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Abstract—We demonstrate differential mode delay (DMD)
unmanaged 2500-km 12-core × 3-mode multicore few-mode
fiber (MC-FMF) and 6300-km 3-mode FMF transmission.
Mode-division multiplexed signals exhibit different transmission
behavior depending on excited spatial modes in the presence of
mode-relevant physical phenomena including DMD and mode-
dependent loss (MDL). In weakly coupled FMF transmission over
long distance where overall DMD and MDL grow almost linearly
with fiber length, these phenomena restrict achievable information
capacity and/or transmission reach. This paper presents a newly
developed transmission scheme and a multiple-input multiple-
output (MIMO) signal processing technique that are designed
for achieving long-haul FMF transmission. Permutating spatial
channels cyclically at each span induced quasi-strongly coupled
transmission regime and hence significantly suppressed DMD-
induced pulse broadening. Layered MIMO signal processing
comprising multiple stages performing successive signal detection
and intermodal interference canceling mitigated MDL impact with
more than 2-dB Q-factor improvement. The combined use of these
techniques enabled us to achieve the first-ever transoceanic-class
long-haul FMF transmission.

Index Terms—Differential mode delay (DMD), mode depen-
dent loss (MDL), MIMO equalization, space division multiplexing
(SDM), successive interference cancellation (SIC).
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I. INTRODUCTION

W ITH the advent of space division multiplexing (SDM)
technologies that transmit multiple channels utilizing

spatial aggregation over multicore (MC) and/or fewmode fibers
(FMFs) [1], the high potential of fiber capacity enhancement
offered by SDM systems has been demonstrated by several
high-capacity and/or long-haul SDM transmission experiments
[2]–[8]. Employing spatial channels in MC-FMFs and FMFs
as parallel waveguides has been an attractive approach to fully
exploit spatial degrees of freedom of SDM fibers. Although
over the past few years several long-haul FMF transmission
experiments were successfully demonstrated with transmission
distance up to 3500 km [9], there still remain many challenging
issues to overcome in developing the future SDM systems. In-
herent physical phenomena characterizing a FMF transmission
line include differential mode delay (DMD) and mode depen-
dent loss (MDL). In weakly-coupled FMF transmission where
low energy exchange between different mode groups is stimu-
lated during optical signal propagation, almost linear accumula-
tion of overall DMD and MDL is observed with increased trans-
mission distance [6], [10], [11]. This imposes negative impacts
on achievable information capacity and multiple-input multiple-
output (MIMO) signal detection processing. In particular,
DMD induces pulse broadening for mode-division-multiplexed
(MDM) signals, resulting in enhanced equalizer memory length
(EML) as large as that corresponding to a thousand equalizer
taps in receiver-side MIMO signal detection [12]–[14]. In the
presence of a large MDL, the widely-used conventional lin-
ear MIMO equalizer suffers from residual intermodal crosstalk
due to a non-unitary channel property. Consequently, these phe-
nomena still remain as dominant barriers to extending FMF
transmission reach. One of the approaches to combat DMD is
DMD management DMD along transmission lines by concate-
nating positive/negative DMD FMFs [15], [16]. Alternatively, a
strongly-coupled regime generally driven in coupled-core MC
transmission fibers would be beneficial to statistically reduce
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Fig. 1. SDM transmission distance vs. spatial multiplicity.

DMD and MDL impacts [11], [17]. In FMF transmissions,
introducing intentional intermodal coupling may also provide
advantages by employing mode scramblers comprising a mode
multiplexer/demultiplexer pair [18], [19] or long-period fiber
gratings [20]–[22]. With respect to future deployable terrestrial
SDM systems, a DMD-unmanagement property is one of the
key topics from the perspective of system design and operation.

In this paper, we extend the work presented in [8] with more
detailed discussion where we demonstrate record-long wave-
length division multiplexed (WDM) SDM transmission experi-
ments over FMFs with transmission reach exceeding 2500 km
for a 12-core × 3-mode MC-FMF and 6300 km for a single-core
FMF. Quasi-strongly-coupled FMF-based transmission lines
were realized that helped to achieve DMD-unmanaged long-
haul FMF transmission. The transmission strategy described
in this paper, which we call cyclic mode permutation (CMP),
cyclically shifts spatial mode signals every span as a means of
inducing a strong intermodal coupling process. We also applied
the intermodal interference cancelling technique proposed in our
previous work [23] to long-haul FMF transmission as a means
to extend transmission reach of MDM signal propagation in the
presence of a large MDL. The achieved transmission reach of
2500 km over MC-FMF corresponds to a five-fold increase in
transmission reach relative to that reported in previous work
[24]. Furthermore, the 6300 km reach over FMF is the first-ever
demonstration of ultra-long-haul transoceanic-class transmis-
sion employing FMFs.

The rest of this paper is organized as follows: Section II pro-
vides detailed descriptions of the newly-developed techniques
that significantly contributed to the extended FMF transmission
reach extension achieved. Then Section III describes an exper-
imental setup that was designed to achieve reliable long-haul
MDM signal transmission over FMFs. In Section IV, trans-
mission performance enhancement attained with the proposed
techniques is experimentally explored, followed by a demonstra-
tion of the long-distance transmission results. Finally, Section V
concludes this paper with a summary.

II. KEY ENABLERS FOR LONG-HAUL FMF TRANSMISSION

Figure 1 shows the SDM transmission results we obtained
employing FMF/MC-FMFs. The record-long transmission re-
sults presented in this paper were achieved mainly by combin-

Fig. 2. Diagram of CMP transmission strategy for a 3-mode fiber.

ing transmission and signal processing techniques. This section
aims to provide the details of those techniques.

A. Transmission With Cyclic Mode Permutation

It is a well-known fact that multimode fiber (MMF) was the
first fiber deployed in the early stage of fiber-optic communi-
cation systems in the 1970s due to its larger spatial aperture
property than that of single-mode fiber (SMF). Accordingly the
physical characteristics of signal pulse evolution along a MMF
were intensively studied in that period in terms of DMD and
modal bandwidth. In particular, it was reported that the width of
signal impulse responses exhibited the square root growth with
fiber length, if multiple random modal coupling exists among
its guided modes [25]–[28]. This can be understood from an
analogy of dispersion between two polarization mode (i.e., po-
larization mode dispersion) in a SMF. A coupled transmission
with random modal mixing is beneficial in terms of the compu-
tational complexity required for MIMO signal processing [29].
Unfortunately, modal coupling efficiency in a FM transmis-
sion fiber is expected to be low, since each modal group has
highly unequal propagation constants – this is referred to as a
weakly-coupled regime [10]. One effective way to deal with
this is to introduce deliberately strong mode coupling along
or between FMFs. Currently reported techniques to generate
a strong coupling process include mode interchange using a
mode multiplexer/demultiplexer pair [18], [19] or long-period
fiber grating [20]–[22]. Even in uncoupled SDM transmission
over MC fibers, a transmission scheme with a core-to-core
signal rotation was found to bring the equalization effect for
transmission performance over all cores [30], which generally
represent different characteristics due to loss, dispersion, and
inter-core crosstalk. In this paper, with the aim of achieving
DMD-unmanaged long-haul FMF transmission, we propose a
novel transmission scheme named CMP that provides significant
suppression effects against DMD-induced pulse broadening. A
schematic of CMP strategy is illustrated in Fig. 2. In transmis-
sion with CMP, each mode signal (including degenerate modes)
is transformed into other mode signals before entering the next
span via a mode-selective multiplexer/demultiplexer pair (for
example, signals propagated as LP01 mode at the p-th span
are converted and transmitted as LP11a mode at the (p + 1)-th
span). Similarly, deliberate mode transformation is cyclically
performed every span. Therefore, after information symbols are
transmitted over several spans they are expected to periodically
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path through each spatial channel in a cyclic manner. This equiv-
alently achieves a quasi-strongly-coupled FMF transmission
that suppresses pulse spreading and equalizes transmission per-
formance. This will be shown in detail in Section IV.

B. Unreplicated Successive Interference Canceller

In optical MIMO systems, MIMO signal processing has a
crucial role in detecting data streams from mutually-coupled
received signals, even in wealkly-coupled FMF transmission
lines. One of the most popular signal processing method used
in optical MIMO transmission is adaptive MIMO equalization
using coefficient updating based on a stochastic gradient descent
approach due to its properties of manageable complexity and
channel tracking. Indeed, it has contributed to recently-achieved
transmission reach extension [6], [9], [24]. In the presence of
large MDL (and in a low signal-to-noise ratio (SNR) regime),
however, intense residual intermodal crosstalk remaining after
linear MIMO equalization for MDL-impaired MDM signals
directly degrades post-processing signal-to-interference-noise
ratio (SINR). The degradation is more severe in a higher MDL
link due to stronger residual intermodal interference.

The scheme in which interference nulling and cancelling are
performed sequentially, which is called successive interference
cancellation (SIC) [31], is beneficial to improve SINR. We have
proposed an unreplicated SIC (USIC) detection scheme to en-
hance tolerance against MDL that does not require computa-
tion of channel estimation for replica signal generation [23].
Conducted experiment results showed that the proposed USIC
scheme outperformed the widely-used linear MIMO equaliza-
tion and provided MDL tolerance improvement of 3.3 dB and
OSNR gain of >4.5 dB. In the presented work we further mod-
ified the USIC scheme to employ soft estimates of transmitted
symbols for interference subtraction, and applied it to MDL-
impaired MDM signals propagating over long-haul FMF/MC-
FMF transmission lines. The rest of this section is devoted to a
description of the USIC-based detection scheme.

We consider an optical MIMO system with NT transmit-
ters and NR receivers, and respectively define x, y, n, and
H as NT × 1 transmitted signal vector, NR × 1 received vec-
tor, NR × 1 zero-mean complex Gaussian noise vector, and
NR × NT channel transfer matrix. Each signal bit stream is
independently coded at a transmitter, thus each symbol of the
i-th symbol stream xi with alphabet X of cardinality size |X |
carries coded bits bi ∈ {0, 1}. MDM signal propagation in the
optical MIMO system is modeled in a single equation:

y = H x + n. (1)

At the receiver end, USIC detector is used for a signal detection
purpose. It has a layered structure comprising multiple detection
stages (Fig. 3), each of which is responsible for extracting a sin-
gle data stream from received signals. Description of a deinter-
leaver is omitted in the presented work for brevity. In the initial
stage, the k1-th data stream xk1 is detected by a multiple-input
single-output (MISO) detector without interference cancellation
as

x̂k1 = w(1)
T y(1), (2)

Fig. 3. Schematic of the k-th detection stage of (a) SIC detector and (b) USIC
detector.

where w(k), T , and y are respectively MISO equalizer coefficient
vector used at the k-th detection stage, the transpose operation,

and y(1)
def= [y1 y2 · · · yNR ]T . Note that the subscript number

in parenthesis for each quantity represents the USIC detection
stage number. Then the soft demapper calculates the a posteriori
log-likelihood ratio (LLR) values Ldem

p of the k1-th data stream
by

Ldem
p [bk1 (tm)]

def= ln
p(x̂k1 |bk1 (tm) = 0)

p(x̂k1 |bk1 (tm) = 1)
, (3)

where bk1 (tm) denotes m-th constituent bit of a t-th symbol in
a k1-th signal stream (m ∈ {0, 1, ..., log2 |X | − 1}). Although
Ldem

p in (3) is normally computed via Bayes’ rule [32], it-
erative soft information exchange between a demapper and
a decoder is not considered (i.e., no extrinsic LLR delivery)
in the presented work for purposes of simplicity and low
computational complexity. This corresponds to setting a pri-
ori LLR La(bk1 (tm)) = ln(P(bk1 (tm) = 0))/(P(bk1 (tm) = 1)) to
zero. Thus (3) is simplified with the detection error variance σ 2:

Ldem
p [bk1 (tm)] = ln

p(bk1 (tm) = 0|x̂k1 )

p(bk1 (tm) = 1|x̂k1 )

= ln

∑
x∈X 0

m
exp

[− 1
2σ 2 ‖x̂k1 − x‖2

]

∑
x∈X 1

m
exp

[− 1
2σ 2 ‖x̂k1 − x‖2

] , (4)

where X 0
m and X 1

m are symbol subsets defined as X 0
m

def= {x ∈
X : bm = 0} and X 1

m
def= {x ∈ X : bm = 1}. Using redundancy

information of a given error correction code, the channel decoder
updates each bit reliability by using Ldem

p , and generates an a
posteriori LLR sequence Ldec

p . Then using obtained Ldec
p , the

probability for bk1 (tm) is readily reconstructed as [33]

P[bk1 (tm)] = 1

1+ e−Ldec
p [bk1 (tm )]

· e−bk1 (tm )Ldec
p [bk1 (tm )]. (5)
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On the basis of the probability calculation performed in (5),
soft estimates of the t-th symbol in the k1-th data stream x̃k1 (t)
are obtained as the expected value of the possible transmitted
symbols averaged over all x ∈ X :

x̃k1 (t) =
∑

x∈X
x

∏

m

P(bk1 (tm)). (6)

Utilizing the soft estimates obtained in the first detection
stage, the second stage starts signal detection through the MISO
detector. We emphasize that, for interference elimination pur-
poses, our USIC approach uses soft estimates not of the re-
ceived data streams (i.e., replica signals) but of the transmitted
data streams. This can be accomplished by directly feeding x̃k1

into the MISO detector at the second stage as the (NR + 1)-th
received signal. Accordingly, the augmented received signal
vector used in the second stage y(2) is obtained by

y(2)
def=

[
y

x̃k1

]

. (7)

The equalizer coefficient vector used in the second stage w(2)

has NR + 1 weight coefficients, where NR is used for inter-
ference nulling, and 1 is used for interference canceling. The
succeeding detection procedure of the detection stages is almost
identical to that of the first stage, namely interference nulling
and subtraction by a MISO detector (2), LLR computation by
a soft demapper (4) and a channel decoder, soft estimate con-
struction (6), and a received signal augmentation (7). The MISO
detector at the k-th detection stage is allowed to utilize (k − 1)
soft estimates of the transmitted signals for interference elimi-
nation. This means that signal detection with higher reliability
is achieved in the later stages.

It is worth noting describe how to obtain w(k). If we define a
detection error at the k-th stage for the i-th signal stream detec-
tion as e(k) = x̂i − xi , we can design w(k) to minimize ‖e(k)‖2

on the basis of the minimum mean squared errror (MMSE)
criterion:

wMMSE,(k) = arg min E
[‖e(k)‖2

]

= arg min
w∈C(NR+k−1)×1

E
[‖w(k)

T y(k) − xi‖2
]
, (8)

where E [·] denotes the expectation operation. The widely-used
practical strategy to recursively approach wMMSE,(k) is the least
mean square (LMS) algorithm that evaluates an instantaneous
estimate of the steepest gradient of the cost function by differ-
entiating (8) with respect to w(k). Thus we have an updating
equation for w(k) of

w(k) ← w(k) + μe(k) y(k)
∗, (9)

where μ and ∗ denote respectively the step-size parameter
and complex conjugate operation. Unlike the conventional SIC
scheme, the overall processing of the USIC scheme presented
in this paper contains no complex computation including the
matrix inversion that is associated with channel estimation and
replica signal generation.

Another important feature is the required computational com-
plexity of the USIC scheme. The complexity can be estimated
by a number of complex multiplications required in calculations

in (2) and (9) for all signal streams; the complexity required for
decoding is not taken into account for complexity comparison
between MIMO equalization and the USIC scheme, because de-
coding processing for each coded bit/block shall be performed
only once for both schemes. If we consider a fully-loaded op-
tical MIMO system (i.e., NT = NR) and let N be the number
of transmitted signal streams, it can be easily shown that both
detection schemes have the identical complexity order of O(N 2)
[24]. Although the above description of the USIC scheme is a
time-domain representation, it is easily adaptable for process-
ing in the frequency domain, as performed in our previous work
[24].

III. EXPERIMENTAL SETUP

The experimental setup is illustrated in Fig. 4. At the transmit-
ter, a test channel and nine additional channels were respectively
generated by a tunable external-cavity laser (ECL) and dis-
triburted feedback (DFB) lasers located in the wavelength range
from 1556.365 nm to 1557.274 nm. The even/odd channels
and the test channel, all having 12.5-GHz frequency spacing,
were produced by independent signal patterns, IQ modulators,
and polarization division multiplexing (PDM) emulators with a
100-ns delay. The transmission frame of 33040 symbol-length
contained 2.9%-overhead (OH) for the training sequence and a
32400-symbol-length pattern produced by a low-density parity-
check (LDPC) code with the 4/5 code rate defined in the digital
video broadcasting-satellite second generation (DVB-S2) [34]
standard, which is devoted to the accurate soft estimate con-
struction used for interference cancelling in USIC signal detec-
tion. We also assumed a 7%-OH hard-decision (HD) outer for-
ward error correction (FEC) code comprising the Reed-Solomon
code of RS(1023, 1007) and the Bose-Chaudhuri-Hocquenghem
code of BCH(2047, 1952) defined in ITU-T Recommenda-
tion G.975.1. We adopted a parallel MIMO transmission tech-
nique [24] in which dual subcarriers driven at 6 Gbaud were
digitally generated. This yielded 10-WDM 12.5-GHz spaced
48 Gb/s QPSK signals, resulting in spectral efficiency (SE) of
2.79 b/s/Hz/mode/core. Then all optical carriers were combined
through interleave filters and couplers, and then split and delayed
with 206 ns for the LP11a input and 439 ns for the LP11b input.
We labeled each signal stream as modes 1, 2, and 3, which were
respectively transmitted as LP01, LP11a, and LP11b at the initial
span. We constructed a recirculating loop system and used it for
the test channel measurement. It comprised a graded-index (GI)
FMF/MC-FMF designed to have a low DMD, a physical-contact
type fan-in/fan-out (FI/FO) devices, low-loss mode-selective
mode multiplexer/demultiplexer based on index matching by
asymmetric mode couplers, single-mode erbium-doped ampli-
fiers (EDFAs), Raman-pump combiners, variable optical at-
tenuators (VOAs), loop-synchronous polarization scramblers,
and acousto-optic modulators (AOMs). We evaluated the
transmission performance obtained with single-core 3-mode and
12-core × 3-mode MC FM transmission fibers [35]. A 75.2-km
FMF transmission line was constructed by fusion splicing three
spools. The 52.7-km MC-FMF transmission line has twelve
cores with heterogeneous trench-assisted GI profiles placed in
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Fig. 4. (a) Experimental setup. (b) Signal loading map into MC-FMF.

a square lattice arrangement. For both fibers, each core had a
DMD of <0.1 ns/km, and an effective area (Aeff) of >111 μm2

for LP01. The core #6 represented the largest DMD, while the
highest MDL was observed in core #4. The worst inter-core
crosstalk at 1550 nm arising in the MC-FMF including the FI/FO
devices was so small (i.e., −48.4 dB after 500-km transmission
[24]) that its impact on signal performance was negligible in the
presented work. The CMP scheme was introduced in a way such
that the AOM output ports of each recirculating loop were mu-
tually switched, and connected to other recirculating loop input
ports. Note that the impact of inserting a mode demultiplexer
on increased loss and MDL was mitigated by the use of the
distributed Raman amplification. To load transmission signals
into all MC-FMF cores, we constructed seven other recirculat-
ing loop systems for adjacent cores with a core-to-core delay
of more than 600 ns, in which MDM signals were amplified by
low-MDL ring-core FM-EDFAs [36]. We also constructed four
non-recirculating systems for signal loading into the remaining
four cores. At the receiver end, the transmitted signals were
digitized, stored, and processed by 6 × 6 MIMO processing.
Dual subcarriers were processed in a parallel manner to remove
distortions arising from DMD and MDL effects. After bit error
rates (BERs) were counted using 0.26 Mbits per spatial chan-
nel, Q-factors were obtained for both before and after LDPC
decoding. Note that our detection method included determining
whether or not to conduct USIC-based detection. In particu-
lar, when Q-factors without USIC detection were below 5 dB,
we applied the USIC detection technique; otherwise MDM sig-
nals were detected by employing the conventional linear MIMO
equalization. In the USIC processing, signal detection started
from mode 1, followed by modes 2 and 3. A more detailed
processing description was given in Section II. After signal
detection, LDPC-decoded binary sequences were obtained by
using the sum-product algorithm with soft-decision decoding in
the logarithm domain.

IV. TRANSMISSION RESULTS

Prior to the transmission experiments, we explored the per-
formance improvement achieved by the proposed CMP and

Fig. 5. Crosstalk matrix at the initial span output for signals of λ5 transmitted
over core #12 of the MC-FMF in dB unit (a) without the CMP scheme and (b)
with the CMP scheme.

USIC schemes. Then the main transmission results are presented
where the WDM SDM signals were transmitted over a 3-mode
FMFs having single-core or 12-core with the transmission reach
exceeding a thousands of km.
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Fig. 6. Crosstalk matrix transition for signals of λ5 transmitted over core #12 of the MC-FMF with increased transmission distance. Each panel is represented
in the same figure format as in Fig. 5.

Fig. 7. Memory length expansion for signals of λ5 transmitted over core #6 of the MC-FMF. (a) 527 km, (b) 1054 km, (c) 1581 km, and (d) 2108 km.

Fig. 8. Memory length growth as a function of transmission distance for
signals of λ5 transmitted over core #6 of the MC-FMF.

A. DMD and MDL Impact Mitigation by the CMP Scheme

To examine the benefits in the transmission with the CMP
scheme, we performed experiments on LMS-based channel es-
timation of H both with and without the CMP scheme. Through
analysis of the obtained H , we calculated the input power cou-
pling into each output mode, which is correspondingly shown
as a crosstalk matrix between spatial modes (including polar-
ization modes). Fig. 5 compares the modal crosstalk matrix
with and without the CMP scheme at the initial span output for
core #12 of the MC-FMF. For the conventional FMF transmis-
sion (i.e., without the CMP scheme), little power exchange be-
tween mode groups was observed; this corresponds to a weakly-
coupled transmission regime. However, when we applied the

Fig. 9. Q-factor comparison obtained by MIMO equalization for signals of
λ5 transmitted over core #4 in an MC-FMF (a) without and (b) with the CMP
scheme.

CMP scheme, the relation between input/ouput ports markedly
changed. We consider that introducing the CMP scheme con-
verts H to HCMP. This process is substantially modeled as

HCMP
def= P H, (10)

where we used the permutation matrix P , defined as

P
def=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (11)

Note that in (11), the crosstalk in the non-diagonal entries in-
duced in practical mode multiplexers/demultiplexers is ignored
for simplicity. We further calculated the crosstalk matrix for
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Fig. 10. Signal constellation comparison between conventional linear equalization (top) and USIC detection (bottom) for signals of λ5 after 2500-km transmission
over core #4 of an MC-FMF.

both cases at longer transmission distances, and summarized
the results in Fig. 6. Without the CMP scheme the coupling
efficiency between different mode group was kept low (e.g.,
<−5 dB) at distances up to 500 km. However, transmission
with the scheme yielded a highly-mixed crosstalk matrix even
after transmission over several spans. This confirms that using
the scheme effectively stimulates the power coupling process;
we called this quasi-strongly-coupled transmission.

Figures 7(a) through (d) represent the DMD-induced EML
broadening observed in core #6 of an MC-FMF. They clearly
show that the CMP strategy significantly suppressed EML
within almost ±20 ns even after 2000-km transmission. Fig. 8
shows the evolution of EML as a function of transmission dis-
tance. While EMLs scaled almost linearly with an increased
transmission distance in conventional weakly-coupled transmis-
sion, the CMP transmission introduced a squared-root growth of
EMLs, which is generally observed in strongly-coupled trans-
mission fibers. The EML suppression effect achieved by the
CMP corresponds to more than a 50% decrease in the required
EML after 2500-km transmission over an MC-FMF. In addition,
the CMP provides suppression effects against MDL as well as
DMD. Fig. 9 compares the obtained Q-factors for both trans-
mission setups over core #4 of an MC-FMF. In the conventional
transmission, the signals propagated mainly as higher-order spa-
tial modes (i.e., LP11) degraded severely relative to those of the
fundamental mode. In contrast, the mode-to-mode Q-factor gap
was well suppressed in the CMP transmission. This implies that
the CMP effectively mitigated the MDL impact by permutating
each mode signal in every span.

B. MDL-Induced Interference Cancellation by the
USIC Detection

Next, we show the USIC detection performance in the
presence of a large MDL. Fig. 10 compares the signal con-
stellations obtained with conventional linear MIMO equaliza-
tion (top) and USIC detection (bottom) for the signals after
2500-km propagation over core #4 of an MC-FMF While the

Fig. 11. (a) Q-factors obtained by MIMO equalization (broken lines) and
USIC detection (solid lines) for signals of λ5 in core #4. (b) Q-factor improve-
ments achieved by USIC detection with respect to MIMO equalization.

spatial channels for modes 2 and 3 were contaminated by the
MDL-induced intermodal crosstalk in the MIMO equalization
case, the detection based on the USIC scheme effectively re-
moved those interference signals and hence provided superior
detection performance. Then USIC detection performance is
quantitatively evaluated with Q-factor comparison in Fig. 11(a)
and Q-factor improvement in Fig. 11(b). Q-factor improve-
ment was defined as the Q-factor difference between those ob-
tained by MIMO equalization and USIC detection. Higher Q-
factor gains were obtained in the later stages of USIC detection
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Fig. 12. Q-factors obtained by MIMO equalization or the USIC detection after transmission over (a) 6316.8-km FMF and (b) 2529.6-km MC-FMF for all
measured channels.

because larger numbers of decoded signal streams were used for
interference cancellation. For 2500-km transmission, Q-factors
improved by more than 2 dB for signals of mode 3.

C. Transmission Performance

Finally, we evaluated the Q-factors obtained after transmis-
sion over 6316.8-km (84 loops) FMF and 2529.6-km (48 loops)
MC-FMF. Fig. 12 summarizes the obtained Q-factors before
LDPC decoding for the transmissions over FMF (Fig. 12(a))
and MC-FMF (Fig. 12(b)), respectively. In MC-FMF transmis-
sion, better signal performance was obtained for the inner cores
(#3, #6, #9, and #12) than that for the outer cores (#1, #2, #4,
#5, #7, #8, #10, and #11). We consider that the core-to-core sig-
nal performance difference was mainly originated from larger
MDL for the outer cores due to the rotational misalignment
at the FI/FO devices [37]. We confirmed that all the measured
pre-LDPC Q-factors exceeded 5.0 dB, and that the post-LDPC
Q-factors became higher than the 9.1-dB Q-limit of the 7%-OH
HD-FEC.

V. CONCLUSION

We have successfully demonstrated differential mode delay
(DMD)-unmanaged space division multiplexing (SDM) trans-
mission over a record transmission reach of 2500 km for a
36-SDM (12-core × 3-mode) multicore fewmode fiber (MC-
FMF) and 6300 km for a 3-mode FMF. This was achieved by two
novel key techniques that significantly enhance the transmission
performance of mode division multiplexed (MDM) signals in
the presence of DMD and mode dependent loss (MDL). The
first is a cyclic mode permutation (CMP) transmission scheme
that greatly reduces DMD and MDL impacts by converting
weakly-coupled MC-FMF/FMF transmission lines into quasi-
strongly-coupled transmission lines. Second is an unreplicated
successive interference cancelling (USIC) technique that effec-
tively eliminates intermodal interference arising from the resid-
ual MDL and enables Q-factor improvement exceeding 2 dB.
Combining the use of these techniques is a promising way to
achieve long-haul SDM systems using FMFs as transmission
media.
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