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Abstract—A precise flip-chip bonding (FCB) technology for in-
dium phosphide semiconductor optical amplifiers (InP-SOAs) on
a silicon photonics platform within less than ±1-µm alignment ac-
curacy was developed. For efficient optical coupling and a relaxed
alignment tolerance, the mode field on both the InP-SOAs and the
Si waveguides was expanded by spot-size converters (SSCs). On the
InP-SOAs, width-tapered SSCs were used to obtain an isotropic
mode-field having an approximately a 3-µm diameter. On the sil-
icon photonics platform, dual-core SSCs were used to expand the
same mode-field size of 3 µm as for the SSCs on SOAs. Using the
FCB technology and the SSCs, an in-line optical amplification of
15 dB was achieved by in-line integrated SOAs with angled waveg-
uides. The optical coupling losses were 7.7 dB, which included
5.1-dB excess losses by misalignment and a gap between InP-SOA
and Si waveguides. A 4 × 4 Si switch with a hybrid-integrated 4-ch
SOA array was fabricated, and achieved the first demonstration of
a lossless Si switch.

Index Terms—Flip-chip devices, integrated optics, optical cou-
pling, optical switches, semiconductor optical amplifiers, silicon
photonics.

I. INTRODUCTION

O PTICAL matrix switches are key components for future
energy-saving networks because they can omit optical-
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electric conversion at the network nodes [1]–[3]. Until now,
several optical switching platforms including free-space,
III-V photonic integration and silicon photonic integration
have been investigated [4]. In free-space based on micro-
electromechanical systems (MEMS), large-scale switches with
low insertion loss, low crosstalk and polarization-independent
operation have been demonstrated. However, the high driving
voltage of MEMS switches is prohibitive for low-cost switching
systems due to the complexity of drivers. In III-V photonic inte-
gration, monolithically-integrated 16 × 16 SOA-based switches
have been demonstrated. However, the possible port number
is limited by the maximum available InP wafer size. In sil-
icon photonic integration, large-scale and compact switches
are expected by utilizing advanced complementary metal-
oxide-semiconductor (CMOS)-compatible process. Silicon wire
waveguides permit small bending radii, on the order of sev-
eral micrometers, which enable large-scale integration at high
density. However, those switches suffer from large cumulative
optical losses due to the elements, such as phase shifters, cou-
plers and intersections. Recently, on-chip optical amplification
by semiconductor optical amplifiers (SOAs) is expected to be
a promising solution to overcome those losses. Until now, vari-
ous approaches have been investigated, including wafer-bonding
[5], [6] and flip-chip bonding (FCB) [7]–[11]. In wafer-bonding
technologies, the alignment is lithographically determined on
the wafer, which enables high-performance devices with ef-
ficient coupling between the SOAs and Si optical platforms.
However, there are some difficulties for existing foundries to
launch complex technologies, such as the III-V process on a Si
wafer. Therefore, FCB technologies are focused on here because
discrete InP-SOAs with optimized structures by the standard
III–V process can be used. Fig. 1(a) is the schematic structure
of a Si matrix switch with a hybrid-integrated InP-SOA. For in-
line amplification, both input and output waveguides of the SOA
are coupled to Si waveguides, as shown in Fig. 1(b). In order to
achieve efficient optical coupling and a relaxed alignment toler-
ance, the mode field on both the InP-SOA and the Si waveguide
are expanded by spot-size converters (SSCs). Although in-line
integration of InP-SOAs for Si waveguides has been attempted
for Si wire [7]–[10] and μm-scale Si waveguides [11], it remains
challenging due to the optical losses at both sides of the SOA
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Fig. 1. (a) Schematic structure of a Si matrix switch with hybrid-integrated
SOAs and (b) configuration of flip-chip bonding for in-line amplification.

caused by misalignment of the SOA chips. A lossless operation
of Si switch with flip-chip bonded SOA has not been achieved
until recently, but we successfully demonstrated the first lossless
operation (In [8], [9], we presented the preliminary results).

In this paper, we reported hybrid-integration of an SOA on a
Si optical platform in details. SSCs and hybrid-integration tech-
nologies are described for an InP-SOA on a Si optical platform
by using precise FCB technologies with less than ±1-μm align-
ment accuracy. Using this, an in-line optical amplification of
15 dB was achieved by a flip-chip bonded SOA with an angled
waveguide. A lossless operation was demonstrated for a 4 ×
4 Si switch with in-line integrated 4ch-SOA array To the best
of our knowledge, our results are the first demonstration of a
lossless Si switch with flip-chip bonded SOA.

This paper is comprised of five sections. In Section II, the
design and characteristics of SSCs on SOAs and Si optical plat-
forms are shown. In Section III, FCB technologies and estimated
excess loss are described. In Section IV, the in-line optical
amplification and lossless operation of 4 × 4 Si switches by
hybrid-integrated SOAs are demonstrated. Finally, the results
are summarized in Section V.

II. SPOT-SIZE CONVERTERS

In this section, the width-tapered SSCs on SOAs and dual-
core SSCs on Si optical platforms for efficient optical coupling
and relaxed alignment tolerance are described. At the optical
interface between SOAs and Si optical platforms, an isotropic
mode field having an approximately 3-μm diameter by SSCs
was obtained. A dual-core SSC with a wide SiON core as an
interface for the optical fibers was also adopted.

A. Width-Tapered SSCs on the SOAs

The schematic structures of the SSCs and measured near
field pattern (NFP) on a SOA at the wavelength of 1550-nm
range are shown in Fig. 2. The SOA had InGaAsP MQWs
with semi-insulating InP blocking layer designed for TE po-
larization [12]. Mode field diameter was defined as a diameter

Fig. 2. Schematic of SSC on a SOA and measured NFP.

Fig. 3. Calculated mode field diameter of SOA as a function of width tip.

Fig. 4. Schematic of SSC on a Si optical platform and measured NFP.

where the intensity value falls to 1/e2 of the maximum. Fig. 3
shows the calculated mode-field diameter as a function of width
tip. The SSC had a 200-μm-long tapered waveguide in which
the waveguide width was linearly changed from 1.6 μm to a sub-
micron wide tip. The tip width of 0.6 μm was used to obtain a
3-μm mode-field diameter, as shown in Fig. 3.

B. Dual-Core SSCs on Si Optical Platforms

The Si optical platform was fabricated on a 220-nm thick SOI
wafer having a 3-μm-thick BOX layer. The schematic structures
of SSCs and NFP on a Si optical platform at the wavelength of
1550-nm range are shown in Fig. 4. In the SSC region for SOA
coupling, the Si tapered waveguide was covered with a low-
index SiON core (n = 1.50). The SiON core had a 3-μm-wide
and 3-μm-high cross section to match the mode-field size of
the SSC on the SOA. An efficient optical coupling and relaxed
alignment tolerance was expected due to the mode-field match-
ing at a diameter of about 3 μm by the SSCs. The Si taper length
and tip width are key parameters for adiabatic and efficient mode
conversion between the Si tapered waveguide and SiON core.
To determine the necessary geometry of the Si taper waveguide,
the mode conversion loss at the wavelength of 1550 nm as a
function of Si tip width was calculated for three kinds of taper
length (see Fig. 5). A tapered waveguide longer than 200 μm
with a tip width of <100 nm was required. A 300-μm-long ta-
pered waveguide with 100-nm width tip was fabricated in an ad-
vanced process line equipped with ArF immersion lithography
at the National Institute of Advanced Science and Technology
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Fig. 5. Calculated mode conversion loss of SSCs on a Si optical platform.

Fig. 6. Schematic of SSC with 7 × 3-μm SiON core on a Si optical platform
and calculated NFP.

Fig. 7. Calculated tolerance curve for the optical coupling between SSCs with
7 × 3-μm SiON core and DSF.

(AIST), Tsukuba, Japan. On the other hand, the Si optical plat-
form has optical fiber coupling for input and output signals. A Si
optical switch consists of multi-port input-output connections,
so an optical fiber array is desirable. A dispersion shifted fiber
(DSF) array with approximately 8-μm optical mode was used.
A dual-core SSC with a wide SiON core with a 7-μm-wide and
3-μm-high cross section as an interface to the DSF array was
used, as shown in Fig. 6. Fig. 7 shows the simulated tolerance
curve for the optical coupling between the dual-core SSCs with
a 7 × 3-μm SiON core and the DSFs. The optical loss includes
0.3-dB mode conversion loss of SSCs. A low optical loss of
1.5 dB/facet can be seen at the best alignment. Even taking into
account 1-μm core pitch error on a DSF array, the excess loss
can be suppressed within 0.4 dB due to the large optical mode
of SSCs and DSFs.

III. FCB OF AN SOA ON A SILICON OPTICAL PLATFORM

The SOA was flip-chip bonded on the Si trench where the
TEOS upper cladding layer, SOI, and BOX layers were removed
and AuSn solder was deposited (Sn = 30 wt.%, melting temper-
ature = 390 °C). The FCB process was carried out with passive

Fig. 8. Distribution of horizontal misalignment for flip-chip bonded SOAs.
The inset is a SEM image of waveguides at the coupling site. The waveguide
core of SOA is located at center of two red arrows.

Fig. 9. Relationship between AuSn thickness after FCB and load of bonder.

alignment utilizing the marks on both the SOA and the Si op-
tical platform. The distribution of the horizontal misalignment
for flip-chip bonded SOAs are shown in Fig. 8. A three-sigma
standard deviation (3σ) of 0.9 μm was determined from the
SEM observation of 13 test samples. In the vertical direction,
the alignment of waveguide heights was adjusted by finely con-
trolling the load of the bonder and the thickness of each layer
in the SOA and the Si optical platform. Fig. 9 shows the rela-
tionship between the AuSn thickness after FCB and the load
of the bonder. In the low load area (<20 gf), the AuSn main-
tained the as-deposited thickness. When the load was more than
20 gf, the AuSn thickness decreased by approximately 80%.
The load between 20 and 50 gf was preferable for a stable AuSn
thickness after FCB because it enabled stable alignment of the
waveguide heights. The misalignment of waveguides heights
was confirmed to be within a range of ±0.5 μm by observing
cross sections for a few bonded samples. In the gap direction
between the SOA and the trench wall of the Si optical plat-
form, the errors were not only due to the FCB misalignment,
but also due to the SOA edge position deviation by cleaving.
The typical gap was set to 5 μm, which was enough to avoid
the hit between the SOA and the trench wall. The gap between
3 and 7 μm was due to the SOA edge position deviation of ±2
μm by cleaving. To reduce this large gap for efficient optical
coupling, not only improving the cleaving accuracy but also
adopting other methods such as using etched-facet SOAs [13]
is a promising candidate. Fig. 10 shows the measured tolerance
curve for the optical coupling between the SSCs on the SOA
and the Si optical platform. The SOA was translated in the hor-
izontal, vertical, and gap directions relative to the Si optical
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Fig. 10. Measured tolerance curve for the optical coupling between SSCs on
an InP-SOA and a Si optical platform.

platform while measuring the optical coupling. ASE from the
SOA was used as a light source. For a 5 ± 2-μm gap, an ex-
cess loss of <1.6 dB/facet was expected at the best alignment.
For our horizontal alignment accuracy of ±1 μm, the additional
loss was 0.4 dB/facet. For our vertical alignment accuracy of
±0.5 μm, an additional 0.2-dB/facet loss can be seen. There-
fore, a total excess loss of <2.2 dB/facet was estimated. In the
case of in-line integration, the total excess loss was <4.4 dB on
both sides.

Die shear testing was also performed on a single chip to evalu-
ate the bond strength of the solder joint before and after thermal
cycle tests. The bonding area and die size were 46400 μm2 and
300 × 800 μm, respectively. The temperature changed from
−40 to +125 °C for 500 cycles in a nitrogen atmosphere. The
rate of temperature change was 6 °C/min. A shear force be-
fore and after the thermal cycle test was 360 and 340 gf, which
indicates strong bonds with high reliability.

IV. IN-LINE AMPLIFICATION

In this section, the FCB technology for InP-SOA was applied
to in-line amplification for the Si optical platform. The SOA
had InGaAsP MQWs with semi-insulating InP blocking layer
designed for TE polarization [12]. A 3-μm mode-field diameter
at the wavelength of 1550-nm range was obtained at the in-
terface facet using a 200-μm-long SSC in which the waveguide
width was linearly changed from 1.6 to 0.6 μm. First, InP-SOAs
with straight waveguides were used for a 1 × 8 Si optical split-
ter with InP-SOA to demonstrate the in-line amplification. The
waveguide was tilted to improve the in-line amplification. The
tilted InP-SOA waveguide reduced the back reflection between
the SOA and the Si optical platform that limited the amplifica-
tion. The in-line amplification by the SOA and a 4 × 4 Si switch
with a 4ch-SOA array was evaluated to demonstrate the lossless
operation of the switch.

A. In-Line Amplification by an SOA With Straight Waveguide

A 1 × 8 Si optical splitter with hybrid-integrated InP-SOA
was fabricated to demonstrate the loss-compensated operation
of the Si optical platform. Fig. 11 shows schematic view of a
1 × 8 Si optical splitter with the SOA. The 600-μm-long SOA
with straight waveguide was flip-chip bonded on the 1 × 8 split-

Fig. 11. Layout of 1 × 8 Si optical splitter with hybrid-integrated InP-SOA.

Fig. 12. Transmission spectrum of 1 × 8 splitter. Inset shows measured ASE
spectrum around 1531 nm.

ter. The SOA facets were coated with anti-reflection (AR) films
for air. The trench wall of Si optical platform was uncoated. Fres-
nel reflection was estimated to be approximately 3%, which led
to 0.28-dB Fresnel losses at both sides. The footprint of the 1× 8
splitter part was as small as 0.2 mm × 0.9 mm due to the
Si wire waveguides. A multimode interference (MMI) cou-
pler was used as the 3-dB splitters and dual-core SSCs with a
3 × 3 μm SiON core as the interface of the SOA and the fiber.
Fig. 12 shows the fiber-to-fiber transmission spectrum of the
1 × 8 splitter with InP-SOA operated by an 80 mA current at
25 °C with a thermoelectric cooler (TEC). The difference in
the transmission spectrum among the eight output channels was
small, which means the fabrication was uniform. The fiber–to-
fiber transmission was −4.6 dB at the peak wavelength. This
transmission included 4.6-dB coupling losses to the two lensed
fibers, a 9-dB loss for three-stage splitters, a 1-dB propaga-
tion loss for Si waveguides, and a gain of InP-SOA. This result
means that a 10-dB net gain was achieved by the in-line InP-
SOA, which compensated for the on-chip loss of 10 dB by the
Si splitter. However, the SOA chip gain was limited to 16 dB
due to the back reflection. From the inset in Fig. 12, we can see
a gain ripple of <4 dB, which was worse than a reported value
by other group [10]. Our structure for reduced back reflection
was described in the next section.
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Fig. 13. Schematic view of test chip used for evaluation of in-line
amplification.

Fig. 14. Transmission spectrum of the test chip. Inset shows measured ASE
spectrum around 1521 nm.

B. Improvement of In-Line Amplification by an SOA With
Angled Waveguide

Fig. 13 shows a schematic view of the test chip used for
evaluation of the in-line amplification by the in-line integrated
SOA. The SOA waveguide was inclined seven degrees to avoid
the back reflection that would lead to gain ripples. The SOA
length was 800 μm and the facets were coated with AR films
for an UV epoxy resin. The gaps between the SOA and the
Si optical platform were filled with the resin. Dual-core SSCs
with 3 × 3-μm SiON core were used as the interface of
the SOA and the fiber. A reference waveguide for coupling
losses to lensed fibers on the same chip was fabricated. Fig. 14
shows the transmission spectrum of this sample operated by a
100-mA current at 25 °C with TEC. The fiber-to-fiber transmis-
sion was 12.6 dB at the peak wavelength, which means that a
15.3-dB net gain was achieved since this transmission included
2.8-dB fiber coupling losses. The details of the coupling ex-
cess losses between the SOA and the Si test chip are shown
in Table I. At the input interface of the SOA, excess losses for
the gap, the horizontal and vertical misalignments were 1.2,
0.2, and 0.9 dB/facet, respectively. This means the total excess
losses were 2.3 dB/facet. At the output interface of the SOA,
excess losses for the gap, the horizontal and vertical misalign-
ments were 1.5, 0.6, and 0.7 dB/facet. This means the total ex-
cess losses were 2.8 dB/facet. Therefore, the total excess losses
at the both input and output interface were 5.1 dB. The ideal

TABLE I
DETAILS OF EXCESS LOSSES BETWEEN SOA AND TEST CHIP

Fig. 15. Microscope image of fabricated 4 × 4 Si switch with hybrid-
integrated InP-SOA and close-up of 2 × 2 element switch.

coupling losses without the excess losses were estimated to be
2.6 dB by subtracting the 15.3-dB net gain and 5.1-dB excess
losses from the 23-dB SOA chip gain. In this work, the depth of
the trench was deeper than ideal due to a design error, resulting
in large excess losses in the vertical direction. The excess losses
can be reduced in the vertical direction from 0.9 to 0.2 dB at
the input interface and from 0.7 to 0.2 dB at the output interface
if the vertical misalignment is decreased to within 0.5 μm. As
for the gain ripple, we can see a gain ripple of <1.6 dB from
the inset in Fig. 14, which was reduced from <4 dB in the case
of the SOA with straight waveguide. This reduced gain ripple
enabled the maximum SOA chip gain of 23 dB.

C. Lossless Operation of a Si Switch With a 4ch-SOA Array

A 4 × 4 Si optical switch with hybrid-integrated InP-SOA
was fabricated, as shown in Fig. 15. In this switch, the integrated
SOA must be multi-channel to compensate for losses on all
paths. A 4ch-SOA array with a narrow channel pitch of 62.5 μm
and separate electrodes was used for each channel. The 4 × 4
switch consisted of thermo-optic 2 × 2 double-Mach-Zehnder
switches with TiN heaters [2], [14]. The footprint of the 4 × 4
switch part was 3.3 mm × 0.7 mm. Dual-core SSCs with a
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Fig. 16. Transmission spectrum of 4 × 4 Si switch with InP-SOA. Inset shows
measured ASE spectrum around 1531 nm.

Fig. 17. Transmission of all 16 paths at wavelength of 1530 nm.

3 × 3-μm and a 7 × 3-μm SiON core were used as the inter-
face of the SOA and the fiber, respectively. Fig. 16 shows the
fiber-to-fiber transmission of the 4 × 4 switch with the InP-
SOA operated by a 35-mA current at 25 °C with TEC. The
coupling loss between the SSCs and DSFs was measured to be
1.6 dB/facet, which indicates efficient optical coupling due to the
SSC with the 7 × 3-μm SiON core. The fiber-to-fiber transmis-
sion was 4.5 dB at the gain peak wavelength. This transmission
included 3.2-dB coupling losses to the two fibers, a 1-dB loss for
the 4 × 4 switch, a 0.8-dB propagation loss and the gain of the
InP-SOA. This result means that a 9.5-dB net gain was achieved
by the in-line InP-SOA and a 4.5-dB insertion gain of the
4 × 4 switch. From the inset in Fig. 16, we can see a small gain
ripple of <1 dB. The fiber-to-fiber transmission of all 16 paths
at a wavelength of 1.53 μm is shown in Fig. 17. The horizontal
axis is the path ID and specifies the input-output connections.
The difference of transmission for each of the switching states
was small, which means there was a good uniformity for the Si
switch and uniform optical coupling between the Si photonics
platform and the SOA. To the best of our knowledge, this is the
first demonstration of a lossless operation of Si switch with an

in-line integrated SOA. More detailed switching characteris-
tics and lossless transmission of 8-channel, 32-Gbaud 16-QAM
WDM signals through the 4× 4 Si switch with hybrid-integrated
SOA were reported in [9].

V. CONCLUSION

Large-scale and compact Si optical matrix switches are key
components for optical pass networks, but they suffer from cu-
mulative optical losses. On-chip optical amplification by SOAs
is expected to be a promising solution to overcome those losses.
A precise FCB technology of an InP-SOA on a Si optical plat-
form within ±1 μm alignment accuracy was developed in this
work and achieved in-line optical amplification of 15 dB by in-
line integrated SOA with angled waveguides. A 4 × 4 Si optical
switch was fabricated with a hybrid-integrated 4ch-SOA array
and demonstrated the lossless operation of the switch. This is the
first demonstration of fully loss-compensated Si switch with in-
line integrated SOA. This technology enhances the ability of Si
optical platform and will enable large-scale Si optical platform
with an optical leveling function.
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