a length-
(ks − ns) input bit block, with ks > ns , the sign path in the
PAS architecture transports ns sign bits per block, regardless of
whether they are information bits or parity bits from a shaping
point of view, hence the PAS architecture implements a shaping
rate of

Rs = ks

ns
(7)

in bits/symbol per dimension [54]. While a class of FEC mother
codes has a relatively low degree of freedom to choose kc and nc

without shortening or puncturing, limiting the achievable rate
adaptability as discussed above, there exists a DM algorithm that
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can finely adjust the number of input bits ks − ns to be mapped
into a length-ns block of output symbols, hence achieves
granularity of the shaping rate ΔRs

= 1/ns . Denoting by X∗

the M -PAM symbols that maximize the AIR through the MB
distribution PX ∗ , the small shaping granularity lets the realized
Rs closely approach the optimal entropy rate R∗

s ≈ H(X∗), by
choosing a large block length ns . Figure 4(b) shows the optimal
shaping rate R∗

s (dashed lines) that produces the largest AIR
in the auxiliary AWGN channel and the corresponding optimal
code rate R∗

c obtained using (6) with R∗
s = H(X∗). As shown

in the figure, when PCS shares the role of rate adaptation with
FEC by adjusting both Rs and Rc , the optimal code rate (i)
is much higher than when FEC alone performs rate adaptation
(Fig. 4(a)), and (ii) occupies a much narrower range [55]; in
the case of Fig. 4, we have 0.74 < R∗

c ≤ 1 for PCS, instead of
0.18 < R∗

c ≤ 1 for uniform QAM.
The narrow range of optimum FEC rates for PCS suggests

the potential use of a single (or a small number of) fixed-rate
FEC code(s), whereby rate adaptation is performed (almost)
exclusively by PCS. This then gives a code rate-constrained
AIR (with a weak modulation constraint given by the underly-
ing QAM template). Remarkably, it was shown in [55] that the
performance loss due to fixed-rate FEC with Rc = 0.8 does not
exceed 0.07 bits/symbol of IR per two dimensions or 0.3 dB
of SNR in the AWGN channel, valid for all square M 2-QAM
templates with M 2 ≤ 1024. This assumes ideal PCS with a DM
that maps ks − ns information bits into ns PAM symbols such
that the realized shaping rate Rs = ks/ns is exactly equal to
H(X∗). Such an ideal DM can be implemented, e.g., by con-
stant composition distribution matching (CCDM) [56], which
is asymptotically optimal in block length ns . CCDM achieves
close to optimal performance already with a relatively small
ns ≤ 104 , its hardware architecture is universal for all shaping
rates Rs ≤ 2m, and at least in principle it is implementable in to-
day’s hardware. Other DM techniques that are lower-complexity
than CCDM at small performance loss are discussed in [57]–
[63]. In contrast to shaping, it is extremely difficult for FEC
to narrow down the last few tenths of a decibel of coding gap;
for example, a rate-1/2 irregular and unstructured LDPC code
with block length nc = 107 and a maximum variable degree of
200 may approach the (modulation-constrained) AIR to within
0.04 dB at BER = 10−6 using belief-propagation decoding
with up to 2000 decoding iterations [64].

3) Time-Division Hybrid Modulation (TDHM): TDHM
time-interleaves symbols picked from different uniform square
QAM constellations in a deterministic manner to achieve fine
granularity of the IR [65], [66]. For example, using M 2

1 -QAM
for a fraction 0 ≤ α ≤ 1 of the time, and M 2

2 -QAM for a fraction
1 − α of the time, TDHM can realize an arbitrary shaping rate
of Rs = αm1 + (1 − α)m2 bits/symbol per dimension, where
m1 = log2M1 and m2 = log2M2 . When averaged over time,
TDHM creates the illusion of an MB-like symbol distribution,
cf. Fig. 6. However, TDHM is fundamentally different from
probabilistic constellation shaping in that a receiver can separate
the constituent constellations deterministically using the a pri-
ori knowledge of their temporal locations. (The same is true for
any other hybrid modulation scheme that uses multiple orthogo-
nal signal dimensions to carry different uniform QAM constel-

Fig. 6. Time and ensemble averages of symbols created by (a) TDHM and
(b) PCS.

Fig. 7. Three-dimensional square lattice constellation points contained in
(a) a cube, and (b) a ball, and their marginal probability distributions as projected
onto each coordinate axis. Figure after [69].

lations in a deterministic manner, such as frequency-division
hybrid modulation (FDHM) or digital subcarrier multiplexing
[67], [68]). Consequently, while the rate granularity of TDHM
can be as fine as that of PCS, the performance of TDHM does
not reach that of PCS, as we shall see in the following section.

C. Energy Efficiency

In this section, we illustrate various modulation schemes from
the perspective of a multi-dimensional signal space, which gives
valuable insights into why PCS is needed to closely approach
the AWGN capacity. A set of ‘dimensions’ in signal space cor-
responds to the collection of any physically orthogonal entities,
which may be most intuitively viewed as the real-valued (single-
quadrature, PAM) amplitudes of consecutive symbols, which
are orthogonal in time. Hence, 4 dimensions may be built by 4
successive PAM symbols. Alternatively, 4 dimensions may be
built by 2 successive QAM symbols, or by a single polarization-
division multiplexed (PDM) QAM symbol.

1) Uniform QAM: As shown in Fig. 7(a), assume an ns-
dimensional (hyper-) cube centered at the origin, each side be-
ing parallel with each of the ns coordinate axes. If the cube is
uniformly filled with points on a square lattice grid, the pro-
jection of any random selection of points onto any Cartesian
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Fig. 8. (a) Gaussian distribution of a signal, (b) the two-dimensional ‘fuzzy’
ball with a non-uniform density created by their 2-fold Cartesian product, and
(c) the two-dimensional uniform ball with the same entropy as that of (b).

coordinate axis yields a uniform distribution of points (i.e., a
PAM constellation), regardless of the cardinality ns . Projections
on different axes are independent and identically distributed
(IID). Conversely, the ns -fold Cartesian product of zero-mean
uniform IID distributions confined on a finite support constructs
an ns-dimensional uniform cube.

2) Probabilistic Constellation Shaping (PCS): Instead of the
cube, now assume an ns -dimensional (hyper-) ball centered at
the origin, again with a uniform density of points within (cf.
Fig. 7(b)). The projection onto any one of the Cartesian coor-
dinate axes yields a non-uniform probability density. Since the
energy of a signal point is quadratic in distance from the origin,
a ball centered at the origin, which by definition is enclosed by
a constant-radius surface, is the most energy efficient shape to
contain a given number of points in multi-dimensional space.
When ns = 3, the points within the ball have ∼0.27 dB less
average energy than those in the cube, assuming the same num-
ber of points (i.e., 512) and the same minimum distance (i.e.,
2) between them. This relatively small energy saving is due to
the small choice of ns and the small number of points in this
example, and increases with ns .

The energy savings can be translated into a better noise re-
siliency in a communications context as follows: If the mini-
mum distance of the ball is increased to ∼2.06 (i.e., Δ ≈ 1.03
in Fig. 7(b)) such that the average energy becomes the same for
the ball and the cube, i.e., when we compare signals of equal en-
ergy or signals of equal SNR, the points in the ball have now an
increased minimum distance, hence are more immune to noise.
This suggests that transmitting discrete information symbols in
ns dimensions (e.g., by transmitting successively in ns time
slots), the tightly enclosing shape of the symbols should be an
ns -dimensional ball instead of an ns -dimensional cube.

As ns → ∞, and as the number of points on each axis
M → ∞, the probability density of the points projected onto
each coordinate axis converges to a Gaussian distribution.
Conversely, if we generate an IID zero-mean Gaussian sig-
nal in every Cartesian coordinate axis, the composite signal in
n-dimensional space forms a uniformly dense ball as ns → ∞.
Note that this statement only applies for ns → ∞, as composite
points generated from a finite number of IID Gaussian amplitude
distributions will generally result in a ‘fuzzy’ ball with a non-
uniform density, not a true ball with a uniform density, as shown
in Fig. 8. The energy savings (i.e., the shaping gain) of a ball
relative to a cube for the same volume approaches πe/6 ≈ 1.53
dB [70], Ch. 14] in the limit of ns → ∞. While the above con-

siderations apply to the constellation entropy (a property of the
transmitter), it can be shown that Gaussian signals also result in
maximum mutual information between the transmitted and the
received signals under a transmission energy constraint in the
presence of AWGN [70], Ch. 3], [71], Chs. 8, 9].

True Gaussian signaling requires continuous symbols whose
support is not confined to within a finite range of amplitudes.
This leads to high required digital-to-analog and analog-to-
digital converter resolutions and to large peak-to-average power
ratios, which are both problematic engineering aspects in prac-
tice. If the symbols are discrete and confined to a finite range
on each coordinate axis, it can be shown that the distribution
that maximizes the entropy is an MB distribution [5], which
is a Gaussian distribution sampled at discrete amplitudes across
a finite amplitude range, cf. (4). Here, it should be noted that
a continuous Gaussian distribution maximizes both the entropy
and the AIR under a transmission energy constraint, but the
MB distribution is proven to maximize only the entropy, not
the AIR, the latter being maximized using the Blahut-Arimoto
algorithm [72], [73]. Nevertheless, the AIR obtained by the MB
distribution is very close to the AWGN channel capacity [33].

Creating the shaped distribution in each dimension is the
task of the DM. For example, the CCDM algorithm creates a
target distribution by fixing the number of occurrences of M -
PAM symbols in each length-ns block; i.e., symbol xi ∈ X , for
i = 1, . . . ,M , appears exactly ni times in each of the length-ns

CCDM blocks, where ns =
∑M

i=1 ni , thereby creating a prob-
ability mass function (PMF) PX = [n1

ns
, . . . , nM

ns
] that approxi-

mates an MB distribution. Therefore, if we mark a constellation
point in ns -dimensional space, whose coordinates are speci-
fied by the ns symbols of the CCDM block, its distance from

the origin is a constant
√∑M

i=1 ni |xi |2 , hence it lies on an
ns-dimensionl spherical shell. Knowing that almost the entire
volume of a ball is near the surface in high-dimensional space
(known as the sphere hardening phenomenon [70]), CCDM
casts symbols onto the surface of a ball as ns → ∞, which is a
necessary condition to achieve the optimal energy efficiency. A
sufficient condition for the optimal energy efficiency under the
constraint on the finite support on each coordinate axis is that
the DM maps each of the points in a ks -dimensional uniform
cube to a distinct point in an ns-dimensional ball (truncated
to within a finite support in each dimension), thereby fulfilling
Rs = ks/ns → H(X), where PX is an MB distribution. This
is fulfilled by CCDM, as the block length ns → ∞. However,
if the block length ns is small, Rs is smaller than H(X), and
the volume inside the surface of the ball is not negligible, hence
CCDM becomes sub-optimal. In this case, a direct mapping of
uniformly distributed information bits to a completely filled ns

-dimensional ball-like constellation can outperform CCDM, as
is done, e.g., by shell mapping [63], [74]–[76].

3) Time-Domain Hybrid Modulation (TDHM): When
speaking of ‘constellation shaping’ it is important to distinguish
between ensemble-averages and time-averages, as visualized in
Fig. 6. The time average over all symbols in a data stream may
yield the same symbol amplitude distribution for both TDHM
and PCS, in fact, the overall amplitude distribution averaged
over all symbols in a TDHM stream may even be MB, and this
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Fig. 9. Time-averaged distributions generated (a) by TDHM, and (b) by PCS.

may suggest that TDHM and PCS should perform the same in
terms of their shaping characteristics. However, the ensemble
average, i.e., the symbol amplitude distribution within a single
time slot when averaged across all possible data streams, looks
very different for the two shaping schemes, as shown in Fig. 6. In
an ideal PCS implementation, ensemble average and time aver-
age result in the same distribution, letting the encoding process
be stationary and ergodic, and justifying the AIR calculated
based on the entropy as in (5) [77]. As an example, consider
the TDHM shown in Fig. 9(a) that interleaves symbols drawn
from a uniform binary phase-shift keying (BPSK) alphabet
XBPSK = [−1,+1] and symbols drawn from a 4-PAM alpha-
betX4-PAM = [−3,−1,+1,+3] at a multiplexing ratio α = 0.5
such that an MB distribution PX = [p1 , . . . , p4 ] = [ 1

8 , 3
8 , 3

8 , 1
8 ]

is observed at the receiver when performing a time aver-
age. The shaping rate of this TDHM is Rs = (1 + 2)/2 =
1.5 bits/symbol per dimension, and the average symbol energy
is
∑4

m=1 pm |xm |2 =3. Note that PCS can create the same time-
averaged distribution (hence the same average symbol energy
of 3), as shown in Fig. 9(b), but it can do so at a larger shap-
ing rate of Rs = H(X) ≈ 1.8 bits/symbol per dimension! This
shows that achieving a time-averaged MB distribution is only a
necessary condition for optimal energy efficiency.

By using different PAM orders in different time slots, TDHM
does not construct a ball but rather constructs a (hyper-) rect-
angle. As it is the cube (with equal side lengths) that is the
most energy-efficient shape among all possible rectangles for
the same volume, TDHM performs worse than uniform square-
QAM; and as the ball is more energy efficient than the cube,
PCS performs best. Figure 10 depicts a two-dimensional ex-
ample, representing square-QAM and TDHM in 2 dimensions.
The points in the rectangle have ∼3.3 dB larger average energy
than the points in the cube, with the same number of points
(i.e., 64) and the same minimum distance (i.e., 2). The same is
evident from Figure 11, which shows that TDHM (lower solid
line) can cause a loss of ∼2 dB in SNR [69], or 25% loss
in AIR [78], relative to optimal PCS (upper solid line) in the
AWGN channel, when all bit levels are encoded jointly by a
single FEC code of rate 0.8. If used with a fixed rate-0.8 FEC
code, TDHM performs worse than uniform square QAMs with
rate-adaptable FEC (cf. dashed lines in Fig. 11). A compari-
son of rate adaptability and performance of the various coded
modulation schemes discussed so far are sketched in Fig. 12.

Fig. 10. Two-dimensional square lattice constellation points contained in
(a) a cube, and (b) a rectangle, and their marginal probability distributions
in each coordinate axis.

Fig. 11. AIR of various modulation schemes under bit metric decoding in the
AWGN channel.

TABLE I
PERFORMANCE METRICS FOR PCS

III. PERFORMANCE METRICS FOR PCS

To quantify system performance of PCS in conjunction with
SD FEC, several approaches with and without an explicit focus
on their operational meaning have been taken [79]–[85]. Rele-
vant performance metrics are summarized in Table I. The system
model used to obtain these metrics is depicted in Fig. 13(a).
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Fig. 12. Rate adaptability and performance of various schemes.

Fig. 13. (a) System model, and architecture of decoders for (b) SMD,
(c) multi-level coding and multi-stage decoding (discussed in Appendix), and
(d) BMD.

We first consider SMD with non-binary FEC codes that have
the same number of symbols in the code alphabet as that of
the modulation alphabet, i.e., M -ary FEC codes for an M -ary
constellation. (In principle, the code alphabet need not have the
same cardinality as the modulation alphabet, but this restriction
makes it simple to develop equations and achieves capacity in a
memoryless channel.) As briefly discussed in Section II-B.1, a
relevant performance metric for SMD is the MI that quantifies
an IR that is achievable (hence an AIR) using infinite code
length and unlimited decoder complexity. The channel capacity,
known as the Shannon limit (SL), is obtained by maximizing the

MI over all possible modulation formats (including continuous-
amplitude formats with infinitely many “constellation points”).

For the more practical class of BMD systems, a bit-to-symbol
mapper transforms an m-bit sequence [B1 , . . . , Bm ] to an M
-ary modulation symbol X , cf. Fig. 13(a), where m = log2M .
If the bit sequences are encoded by binary FEC codes and are
decoded using BMD, and if we still allow infinite code length
and unlimited decoder complexity, the GMI represents an AIR
for BMD, in the same way as the MI represents an AIR for
SMD. Maximizing the GMI over all possible input symbol dis-
tributions for a square QAM template yields an AIR that is
constrained in terms of the code alphabet size, the specific mod-
ulation template, and the fact that we are using BMD. In this
section, without imposing any complexity constraints on FEC
and PCS, we review the MI, GMI, and other related metrics in
the context of the underlying transponder architecture. A more
realistic scenario will be discussed in Section IV, where prac-
tical (non-ideal, pragmatic) FEC and complexity-constrained
PCS are assumed.

A. Mutual Information

Assume that we use a length-nc M -ary SD FEC code with
code rate Rc = kc/nc together with an M -ary constellation,
and the (auxiliary) channel is memoryless AWGN. In this sys-
tem, based on perfect knowledge of the transmitted symbols
X , a measurable statistic of the channel is PY |X (Y |X), i.e.,
the probability of the observed physical entity Y given the
transmitted physical entity X , cf. Fig. 13(b), which is often
called the channel transition probability. An SD demapper pro-
duces the conditional probability PY |S (yi |s) of the i-th received
symbol yi , for i = 1, . . . , nc , for every symbol s in the code
alphabet. In our system where the FEC code has the same
alphabet size as the constellation, this is equivalent to the con-
ditional probability PY |X (yi |x)given a transmitted modulation
symbol x ∈ X , which is directly fed to the subsequent SMD
as an SD decoding metric. An optimal SMD finds a legiti-
mate codeword x = [x1 , . . . , xnc

] that is the most likely to
be transmitted among all Mkc possible codewords, given the
noisy observation y = [y1 , . . . , ync

], by maximizing the prod-
uct of the channel transition probabilities over all symbols in
y, PY |X(y|x) =

∏nc

i=1 PY |X (yi |xi) [71], Ch. 7.7]. It should
be noted that there are only Mkc codewords that are legiti-
mate for the underlying code, while Mnc uncoded sequences
can exist for an M -ary alphabet. Therefore, only one out of
Mnc /Mkc = Mnc (1−Rc ) possible words is a legitimate code-
word, which allows a decoder to select the nearest codeword
from a noisy non-codeword word. (This illustrates the funda-
mental operation of FEC.) An AIR of the ideal and optimal
SMD is the MI, defined as

I (X;Y ) Δ= EX,Y

[

log2
PY |X (Y |X )

PY (Y )

]

= EX,Y

[

log2
PY |X (Y |X )

∑
x ′∈X PX (x′) PY |X (Y |x′ )

]

(8)

in bits/symbol per dimension, where X is a random variable for
the one-dimensional transmitted signal, Y is a random variable
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for the corresponding received signal in the AWGN channel
with a known noise variance, and EX,Y ( · ) denotes the expec-
tation taken over Xand Y. Here, by “ideal” SMD, we mean that
a code is of infinite length (nc → ∞), and by “optimal” SMD,
we mean that (i) the code rate Rc is chosen to match the chan-
nel condition, and (ii) no other codeword has a higher likelihood
than the codeword chosen by SMD, since the decoder is (unreal-
istically) capable of sorting all Mkc codewords in a descending
order of their probabilities PY |X(y|x). The supremum of (8)
over all possible (continuous- and discrete-amplitude) input dis-
tributions PX is the channel capacity, which on an (auxiliary)
AWGN channel can be achieved by Gaussian signaling, as dis-
cussed in Section II.

Although it is in principle possible to use non-binary codes
and SMD in the PAS architecture, PCS in optical systems is
commonly implemented using binary codes and BMD for com-
plexity reasons, hence the MI does not generally represent the
most relevant performance metric.

B. Generalized Mutual Information

Let us next consider BMD in Fig. 13(a), where a bit-to-symbol

mapper transforms a vector B
Δ= [B1 , . . . , Bm ] to a symbol X

of an M -PAM constellation. It should be first noted that Bj

for j = 1, . . . , m are logical entities that are not directly cast
into the channel, but only through their physical representation
X , e.g., a voltage or an optical field amplitude. On the other
hand, in the context of BMD, the decoder estimates bits and
not symbols. Therefore, the decoder operates on PY |Bj

(Y |Bj )
instead of PY |X (Y |X), calculated as

PY |Bj
(Y |Bj ) =

PBj ,Y (Bj , Y )
PBj

(Bj )

=

∑
x ′∈X ( j )

b j (x )
PY |X (Y |x′ ) PX (x′)

PBj
(Bj )

,

where bj (x) is the j-th bit of symbol x, and X (j )
b

Δ=
{x ∈ X : bj (x) = b} denotes the set of constellation points
x whose j-th bit representation is b ∈ {0, 1}. For example,
if we use binary reflected Gray coding (BRGC) {101, 100,
110, 111, 011, 010, 000, 001} to represent the 8-PAM sym-
bol alphabet X = {−7,−5, . . . ,+7}, the symbol sets cor-
responding to a ‘0’ and ‘1’ at the second bit position are
X (2)

0 = {−7,−5,+5,+7} and X (2)
1 = {−3,−1,+1,+3}, re-

spectively. The conditional probability of observation y given
transmitted bit B2 = 0 is then calculated through PY |X (Y |X) as
PY |B2 (y|0) =

∑
x ′∈X ( 2 )

0
PY |X (y|x′)PX (x′)/PB2 (0). In BMD,

we often use the conditional likelihood PBj |Y (Bj |Y ) instead
of the conditional probability PY |Bj

(Y |Bj ), which can be ob-
tained by Bayes’ rule as

PBj |Y (Bj |Y ) = PY |Bj
(Y |Bj )

PBj
(Bj )

PY (Y )

=

∑
x ′∈X ( j )

b j (x )
PY |X (Y |x′ ) PX (x′)

PY (Y )
, (9)

which represents the SD decoding metric of BMD. An
SD demapper for BMD produces the conditional likelihood
PBj |Y (bi,j |yi) for the j-th bit bi,j of the i-th transmitted sym-
bol xi , for i = 1, . . . , nc , which is then input to the subsequent
binary SD decoder, cf. Fig. 13(d). Here, we omit the time in-
dex i from Bi,j and Yi since the PCS encoding is a stationary
process and the channel is assumed to be stationary as well.
For a length-nc binary code, optimal BMD finds a legitimate
codeword b = [b1,1 , . . . , bnc /m, m ] that is the most likely to be
transmitted among all 2kc possible codewords by maximizing
PB|Y (b|y) =

∏nc /m
i=1

∏m
j=1 PBi , j |Y (bi,j |yj ), given the noisy

observation y = [y1 , . . . , ync /m ]. Multiplications in PB|Y (b|y)
are often removed by taking the logarithm without affecting the
decoding performance. In addition, instead of producing two
metrics PBj |Y (0|yi) and PBj |Y (1|yi) for each received symbol
yi , the SD BMD demapper can produce only one log-likelihood
ratio (LLR) metric

log
PB j |Y (0|yi )
PB j |Y (1|yi ) , (10)

which will be discussed in Section IV in more detail.
Note that the BMD demapper produces only log2M LLRs
per received symbol, whereas an SMD demapper pro-
duces |X | = M LLRs per received symbol, in the form of
log PX |Y (x1 |yi)/PX |Y (x|yi) for all x ∈ X , where x1 de-
notes the first letter in X . Using the conditional likelihood
PBj |Y (Bj |Y ) in (9), the channel transition probability can be
approximated as (see Appendix for derivation details and for a
clarification of the operational meaning of the obtained results)

QY |X (Y |X ) Δ=

⎡

⎣
m∏

j=1

PBj |Y (Bj |Y )

⎤

⎦ PY (Y )
PX (X)

≈ PY |X (Y |X ) . (11)

This is called the mismatched decoding metric [86], [87], since
QY |X(y|x) =

∏nc /m
i=1 QY |X (yi |xi) is not a monotonic func-

tion of PY |X(y|x), causing loss of decoding performance; in
other words, the codeword that maximizes QY |X(y|x) does not
necessarily maximize PY |X(y|x).

Eventually, in analogy to the MI obtained from the exact
decoding metric PY |X (Y |X) as in (8), we obtain the GMI using
the approximate decoding metric QY |X (Y |X) as

GMI (X;Y ) Δ= EX,Y

[
log2

QY |X (Y |X )
∑

x ′∈X PX (x ′)QY |X (Y |x ′ )

]
(12)

in bits/symbol per dimension. After some mathematical manip-
ulation (see Appendix), we can obtain a compact notation of
(12) as

GMI (X;Y ) = H (X) −∑m
j=1 H (Bj |Y ) . (13)

In case of uniform PX and independent bit levels, (13) degen-
erates to

GMI (X;Y ) =
∑m

j=1
I (Bj ;Y ) ,

which represents an AIR for bit-interleaved coded modulation
(BICM) [87]. Importantly, the GMI in (13) has the same form
as the “BMD rate” that was first defined in [33], and was proven
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to be achievable [82], i.e., there exists a coding scheme such
that the post-FEC BER can be made arbitrarily small, as the
code length nc → ∞. The supremum of GMI over all possible
PX is the capacity of PCS under the constraints of a square
QAM template and parallel BMD, which can be approximately
achieved by an MB distribution.

C. Normalized Generalized Mutual Information

The GMI quantifies the number of information bits per trans-
mitted symbol that can be reliably transmitted through a given
channel. After proper normalization of the GMI, we can derive
a channel metric that quantifies the number of information bits
per transmitted bit, which is called the normalized GMI (NGMI)
[79]–[81]. Since the GMI is an AIR of the PAS architecture as
per our above discussion, we can replace the IR of (5) with the
GMI to obtain the unit-less metric

NGMI (X;Y ) = 1 − H(X )−GM I (X ;Y )
m . (14)

It immediately follows from (13) and (14) that

NGMI (X;Y ) = 1 − 1
m

∑m
j=1 H (Bj |Y ) . (15)

Note that the asymmetric information (ASI) introduced in [85]
from a different perspective has the same form as the NGMI.

Suppose that we have obtained the maximum GMI(X;Y )
over all possible distributions of X , and denote by X∗

the channel input that maximizes the GMI, i.e., X∗ =
argmaxX GMI(X;Y ). It should be noted that GMI(X∗;Y )
and NGMI(X∗;Y ) are not associated with potential imper-
fections of the underlying transceiver technology but represent
channel metrics of the auxiliary AWGN channel, whereas R∗

c

in (1) and R∗
s in (7) are the transceiver metrics that need to

be used to achieve GMI(X∗;Y ), cf. Table I. In other words,
the channel’s transmission capabilities as given by the channel
metric GMI(X∗;Y ) are fully exhausted when we use ideal
binary FEC with the optimal code rate R∗

c = NGMI(X∗;Y )
and ideal PCS with the optimal shaping rate R∗

s = H(X∗), as
summarized in Table I.

IV. IMPACT OF SUB-OPTIMAL PCS AND FEC

GMI and NGMI quantify theoretic channel metrics as well
as the limit of transceiver technologies without imposing any
constraints on implementation complexity. However, they are
also very useful to evaluate and optimize systems with sub-
optimal pragmatic PCS and FEC, if shaping and coding gaps
are properly taken into account. In what follows, let PX † denote
the distribution that maximizes the IR using a sub-optimal PCS
and/or FEC scheme.

A. Sub-Optimal FEC, Optimal Shaping

Since sub-optimal FEC requires more redundancy (i.e., a
lower code rate) than optimal FEC to achieve error-free de-
coding, the largest code rate for error-free decoding is

R†
c = NGMI

(
X†;Y

)− δc ,

where δc ≥ 0 is the coding gap. The coding gap δc quantifies
how much fewer information bits are conveyed per transmit-

ted bit by sub-optimal coding compared to optimal coding. In
[80], FEC decoding simulations are performed using spatially-
coupled (SC) LDPC codes, showing that for each code rate R†

c

the coding gap δc is nearly constant across various distributions
PX and M 2-QAM constellation templates; the most widely
applicable coding gap is conservatively chosen as that of the
smallest constellation (i.e., 4-QAM) since it is the marginally
greatest among those of all PX and M 2-QAM. This implies
that we can with high confidence declare error-free decoding if
the channel metric NGMI(X†;Y ) is larger than the code rate
R†

c by δc , independent of modulation. Therefore, if only one
FEC code of rate rc with coding gap δc is available, the optimal
shaping distribution can be obtained as

PX † = argmax
PX

GMI (X;Y )

subject to NGMI (X;Y ) ≥ rc + δc , (16)

where the last condition ensures error-free decoding. It has been
shown in [88] that the loss of IR due to a constant coding gap δc

is approximately proportional to m, which importantly implies
that a small QAM template with moderate shaping performs
better than a large QAM template with strong shaping.

B. Optimal FEC, Sub-Optimal Shaping

If the FEC is optimal but PCS is sub-optimal, we can calculate
the IR loss Δs ≥ 0 that quantifies how many fewer information
bits are transmitted per transmitted symbol per dimension by
a sub-optimal shaping algorithm compared to optimal shaping.
Formally, the IR loss due to a sub-optimal shaping algorithm is

Δs
Δ= H(X†) − R†

s , where X† is the output of the sub-optimal
shaping algorithm whose probability approximately follows an
MB distribution and R†

s ≤ H(X†) is the realized shaping rate
(7). If we define a shaping gap as the unit-less ratio of the IR
loss relative to the entropy H(X†) for the same average symbol
energy H ∗ [|X†|2 ], i.e.,

δs
Δ=

Δs

H (X†)
= 1 − R†

s

H (X†)
,

the IR obtained by sub-optimal shaping is a fraction
R†

s/H(X†) = 1 − δs ≤ 1 of the GMI. Also, by substituting R†
s

for H(X†) in (5), we have

IR = R†
s − m

(
1 − R†

c

)

= H
(
X†) (1 − δs) − m

(
1 − R†

c

)

in bits/symbol per dimension. It follows from IR =
GMI(X†;Y )(1 − δs) that the optimal code rate that achieves
this IR is then given by

R†
c = 1 − H

(
X†)− GMI

(
X†;Y

)

m
(1 − δs)

= NGMI
(
X†;Y

)
(1 − δs) + δs. (17)

If only one FEC code of rate rc with δc = 0 is available, and if
the shaping gap δs is known for every realized MB distribution
PX of the shaping algorithm, the optimal distribution for this
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Fig. 14. Shaping gap δs of (a) CCDM and (b) MR-PCDM, with 4-PAM
(dotted lines), 8-PAM (dashed lines), and 16-PAM (solid lines) constellations.
The numbers in parentheses show the block length ns .

sub-optimal shaping scheme can be obtained by

PX † = argmax
PX

GMI (X;Y )

subject to NGMI (X;Y ) ≥ rc − δs

1 − δs
. (18)

In Fig. 14, the shaping gap is estimated for two sub-optimal
finite-length DM algorithms: (a) CCDM [56], and (b) low-
complexity multi-rate prefix-free code DM (MR-PCDM) [89].
For some cases in Fig. 14, the shaping gap is almost constant
across the realized shaping rates Rs , e.g., when ns ≥ 320 with
CCDM, or when ns ≥ 1280 with MR-PCDM for 8- and 16-
PAMs. This constant shaping gap simplifies the maximization
problem (18) and facilitates the analysis, as will be shown in the
following section.

C. Sub-Optimal FEC and Sub-Optimal Shaping

Combining the above results, if FEC and PCS are both
sub-optimal, after penalizing GMI by δc and δs , the IR can be

Fig. 15. IR of non-ideal PCS with δs = 0.025, and non-ideal FEC with
δc = 0 (solid lines), δc = 0.05 (dashed lines), and δc = 0.10 (dotted lines).

calculated as

IR =
(
GMI

(
X†;Y

)− mδc

)
(1 − δs) . (19)

At the same time, from (5) we have

IR = H
(
X†) (1 − δs) − m

(
1 − R†

c

)
(20)

in bits/symbol per dimension. Therefore, the optimal code rate
is given by relating (19) and (20) as

R†
c =

(
NGMI

(
X†;Y

)− (1 + δc)
)
(1 − δs) + 1. (21)

In case where a fixed rate-rc code is used with a pre-determined
coding gap δc , if we assume a nearly constant shaping gap of
δs over all Rs , (20) shows that the practically achieved IR is
increasing with the entropy rate H(X†). Therefore, the optimal
distribution PX † for the sub-optimal PCS and FEC can be
obtained by solving

PX † = argmax
PX

H (X)

subject to NGMI (X;Y ) ≥ rc − δs

1 − δs
+ δc . (22)

Figures 15 and 16 show the IRs obtained by solving the
maximization problem (22), with coding gaps δc = 0, 0.05, 0.1,
and shaping gaps δs = 0, 0.025, 0.05. Note that state-of-the-
art soft-decision FEC codes have coding gaps of δc ≤ 0.1, and
CCDM with a block length ≥ 480 produces shaping gaps of
δs � 0.02, as shown in Fig. 14(a). It can be seen from Figs.
15 and 16 that a reduction of the coding gap is crucial to more
closely approach the channel capacity, but the effect of a shaping
gap on the IR is relatively insignificant, except at high SNR
where the IR is saturated. In practice, however, the IR at high
SNR can be recovered if uniform QAM is used.
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Fig. 16. IR of non-ideal FEC with δc = 0.05, and non-ideal PCS with δs = 0
(solid lines), δs = 0.025 (dashed lines), and δs = 0.05 (dotted lines).

V. IMPLEMENTATION ASPECTS

A. Distribution Matching

CCDM [56] is one of the most commonly assumed DMs for
PCS in optical communications, since (i) it is asymptotically op-
timal in block length, simplifying the analysis of experimental
results, and (ii) it can be implemented on the same architecture
for any shaping rate. However, CCDM uses modified arithmetic
coding that involves multiplications, divisions, and comparisons
of real numbers. An approximate implementation of CCDM
using fixed-point operations still needs multiplications and di-
visions of (possibly large) integer numbers, see, e.g., [90]; the
effect of limited numerical precision on the performance can be
analyzed following [91]. Furthermore, and more fundamentally,
arithmetic coding is intrinsically serial in each block, and the
block size should be large to approach capacity, which impedes
parallel ASIC implementations.

Approaches to design a DM algorithm that is computationally
efficient and also good for parallelization include PCDM, which
was used in early demonstrations of PCS in optical communi-
cations [36]. This scheme is implemented using small look-up
tables (LUTs), and a framing method for PCDM is presented in
[58], [59], which allows variable-length prefix-free codes to be
contained in a fixed-length block. Without framing, PCDM ap-
proaches the optimal energy efficiency to within a few tenths of
a dB across a wide range of shaping rates with very fine granu-
larity. Even after framing, the shaping gap is kept to within a few
tenths of a dB if the block length is large. Like CCDM, PCDM is
also an asymptotically good algorithm in block length. Indeed,
the asymptotically good performance of CCDM and PCDM is
intrinsic, since they are both designed to avoid the exponen-
tial complexity associated with the direct mapping of uniformly
distributed information bits to an ns-dimensional ball of con-
stellation points, by generating IID MB distributions in large
dimensions. Conversely, though, both schemes can result in a
significant shaping gap for short block lengths.

However, for short block lengths (i.e., small dimensions
ns ≤ 100), it is feasible by today’s implementation technol-
ogy to perform direct mapping of information bits to an ns

-dimensional ball-like constellation in an algorithmic manner,
e.g., using shell mapping [63], [74]–[76]. Shell mapping was
adopted in dial-up and fax modems in the mid-1990s, as de-
fined in the ITU-T Standard V.34 [7]. Obviously, the shaping
performance of shell mapping is somewhat sub-optimal due to
its limited block length.

B. SD FEC

In BMD, the SD decoding metric of the j-th bit level can be
represented by an LLR as (cf. (10))

Lj (y) = log
PB j |Y (0|y )
PB j |Y (1|y ) = log

∑

x ∈X ( j )
0

PY |X (y |x )PX (x)
∑

x ∈X ( j )
1

PY |X (y |x )PX (x) . (23)

When symbol X is uniformly distributed over X , the LLR re-
duces to

Lj (y) = log

∑
x∈X ( j )

0
PY |X (y |x )

∑
x∈X ( j )

1
PY |X (y |x )

and an efficient piecewise-linear approximation of Lj [92] leads
to near-optimal decoding performance in belief-propagation de-
coding of LDPC codes [93]. If we use PS QAM with an MB
distribution PX in an AWGN channel with noise variance σ2 ,
the LLR Lj can be calculated from the received signal y as

Lj (y) = log

∑

x ∈X ( j )
0

exp
(
− ( y −x ) 2

2 σ 2 −λx2
)

∑

x ∈X ( j )
1

exp
(
− ( y −x ) 2

2 σ 2 −λx2
) . (24)

Let us denote the symbols that have a dominant effect in decod-
ing as

x0 = argmax
x∈X ( j )

0

exp

(

− (y − x)2

2σ2 − λx2

)

and

x1 = argmax
x∈X ( j )

1

exp

(

− (y − x)2

2σ2 − λx2

)

,

respectively, from the numerator and the denominator of (24).
Then, the max-log approximation of (24) using x0 and x1 leads
to an LLR estimate of the j-th bit level, which is a linear function
of y as

L̃j (y) =
x0 − x1

σ2 y
︸ ︷︷ ︸

(a)

−
(

1
2σ2 + λ

)
(
x2

0 − x2
1
)

︸ ︷︷ ︸
(b)

.
(25)

The term (a) is a function of the channel parameter σ, and the
term (b) is a joint function of the channel (σ) and shaping (λ).
When PS QAM degenerates to uniform QAM by λ = 0, (25) re-
duces to the conventional linear LLR approximation of uniform
QAM, Lj (y) = (x0 − x1)/σ2 × (y − (x0 + x1)/2). Figure 17
shows the exact and piecewise-linear approximate LLRs of the
first 3 bit levels (i.e., of one quadrature) of a PS 64-QAM con-
stellation with BRGC [101, 100, 110, 111, 011, 010, 000, 001].
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Fig. 17. Exact (solid lines) and piecewise-linear approximate (dashed lines)
LLRs of the (a) first, (b) second, and (c) third bit levels, with H(X ) = 2.6 on
the 64-QAM template at SNR = 13 dB.

The piecewise-linear approximation (dashed) yields LLRs that
are indistinguishable from the exact (solid) LLRs when their
magnitudes (i.e., the absolute values |L̃j (y)| on the y-axis) are
small; i.e., the approximation error is negligible for those LLRs
that play a crucial role in SD decoding. The approximation leads
to an increasing discrepancy as the magnitude grows. This, how-
ever, has an insignificant impact on decoding performance, and
almost no impact at high SNR.

SD FEC codes are typically designed by assuming symmetric
LLR distributions, which occur, e.g., as a consequence of BICM
with uniform QAM constellations. However, when a constella-
tion is strongly shaped such that its shaping rate Rs is much
smaller than 2m, LLRs can have highly asymmetric distribu-
tions. Therefore, performance loss can be observed in pragmatic
FEC decoding if the constellation is strongly shaped. As an ex-
ample, the probability distribution of input symbol, PX (X), and
that of the LLR, PLi

(Li), are evaluated for two shaping rates
Rs = 2H(X) with H(X) = 2.7 and 1.8 in Fig. 18, using the 64-
QAM template, m = 3, and the BRGC [101, 100, 110, 111, 011,
010, 000, 001] in each dimension. The LLR distributions are ob-
tained at SNRs of 12.9 dB and 5.1 dB, respectively, which are
the SNRs that achieve capacity with R∗

s = 2H(X). With weak
shaping of H(X) = 2.7, all LLR distributions are symmetric
or close to symmetric. With strong shaping of H(X) = 1.8,
however, L2 and L3 become highly asymmetric around zero.
In particular, at the second bit level, P (L2 < 0) ≈ 0.9963 and
P (L2 > 0) ≈ 0.0037, hence the hard decision (HD) value of
the demapper output is almost always bit 1. This results in the
effect that the code bits are nearly shortened at the second bit
level, which amounts to 1/3 of the code bits. In the extreme case
where λ → ∞, hence H(X) = 1, only the innermost constel-
lation points have a non-zero probability of occurrence, which
results in complete shortening of the code bits that are mapped
to outer symbols (i.e., the code bits at the second and third bit

Fig. 18. Probabilities of 8-PAM constellation points X and LLRs Lj with
(a) H(X ) = 2.7 at SNR = 12.9 dB, and (b) H(X ) = 1.8 at SNR = 5.1 dB.

levels in this example). Therefore, in order to support strong
shaping, FEC codes should be designed to be robust to shorten-
ing at the bit levels with a highly asymmetric LLR distribution.
With this, and looking back at the fact that a fixed coding gap
causes a loss of IR that increases with m, overly strong shaping
of a large QAM template, such as used, e.g., in [94], should
be avoided for pragmatic FEC decoding. Instead, one should
switch to a smaller QAM template whenever the shaping gap
becomes small enough with weak shaping.

C. Pre-FEC Performance Metrics and HD FEC

In terms of reporting raw transmission performance (pre-FEC
BER or Q-factors), attention has to be paid to how these are de-
termined for a shaped constellation. When performing HD of the
received symbols according to the maximum a posteriori (MAP)
decision rule, the decoder chooses x̂ = argmax

x∈X
PX |Y (x|y). If

we represent the constellation symbols X in a binary form
B = [B1 . . . Bm ] using the BRGC, two nearest-neighbor sym-
bols xL , xR ∈ X of a received symbol y differ in only one
bit. Denote this bit level by j. Then, the MAP decision can be
made as x̂ = argmax

x∈{xL ,xR }
PBj |Y (bj (x)|y). In other words, x̂ = xL

if PBj |Y (bj (xL )|y) > PBj |Y (bj (xR )|y), and x̂ = xR other-
wise. Therefore, an optimal decision boundary is given by the
value d such that PBj |Y (bj (xL )|d) = PBj |Y (bj (xR )|d). That is,
PBj |Y (bj (xL )|d)/PBj |Y (bj (xR )|d) = 1, hence Lj (d) = 0 (cf.
(23)). The HD boundaries are a union of the HD boundaries of
constituent bit levels. Since evaluation of exact Lj (y) is compli-
cated as shown in (24), and by knowing that the piecewise-linear
approximate of LLR is very accurate in low-magnitude regimes
(near Lj (y) = 0), we can obtain the HD boundaries using (25)
as by L̃j (d̃) = 0. Therefore, from (25), the union of HD bound-
aries of all bit levels is given by

d̃k =
(
1 + 2λσ2

) xk +xk + 1
2 , (26)

for the M -PAM constellation X = [x1 , . . . , xM ] with x1 <
. . . < xM . Notice that the boundary d̃k is a joint function of
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Fig. 19. Penalty in Q factor when the HD boundaries of uniform 16-QAM are
used for PS 16-QAM.

the channel (σ) and shaping (λ). For uniform PAM with λ = 0,
the boundaries in (26) reduce to d̃k = (xk + xk+1)/2, which
is independent of the parameters σ and λ. Interestingly, given
σ and λ, the PS PAM boundaries are simply a constant multi-
plication of the uniform PAM boundaries, hence making a uni-
form grid; e.g., if DU = [d̃1 , . . . , d̃M −1 ] = [−6,−4, . . . ,+6]
for uniform 8-PAM, DP C S = [−6Δ,−4Δ, . . . ,+6Δ] for PS
8-PAM, where Δ = 1 + 2λσ2 . Therefore, when PCS is used,
the raw pre-FEC BER should be calculated based on DP C S

instead of DU . Figure 19 shows that, when PCS is performed,
QU = 10log10BER obtained with the uniform 16-QAM bound-
aries DU can lead to > 0.5 dB of loss compared to QP C S

obtained with the optimal PS 16-QAM boundaries DP C S .

VI. CONCLUSION

In this paper, we reviewed the theoretic foundation of PCS
and discussed the merits of PCS over other constellation shaping
techniques. Information-theoretic measures such as MI, GMI,
and NGMI were explained with their operational meanings.
Based on these measures, optimization problems are formulated
for systems with optimal and sub-optimal PCS/FEC schemes,
the solution of which provides the parameters of PCS and FEC
that achieve the maximum IR under a given channel condition.
We revisited important assumptions that are commonly made
for ideal PCS and FEC systems, and addressed the potential
pitfalls that should be avoided in practice.

APPENDIX

In this section, we show that QY |X (Y |X) in (11) represents
an approximated channel transition probability that derives the
GMI, in analogy to PY |X (Y |X) that derives the MI, and its
operational meaning is illustrated.

When binary codes are used with non-binary signaling, the
multi-level coding and multi-stage decoding (MLC-MSD) [95],
illustrated in Fig. 13(c), can achieve the SMD capacity. The
MLC-MSD encodes each bit level using a different binary FEC
code whose rate is matched to the bit level, and decodes the
received symbols in a successive manner from the 1st constituent
bit level to the m-th bit level, where each of the m decoders

uses the (error-free) output of all the preceding decoders (cf.
Fig. 13(c)). The reason why MLC-MSD can achieve the SMD
capacity will become clear below.

First, recall that B is merely a binary representation of the
non-binary symbol X , hence we have

PY |X (Y |X ) = PY |B (Y |B ) = PB|Y (B|Y )PY (Y )
PB(B) , (27)

where the last equation is again due to Bayes’ rule. Here, using
the chain rule, the likelihood can be rewritten as

PB|Y (B |Y ) = PB1 ...Bm |Y (B1 . . . Bm |Y )

= PB1 |Y (B1 |Y ) × PB2 |B1 Y (B2 |B1Y ) · · ·
× PBm |B1 ...Bm −1 Y (Bm |B1 . . . Bm−1Y )

=
m∏

j=1

PBj |B1 ...Bj −1 Y (Bj |B1 . . . Bj−1Y ). (28)

For example, with the BRGC {101, 100, 110, 111, 011,
010, 000, 001} of the 8-PAM constellation X = −7,−5,

. . . ,+7, we have X (1,2)
00

Δ= {x ∈ X : b1(x) = 0, b2(x) = 0} =
{+5,+7}, hence PY |B1 B2 (y|00) =

∑
x ′∈X ( 1 , 2 )

0 0
PY |X (y|x′) is

calculated using the measurable PY |X (Y |X), which in
turn can be plugged into PB2 |B1 Y (0|0y) = PY |B1 B2 (y|00)
PB2 (0)/PY (y) to evaluate (28). Eventually, by plugging (28)
into (27), we obtain an equivalent form of PY |X (Y |X) ex-
pressed using the metrics of BMD as

PY |X (Y |X )

=

⎡

⎣
m∏

j=1

PBj |B1 ...Bj −1 Y (Bj |B1 . . . Bj−1Y )

⎤

⎦ PY (Y )
PX (X)

.

(29)

Using (29), an optimal MLC-MSD that consists of m different
length-n binary FEC codes finds m codewords b1 , . . . , bm such
that the product of the channel transition probabilities

n∏

i=1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

m∏

j=1

PBi , j |Bi , 1 ...Bi , j −1 Y (bi,j |bi,1 , . . . , bi,j−1 , yi )

︸ ︷︷ ︸
(a)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

PY (yi)
PX (xi)
︸ ︷︷ ︸

(b)

(30)
is maximized, where bi,j denotes the j-th bit of the
transmitted symbol xi . When nc → ∞, the terms
(a) and (b) can be factored out of the product as
limnc →∞

∏nc

i=1 [(a)(b)]=limn→∞
∏nc

i=1 (a) · limn→∞
∏nc

i=1(b),
since both limits separately exist. In particular, due to the
asymptotic equipartition property (AEP),

∏nc

i=1 (b) becomes

concentrated at a fixed value 2−nc (H(Y )−H(X )) that is inde-
pendent of the choice of the codeword (i.e., independent of
decoding), as nc → ∞. Therefore, decoding in MLC-MSD is
a function only of the remaining term

∏nc

i=1 (a). The chain
operations in (a) describe the successive decoding procedure
of the MLC-MSD depicted in Fig. 13(c). This shows why
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MLC-MSD can achieve the SMD capacity using binary codes
and successive BMD.

MLC-MSD has a high complexity due to the use of multi-
ple different FEC codes and a long latency due to successive
decoding of bit levels and is hence not very practical. The par-
allel BMD architecture shown in Fig. 13(d) is a low-complexity
low-latency alternative to MLC-MSD. Parallel BMD uses an
approximation of the term (a) in (30) without relying on knowl-
edge of any other bit levels as

PBj |B1 ,...,Bj −1 ,Y (Bj |B1 , . . . , Bj−1 , Y )≈PBj |Y (Bj |Y ). (31)

By plugging the right-hand side of (31) into (29), it follows
that the channel transition probability PY |X (Y |X) can be ap-
proximated as (11), in which the term PY (Y )/PX (X) has a
vanishing effect on decoding as the code length increases, for
the same reason as in (30). Therefore, optimal BMD finds a
codeword that maximizes the product of PBj |Y (Bj |Y ) over the
received symbols that span all of the nc codeword bits. Note
that the mismatched decoding metric in (11) is valid for arbi-
trary distributions PX , whereas the mismatched decoding met-
ric has been derived for uniform PX in most cases. In a special
case where PX is uniform and bit levels B1 , . . . , Bm are inde-
pendent of each other, such as in BICM with BRGC, the mis-
matched decoding metric can be simplified as QY |X (Y |X) =∏m

j=1 qY |Bj
(Y |Bj ), where q

Y |Bj
Δ=

∑
x ′∈X i

b j (x )
PY |X (Y |x′), as

derived in [87].
We are now to derive (13). First, by substituting (11) into

(12), we have

GMI (X;Y )

= EX,Y

[

log2
QY |X (Y |X )

∑
x ′∈X PX (x′) QY |X (Y |x′ )

]

=
∑

x∈X

∫

y

PX,Y (x, y) log2
QY |X (Y |X )

∑
x ′∈X PX (x′) QY |X (Y |x′ )

dy

=
∑

x∈X

∫

y

PX,Y (x, y)log2

∏m
j=1 PBj |Y (bj (x) |y )

PX(x)
∑

x ′∈X
∏m

j=1PBj |Y (bj (x′) |y )
dy

=
∑

x∈X

∫

y

PX,Y (x, y)log2

∏m
j=1 PBj |Y (bj (x) |y )

PX (x)
∑

x ′∈X
∏m

j=1
PB j Y (bj (x ′),y )

PY (y )

dy

=
∑

x∈X

∫

y

PX,Y (x, y)

×log2

∏m
j=1 PBj |Y (bj (x) |y )

PX (x)
PY (y )m

∑
x ′∈X

∏m
j=1 PBj Y (bj (x′) , y)

dy. (32)

In the denominator of the log term,

∑

x ′∈X

m∏

j=1

PBj Y (bj (x′) , y)

=
∑

[b1 ...bm ]∈{0,1}m

m∏

j=1

PBj Y (bj , y)

=
∑

[b2 ...bm ]∈{0,1}m −1

PB1 Y (0, y)
m∏

j=2

PBj Y (bj , y)

+
∑

[b2 ...bm ]∈{0,1}m −1

PB1 Y (1, y)
m∏

j=2

PBj Y (bj , y)

=(PB1 Y (0, y)+PB1 Y (1, y))
∑

[b2 ...bm ]∈{0,1}m −1

m∏

j=2

PBj Y (bj , y)

= PY (y)
∑

[b2 ...bm ]∈{0,1}m −1

m∏

j=2

PBj Y (bj , y) .

By recursion, therefore, we obtain

∑

x ′∈X

m∏

j=1

PBj Y (bj (x′) , y) = PY (y)m .

By substituting this into (31), we have

GMI (X;Y )

=
∑

x∈X

∫

y

PX,Y (x, y) log2

∏m
j=1 PBj |Y (bj (x) |y )

PX (x)
dy

=
∑

x∈X

∫

y

⎡

⎣PX,Y (x, y) log2

m∏

j=1

PBj |Y (bj (x) |y )

⎤

⎦ dy

︸ ︷︷ ︸
(a)

−
∑

x∈X

∫

y

[PX,Y (x, y) log2PX (x)] dy

︸ ︷︷ ︸
(b)

.

The term (a) can be developed as

(a) =
∑

x∈X

∫

y

⎡

⎣PX,Y (x, y)
m∑

j=1

log2PBj |Y (bj (x) |y )

⎤

⎦ dy

=
m∑

j=1

∫

y

[
∑

x∈X
PX,Y (x, y) log2PBj |Y (bj (x) |y )

]

dy

= −
m∑

j=1

H (Bj |Y ) .

The term (b) can be developed as

(b) = −
∑

x∈X

[∫

y

PX,Y (x, y) dy

]

log2PX (x)

= −
∑

x∈X
PX (x) log2PX (x)

= H (X) .

Therefore, we obtain

GMI (X;Y ) = (a) + (b) = H (X) −
m∑

j=1

H (Bj |Y ) ,

which is equal to (13).
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[84] G. Böcherer, P. Schulte, and F. Steiner, “Probabilistic shaping and for-
ward error correction for fiber-optic communication systems,” J. Lightw.
Technol., to be published.

[85] T. Yoshida, M. Karlsson, and E. Agrell, “Performance metrics for systems
with soft-decision FEC and probabilistic shaping,” IEEE Photon. Technol.
Lett., vol. 29, no. 23, pp. 2111–2114, Dec. 2017.

[86] N. Merhav, G. Kaplan, A. Lapidoth, and S. Shamai Shitz, “On informa-
tion rates for mismatched decoders,” IEEE Trans. Inf. Theory, vol. 40,
no. 6, pp. 1953–1967, Nov. 1994.
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