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Abstract—In this paper, we implement an optical fiber commu-
nication system as an end-to-end deep neural network, including
the complete chain of transmitter, channel model, and receiver.
This approach enables the optimization of the transceiver in a sin-
gle end-to-end process. We illustrate the benefits of this method by
applying it to intensity modulation/direct detection (IM/DD) sys-
tems and show that we can achieve bit error rates below the 6.7%
hard-decision forward error correction (HD-FEC) threshold. We
model all componentry of the transmitter and receiver, as well as
the fiber channel, and apply deep learning to find transmitter and
receiver configurations minimizing the symbol error rate. We pro-
pose and verify in simulations a training method that yields robust
and flexible transceivers that allow—without reconfiguration—
reliable transmission over a large range of link dispersions. The
results from end-to-end deep learning are successfully verified for
the first time in an experiment. In particular, we achieve infor-
mation rates of 42 Gb/s below the HD-FEC threshold at distances
beyond 40 km. We find that our results outperform conventional
IM/DD solutions based on two- and four-level pulse amplitude mod-
ulation with feedforward equalization at the receiver. Our study is
the first step toward end-to-end deep learning based optimization
of optical fiber communication systems.

Index Terms—Deep learning, detection, machine learning, mod-
ulation, neural networks, optical fiber communication.
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I. INTRODUCTION

THE application of machine learning techniques in commu-
nication systems has attracted a lot of attention in recent

years [1], [2]. In the field of optical fiber communications, var-
ious tasks such as performance monitoring, fiber nonlinearity
mitigation, carrier recovery and modulation format recognition
have been addressed from the machine learning perspective
[3]–[5]. In particular, since chromatic dispersion and nonlinear
Kerr effects in the fiber are regarded as the major information
rate-limiting factors in modern optical communication sys-
tems [6], the application of artificial neural networks (ANNs),
known as universal function approximators [7], for channel
equalization has been of great research interest [8]–[12]. For
example, a multi-layer ANN architecture, which enables deep
learning techniques [13], has been recently considered in [14]
for the realization of low-complexity nonlinearity compensation
by digital backpropagation (DBP) [15]. It has been shown that
the proposed ANN-based DBP achieves similar performance
than conventional DBP for a single channel 16-QAM system
while reducing the computational demands. Deep learning
has also been considered for short-reach communications. For
instance, in [16] ANNs are considered for equalization in PAM8
IM/DD systems. Bit-error rates (BERs) below the forward
error correction (FEC) threshold have been experimentally
demonstrated over 4 km transmission distance. In [17], deep
ANNs are used at the receiver of the IM/DD system as an
advanced detection block, which accounts for channel memory
and linear and nonlinear signal distortions. For short reaches
(1.5 km), BER improvements over common feed-forward
linear equalization were achieved.

In all the aforementioned examples, deep learning techniques
have been applied to optimize a specific function in the fiber-
optic system, which itself consists of several signal process-
ing blocks at both transmitter and receiver, each carrying out
an individual task, e.g., coding, modulation and equalization.
In principle, such a modular implementation allows the system
components to be analyzed, optimized and controlled separately
and thus presents a convenient way of building the communi-
cation link. Nevertheless, this approach can be sub-optimal,
especially for communication systems where the optimum re-
ceivers or optimum blocks are not known or not available due
to complexity reasons. As a consequence, in some systems, a
block-based receiver with one or several sub-optimum modules
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does not necessarily achieve the optimal end-to-end system per-
formance. Especially if the optimum joint receiver is not known
or too complex to implement, we require carefully chosen
approximations.

Deep learning techniques, which can approximate any nonlin-
ear function [13], allow us to design the communication system
by carrying out the optimization in a single end-to-end process
including the transmitter and receiver as well as the commu-
nication channel. Such a novel design based on full system
learning avoids the conventional modular structure, because the
system is implemented as a single deep neural network, and has
the potential to achieve an optimal end-to-end performance. The
objective of this approach is to acquire a robust representation of
the input message at every layer of the network. Importantly, this
enables a communication system to be adapted for information
transmission over any type of channel without requiring prior
mathematical modeling and analysis. The viability of such an
approach has been introduced for wireless communications [18]
and also demonstrated experimentally with a wireless link [19].
Such an application of end-to-end deep learning presents the
opportunity to fundamentally reconsider optical communication
system design.

Our work introduces end-to-end deep learning for design-
ing optical fiber communication transceivers. The focus in this
paper is on IM/DD systems, which are currently the preferred
choice in many data center, access, metro and backhaul applica-
tions because of their simplicity and cost-effectiveness [20]. The
IM/DD communication channel is nonlinear due to the combina-
tion of photodiode (square-law) detection and fiber dispersion.
Moreover, noise is added by the amplifier and the quantization
in both the digital-to-analog converters (DACs) and analog-to-
digital converters (ADCs). We model the fiber-optic system as
a deep fully-connected feedforward ANN. Our work shows that
such a deep learning system including transmitter, receiver, and
the nonlinear channel, achieves reliable communication below
FEC thresholds. We experimentally demonstrate the feasibility
of the approach and achieve information rates of 42 Gb/s beyond
40 km. We apply re-training of the receiver to account for the
specific characteristics of the experimental setup not covered by
the model. Moreover, we present a training method for realiz-
ing flexible and robust transceivers that work over a range of
distance. Precise waveform generation is an important aspect in
such an end-to-end system design. In contrast to [18], we do not
generate modulation symbols, but perform a direct mapping of
the input messages to a set of robust transmit waveforms.

The goal of this paper is to design, in an offline process,
transceivers for low-cost optical communication system that can
be deployed without requiring the implementation of a training
process in the final product. During the offline training process,
we can label the set of data used for finding the parameters of
the ANN and hence use supervised training. This is a first step
towards building a deep learning-based optical communication
system. Such a system will be optimized for a specific range
of operating conditions. Eventually, in future work, an online
training may be incorporated into the transceiver, which may
still work in a supervised manner using, e.g., pilot sequences, to
cover a wider range of operating conditions. Building a complete

unsupervised transceiver with online training will be a signifi-
cantly more challenging task and first requires a thorough un-
derstanding of the possibilities with supervised training. Hence,
we focus on the supervised, offline training case in this paper.

The rest of the manuscript is structured as follows:
Section II introduces the main concepts behind the deep learn-
ing techniques used in this work. The IM/DD communication
channel and system components are described mathematically
in Sec. III. The architecture of the proposed ANN along with
the training method is also presented in this section. Section IV
reports the system performance results in simulation. Section V
presents the experimental test-bed and validation of the key sim-
ulation results. Section VI contains an extensive discussion on
the properties of the transmit signal, the advantages of training
the system in an end-to-end manner, and the details about the
experimental validation. Finally, Sec. VII concludes the work.

II. DEEP FULLY-CONNECTED FEED-FORWARD ARTIFICIAL

NEURAL NETWORKS

A fully-connected K-layer feed-forward ANN maps an input
vector s0 to an output vector sK = fANN(s0) through iterative
steps of the form

sk = αk (Wksk−1 + bk ), k = 1, ..,K. (1)

Where sk−1 ∈ RNk −1 is the output of the (k − 1)-th layer, sk ∈
RNk is the output of the k-th layer, Wk ∈ RNk ×Nk −1 and bk ∈
RNk are respectively the weight matrix and the bias vector of
the k-th layer and αk is its activation function. The set of layer
parameters Wk and bk is denoted by

θk = {Wk ,bk}. (2)

The activation function αk introduces nonlinear relations be-
tween the layers and enables the approximation of nonlinear
functions by the network. A commonly chosen activation func-
tion in state-of-the-art ANNs is the rectified linear unit (ReLU),
which acts individually on each of its input vector elements
by keeping the positive values and equating the negative to
zero [21], i.e., y = αReLU(x) with

yi = max(0, xi), (3)

where yi , xi denote the i-th elements of the vectors y and x,
respectively. Compared to other popular activation functions
such as the hyperbolic tangent and sigmoid, the ReLU function
has a constant gradient, which renders training computationally
less expensive and avoids the effect of vanishing gradients. This
effect occurs for activation functions with asymptotic behavior
since the gradient can become small and consequently decelerate
the convergence of the learning algorithm [13, Sec. 8.2].

The final (decision) layer of an ANN often uses the softmax
activation function, where the elements yi of the output y =
softmax (x) are given by

yi =
exp(xi)∑
j exp(xj )

. (4)

The training of the neural network can be performed in a su-
pervised manner by labeling the training data. This defines a
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pairing of an input vector s0 and a desired output vector s̃K .
Therefore, the training objective is to minimize, over the set of
training inputs S, the loss L(θ), with respect to the parameter
sets θ of all K layers, given by

L(θ) =
1
|S|

∑

(s0 , i ,s̃K , i )∈S
�(fANN(s0,i), s̃K,i) (5)

between an ANN output sK,i = fANN(s0,i) corresponding to the
input s0,i processed by all K layers of the ANN, and the desired,
known output s̃K,i . In (5), �(x,y) denotes the loss function and
|S| denotes the cardinality of the training set (i.e., the size of
the training set) containing 2-tuples (s0,i , s̃K,i) of inputs and
corresponding outputs. The loss function we consider in this
work is the cross-entropy, defined as

�(x,y) = −
∑

i

xi log(yi). (6)

A common approach for optimization of the parameter sets θ
in (5), which reduces computational demands, is to operate on
a small batch S (called mini-batch) of the set of training data
and perform the stochastic gradient descent (SGD) algorithm
initialized with random θ [13], which is iteratively updated as

θt = θt−1 − η∇L(θt−1), (7)

where η is the learning rate of the algorithm and ∇L(θ) is the
gradient of the loss function of the mini-batch defined by

L(θ) =
1
|S|

∑

(s0 , i ,s̃K , i )∈S
�(fANN(s0,i), s̃K,i). (8)

In modern deep learning, an efficient computation of the gradient
in (7) is achieved by error backpropagation [13], [22]. A state-
of-the-art algorithm with enhanced convergence is the Adam
optimizer which dynamically adapts the learning rate η [23].
The Adam algorithm is used for optimization during the train-
ing process in this work. All numerical results in the manuscript
have been generated using the deep learning library Tensor-
Flow [24].

III. PROPOSED END-TO-END COMMUNICATION SYSTEM

We implement the complete fiber-optic communication sys-
tem and transmission chain including transmitter, receiver and
channel as a complete end-to-end ANN, as suggested in [18],
[19]. To show the concept, we focus on an IM/DD system, but
we emphasize that the general method is not restricted to this
scheme and can be easily extended to other, eventually more
complex models. In the following we explain all the compo-
nents of the transceiver chain as well as the channel model in
detail. The full, end-to-end neural network chain is depicted in
Fig. 1.

A. Transmitter Section

We use a block-based transmitter as it has multiple advan-
tages. Firstly, it is computationally simple, making it attractive
for low-cost, high-speed implementations. Secondly, it allows
massive parallel processing of the single blocks. Each block en-
codes an independent message m ∈ {1, . . . , M} from a set of

M total messages into a vector of n transmit samples, forming
a symbol. Each message represents an equivalent of log2(M)
bits.

The encoding is done in the following way: The message m is
encoded into a one-hot vector of size M , denoted as 1m ∈ RM ,
where the m-th element equals 1 and the other elements are
0. Such one-hot encoding is the standard way of representing
categorical values in most machine learning algorithms [13] and
facilitates the minimization of the symbol error rate. An inte-
ger encoding would for instance impose an undesired ordering
of the messages. The one-hot vector is fed to the first hidden
layer of the network, whose weight matrix and bias vector are
W1 ∈ RM ×2M and b1 ∈ R2M , respectively. The second hid-
den layer has parameters W2 ∈ R2M ×2M and b2 ∈ R2M . The
ReLU activation function (3) is applied in both hidden layers.
The following layer prepares the data for transmission and its
parameters are W3 ∈ R2M ×n and b3 ∈ Rn , where n denotes
the number of waveform samples representing the message. The
dimensionality of this layer determines the oversampling rate of
the transmitted signal. In our work, 4× oversampling is consid-
ered and thus the message is effectively mapped onto a symbol
of n/4 samples. As fiber dispersion introduces memory between
several consecutive symbols, multiple transmitted blocks need
to be considered to model realistic transmission. Hence, the out-
put samples of N neighboring blocks (that encode potentially
different inputs) are concatenated by the serializer to form a se-
quence of N · n samples ready for transmission over the chan-
nel. All these N ANN blocks have identical weight matrices
and bias vectors. The system can be viewed as an autoencoder
with an effective information rate R = log2(M) bits/symbol.
We consider unipolar signaling and the ANN transmitter has to
limit its output values to the Mach-Zehnder modulator (MZM)
relatively linear operation region [0;π/4]. This is achieved by
applying the clippling activation function for the final layer
which combines two ReLUs as follows

αClipping(x) = αReLU (x − ε) − αReLU

(
x − π

4
+ ε

)
, (9)

where the term ε = σq/2 ensures the signal is within the MZM
limits after quantization noise is added by the DAC. The variance
σ2

q of the quantization noise is defined below.

B. Communication Channel

The main limiting factor in IM/DD systems is the intersymbol
interference (ISI) as a result of optical fiber dispersion [25].
Moreover, in such systems, simple photodiodes (PDs) are used
to detect the intensity of the received optical field and perform
opto-electrical conversion, so called square-law detection. As a
consequence of the joint effects of dispersion and square-law
detection, the IM/DD communication channel is nonlinear and
has memory.

In our work, the communication channel model includes
low-pass filtering (LPF) to account for the finite bandwidth of
transmitter and receiver hardware, DAC, ADC, MZM, photo-
conversion by the PD, noise due to amplification and optical
fiber transmission. The channel is considered part of the system
implemented as an end-to-end deep feedforward neural network
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Fig. 1. Schematic of the IM/DD optical fiber communication system implemented as a deep fully-connected feedforward neural network. Optimization is
performed between the input messages and the outputs of the receiver, thus enabling end-to-end deep learning of the complete system.

shown in Fig. 1. The signal that enters the section of the ANN
after channel propagation can be expressed as (neglecting the
receiver LPF for ease of exposition)

r(t) = |u(t)|2 + nRec.(t), (10)

where u(t) = ĥ{x(t)} is the waveform after fiber propagation,
x(t) is the transmit signal, ĥ{·} is an operator describing the
effects of the electrical field transfer function of the modula-
tor and the fiber dispersion, nRec.(t) is additive Gaussian noise
arising, e.g., from the trans-impedance amplifier (TIA) circuit.
We select the variance of the noise to match the signal-to-noise
ratios (SNRs) after photodetection obtained in our experimental
setup. Further details on the SNR values at the examined dis-
tances are presented below in Sec. V. We now discuss in more
detail the system components.

Chromatic dispersion in the optical fiber is mathematically
expressed by the partial differential equation [25]

∂A

∂z
= −j

β2

2
∂2A

∂t2
, (11)

where A is the complex amplitude of the optical field envelope,
t denotes time, z is the position along the fiber and β2 is the dis-
persion coefficient. Equation (11) can be solved analytically in
the frequency domain by taking the Fourier transform, yielding

the dispersion frequency domain transfer function

D(z, ω) = exp
(

j
β2

2
ω2z

)

, (12)

where ω is the angular frequency. In our work, fiber dispersion
is applied in the frequency domain on the five-fold zero-padded
version of the signal stemming from N concatenated blocks.
The FFT and IFFT necessary for conversion between time and
frequency domain form part of the ANN and are provided by
the TensorFlow library [24].

The MZM is modeled by its electrical field transfer function,
a sine which takes inputs in the interval [−π/2;π/2] [26]. This
is realized in the ANN by using a layer that consists just of the
MZM function αMZM(x) = sin(x), where the sine is applied
element-wise. The DAC and ADC components introduce ad-
ditional quantization noise due to their limited resolution. We
model this noise nDAC(t) and nADC(t) as additive, uniformly dis-
tributed noise with variance determined by the effective number
of bits (ENOB) of the device [27]

σ2
q = 3P · 10−(6.02·ENOB+1.76)/10 , (13)

where P is the average power of the input signal. Low-pass
filtering is applied before the DAC/ADC components to restrict
the bandwidth of the signal. Note that both LPF stages and
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the chromatic dispersion stage can be modeled as purely linear
stages of the ANN, i.e., a multiplication with a correspondingly
chosen matrix Wk . The MZM and PD stages are modeled by a
purely nonlinear function αk .

C. Receiver Section

After square-law detection, amplification, LPF, and ADC, the
central block is extracted for processing in the receiver section
of the neural network. The architecture of the following layers
is identical to those at the transmitter side in a reverse order.
The parameters of the first receiver layer are W4 ∈ Rn×2M ,
b4 ∈ R2M with ReLU activation function (3). The next layer
has parameters W5 ∈ R2M ×2M , b5 ∈ R2M , also with ReLU
activation function. The parameters of the final layer in the ANN
are W6 ∈ R2M ×M and b6 ∈ RM . The final layer’s activation
is the softmax function (4) and thus the output is a probability
vector y ∈ RM with the same dimension as the one-hot vec-
tor encoding of the message. At this stage, a decision on the
transmitted message is made and a block (symbol) error occurs
when m �= argmax(y), where m is the index of the element
equal to 1 in the one-hot vector (1m ) representation of the input
message. Then the block error rate (BLER) can be estimated as

BLER =
1
|S|

∑

i∈S
1 {mi �= argmax(yi)} , (14)

where |S| is the cardinality of the set of messages S and 1 is the
indicator function, equal to 1 when the condition in the brackets
is satisfied and 0 otherwise.

In our work, the bit-error rate (BER) is examined as an indi-
cator of the system performance. For computing the BER, we
use an ad hoc bit mapping by assigning the Gray code to the
input m ∈ {1, . . . , M}. Whenever a block is received in error,
the number of wrong bits that have occurred are counted. Note
that this approach is sub-optimal as the deep learning algorithm
will only minimize the BLER and a symbol error may not nec-
essarily lead to a single bit error. In our simulation results, we
will hence provide a lower bound on the achievable BER with
an optimized bit mapping by assuming that at most a single bit
error occurs during a symbol error.

Note that the structure we propose is only able to compensate
for chromatic dispersion within a block of n receiver samples, as
there is no connection between neighboring blocks. The effect
of dispersion from neighboring blocks is treated as extra noise.
The block size n (and m) will hence limit the achievable dis-
tance with the proposed system. However, we could in principle
extend the size of the receiver portion of the ANN to jointly
process multiple blocks to dampen the influence of dispersion.
This will improve the resilience to chromatic dispersion at the
expense of higher computation complexity.

D. Training

The goal of the training is to obtain an efficient autoen-
coder [13, Ch. 14], i.e., the output of the final ANN softmax layer
should be ideally identical to the one-hot input vector. Such an
autoencoder will minimize the end-to-end BLER. In this work,
the ANN is trained with the Adam optimizer [23] on a set of

TABLE I
SIMULATIONS PARAMETERS

|S|=25·106 randomly chosen messages (and messages of the
neighboring transmit blocks) and mini-batch size |S|=250, cor-
responding to 100 000 iterations of the optimization algorithm.
It is worth noting that in most cases, convergence in the loss and
validation symbol error rate of the trained models was obtained
after significantly less than 100 000 iterations, which we used as
a fixed stopping criterion. During training, noise is injected into
the channel layers of the ANN, as shown in Fig. 1. A truncated
normal distribution with standard deviation σ = 0.1 is used for
initialization of the weight matrices W. The bias vectors b are
initialized with 0. Validation of the training is performed during
the optimization process every 5000 iterations. The validation
set has the size |Sv |=15 · 106 . Good convergence of the valida-
tion BLER and the corresponding BER is achieved. The trained
model is saved and then loaded separately for testing which is
performed over a set of different |St |=15 · 108 random input
messages. The BER results from testing are shown in the figures
throughout this manuscript. We have confirmed the convergence
of the results as well for mini-batch sizes of |S|=125 and 500,
and also when the training set was increased to |S|=50·106 .

When designing ANNs, the choice of hyper-parameters such
as the number of layers, number of nodes in a hidden layer,
activation functions, mini-batch size, learning rate, etc. is im-
portant. The optimization of the hyper-parameters was beyond
the scope of our investigation. In this work they were chosen
with the goal to keep the networks relatively small and hence
the training effort manageable. Better results in terms of perfor-
mance and its trade-off with complexity can be obtained with
well-designed sets of hyper-parameters.

IV. SYSTEM PERFORMANCE

Table I lists the simulation parameters for the end-to-end
deep-learning-based optical fiber system under investigation.
We assume a set of M = 64 input messages which are encoded
by the neural network at the transmitter into a symbol of 48
samples at 336 GSa/s in the simulation. This rate corresponds
to the 84 GSa/s sampling rate of the DAC used in experiment
multiplied by the oversampling factor of 4, which we assume
in simulation. The bandwidth of the signal is restricted by a
32 GHz low-pass filter to account for the significantly lower
bandwidth of today’s hardware. Thus the information rate of
the system becomes R = 6 bits/sym. Symbols are effectively
transmitted at 7 GSym/s and thus the system operates at a bit
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Fig. 2. Bit error rate as a function of transmission distance for systems trained
at a fixed nominal distance of (20 + i · 10) km, with i ∈ {0, . . . , 6}. The hor-
izontal dashed line indicates the 6.7% HD-FEC threshold. Thin dashed lines
below the curves give a lower bound on the achievable BER when optimal bit
mapping, such that a block error results in a single bit error, is assumed.

rate of 42 Gb/s. Figure 2 shows the BER performance at differ-
ent transmission distances. For this set of results, the ANN was
trained for 7 different distances in the range 20 to 80 km in steps
of 10 km and the distance was kept constant during training.
During the testing phase, the distance was swept. BERs below
the 6.7% hard decision FEC (HD-FEC) threshold of 4 · 10−3

are achieved at all examined distances between 20 and 50 km.
Moreover, up to 40 km the BER is below 10−4 . Systems trained
at distances longer than 50 km achieve BERs above 10−2 . The
figure also displays the lower bound on the achievable BER for
each distance. This lower bound is obtained by assuming that a
block error gives rise to a single bit error. An important obser-
vation is that the lowest BERs are obtained at the distances for
which the system was trained and there is a rapid increase in
the BER when the distance changes. Such a behavior is a direct
consequence of the implemented training approach which opti-
mizes the system at a particular distance without any incentive
of robustness to variations. As the amount of dispersion changes
with distance, the optimal neural network parameters differ ac-
cordingly and thus the BER increases as the distance changes.
We therefore require a different optimization method that yields
ANNs that are robust to distance variations and hence offer new
levels of flexibility.

To address these limitations of the training process, we train
the ANN in a process where instead of fixing the distance, the
distance for every training message is randomly drawn from a
Gaussian distribution with a mean μ and a standard deviation σ.
During optimization, this allows the deep learning to converge
to more generalized ANN parameters, robust to certain variation
of the dispersion. Figure 3 shows the test BER performance of
the system trained at a mean distance μ = 40 km and differ-
ent values of the standard deviation. We see that for both cases

Fig. 3. Bit error rate as a function of transmission distance for systems where
the training is performed at normally distributed distances with mean μ and
standard deviation σ. The horizontal dashed line indicates the 6.7% HD-FEC
threshold.

of σ = 4 and σ = 10 this training method allows BER values
below the HD-FEC threshold in wider ranges of transmission
distances than for σ = 0. For instance, when σ = 4, BERs be-
low the 4 · 10−3 threshold are achievable between 30.25 km and
49.5 km, yielding a range of operation of 19.25 km. The distance
tolerance is further increased when σ = 10 is used for training.
In this case, the obtained BERs are higher due to the compro-
mise taken, but still below the HD-FEC threshold for a range of
27.75 km, between 24 km up to 51.75 km. A practical imple-
mentation of the proposed fiber-optic system design is expected
to greatly benefit from such a training approach as it introduces
both robustness and flexibility of the system to variations in the
link distance. As a consequence of generalizing the learning
over varied distance, the minimum achievable BERs are higher
compared to the system optimized at a fixed distance, presented
in Fig. 2, and there exists a trade-off between robustness and
performance.

So far we examined an end-to-end deep learning optical fiber
system where an input message carrying 6 bits of information
(M = 64) is encoded into a band-limited symbol of 48 samples
(n = 48 with an oversampling factor of 4) at 336 GSa/s. Thus,
the result is an autoencoder operating at the bit rate of 42 Gb/s.
In the following, we examine different rates by varying the
size of M and n and thus the size of the complete end-to-end
neural network. For this investigation, we fixed the sampling
rate of the simulation to 336 GSa/s. In Figure 4 solid lines show
the BER performance of the system at different rates when
the number of symbols used to encode the input message is
decreased, in particular we use n = 24, thus yielding a symbol
rate of 14 GSym/s. In such a way bit rates of 42 Gb/s, 56 Gb/s
and 84 Gb/s are achieved for M = 8, M = 16, and M = 64,
respectively. We see that the BER at 84 Gb/s rapidly increases
with distance and error rates below the HD-FEC can be achieved
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Fig. 4. Bit error rate as a function of transmission distance for systems with
different information rates. The training is performed at a fixed nominal distance.

only up to 20 km. On the other hand, 42 Gb/s and 56 Gb/s can
be transmitted reliably at 30 km. An alternative to decreasing
the transmitted samples in a block is to increase the information
rate of the system by considering input messages with a larger
information content. Dashed lines in Fig. 4 show the cases of
M = 64, n = 48 and M = 256, n = 48, corresponding to bit
rates of 42 Gb/s and 56 Gb/s. In comparison to the case where
n = 24, such systems have an extended operational reach below
the BER threshold, due to the larger block size and the reduce
influence of chromatic dispersion. For example, the 56 Gb/s
system can achieve BER below the HD-FEC at 40 km, while for
42 Gb/s, this distance is 50 km. Thus increasing the information
rates by assuming larger M enables additional reach of 10 km
and 20 km at 56 Gb/s and 42 Gb/s, respectively. However,
a drawback of such a solution is the larger ANN size, thus
increasing the computational and memory demands as well as
training times. Figure 4 shows that the general approach of
viewing the optical fiber communication system as a complete
end-to-end neural network can be applied for designing systems
with different information rates and gives an insight on the
possible implementation approaches.

V. EXPERIMENTAL VALIDATION

To complement the simulation results, we built an optical
transmission system to demonstrate and validate experimentally
the results obtained for the end-to-end deep learning IM/DD
system operating at 42 Gb/s. Moreover, we utilize the proposed
training method and train our models at the examined distances
of 20, 40, 60, or 80 km with a standard deviation of σ = 4.
Figure 5 illustrates the experimental setup. The SNRs after pho-
todetection assumed in the end-to-end training process during
generation of the transmit waveforms are 19.41 dB, 6.83 dB,
5.6 dB and 3.73 dB at 20, 40, 60 and 80 km, respectively, cor-
responding to measured values for the 42 Gbaud PAM2 system,
which is described in this section and used for comparison rea-

sons. Since the training for the experiment is performed at dis-
tances with a certain standard deviation, linear interpolation is
used to find the SNR values at distances different from the above.

The transmit waveforms were obtained by feeding a ran-
dom sequence to the transmitter ANN, filtering by a LPF with
32 GHz bandwidth, downsampling and DAC (after standard
linear finite-impulse response (FIR) DAC pre-emphasis). In the
experiment, we downsample by a factor of 4 the resulting fil-
tered concatenated series of symbols, each now containing 12
samples. Because of LPF, there is no loss of information, since
the original series of symbols, at 48 samples each and running
at 336 GSa/s, can be exactly regenerated from this downsam-
pled series of symbols, 12 samples per symbol at 84 GSa/s.
The waveform is then used to modulate an MZM, where the
bias point is meticulously adjusted to match the one assumed
in simulations. The optical signal at 1550 nm wavelength is
propagated over a fixed fiber length of 20, 40, 60, or 80 km
and through a Tunable Dispersion Module (TDM), which is de-
ployed to allow sweeping the dispersion around a given value.
The received optical waveform is direct detected by a PIN+TIA
and real-time sampled and stored for the subsequent digital sig-
nal processing. There is no optical amplification in the testbed.
After synchronization, proper scaling and offset of the digi-
tized photocurrent, the upsampled received waveforms are fed
block-by-block to the receiver ANN. After fine-tuning of the
receiver ANN parameters, the BLER and BER of the system
are evaluated. In the experiment, 40 · 106 blocks are transmit-
ted and received for each dispersion value. This is achieved by
transmitting 1000 sequences of 40 · 103 blocks. To compare our
system with conventional IM/DD schemes operating at 42 Gb/s,
we perform experiments at the examined distances for two ref-
erence systems: the first operating at 42 Gbaud with PAM2 and
raised cosine pulses (roll-off of 0.99); the second operating at
21 Gbaud with PAM4 and raised cosine pulses (roll-off of 0.4).
Both reference system use feedforward equalization (FFE) with
13 taps (T/2-spaced) at the receiver. It is easy to see that the com-
putational complexity of this simple linear equalization scheme
is lower than the complexity of a deep ANN-based receiver.
Nevertheless, we use the comparison to emphasize on the via-
bility of implementing the optical fiber system as an end-to-end
deep ANN. Hence, possible complexity reductions in the design
are beyond the scope of the manuscript.

While carrying out the experiment, we found that the ANN
trained in the simulation was not fully able to compensate distor-
tions from the experimental setup. Hence, we decided to retrain
the receiver ANN (while keeping the transmitter ANN fixed) to
account for the experimental setup. Retraining has been carried
out for every measured distance. For the retraining of the re-
ceiver ANN, we used a set of |S|=30 · 106 (75% of all block
traces) received blocks, while validation during this process is
performed with a set of |Sv |=5 · 106 (12.5% of all block traces)
different blocks (from different measurements). The fine-tuned
model is tested over the remaining |St |=5 · 106 (12.5% of all
block traces) (these were not used for training and validation).
The subdivision of the experimental data into training, valida-
tion and testing sets is in accordance to the guidelines given
in [13, Sec. 5.3]. Training was carried out over 4 epochs over
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Fig. 5. Schematic of the experimental setup for system validation.

Fig. 6. Experimental BER performance for systems trained at (20, 4) km and
(40, 4) km.

the experimental data, which was enough to see good conver-
gence. In a single epoch each of the received blocks for training
is used once in the optimization procedure, yielding a single
pass of the training set |S| through the algorithm. Realization
of 4 epochs improved convergence and further ensured that we
perform enough training iterations to observe convergence (see
Sec. III-D). For retraining the receiver ANN, the layer parame-
ters are initialized with the values obtained in simulation prior
to the experiment. The output of the receiver ANN is optimized
with respect to the labeled experimental transmit messages, fol-
lowing the same procedure as described in Sec. II. Again, a
mini-batch size of |S|=250 has been used. Experimental BER
results are then obtained on the testing set only and are presented
in what follows.

Figure 6 shows the experimental results for a fiber of length
20 km and 40 km. The TDM dispersion value was swept be-
tween −40 ps and +40 ps, resulting in effective link distances
in the ranges of 17.65 − 22.35 km and 37.65 − 42.35 km, re-
spectively. For the system around 20 km, BERs below 10−5

have been achieved experimentally at all distances. In par-
ticular, the lowest BER of 3.73 · 10−6 has been obtained at
21.18 km. For comparison, the PAM2 system experimentally
achieves 7.77 · 10−4 BER at 20 km and is therefore signifi-

Fig. 7. Experimental BER performance for systems trained at (60, 4) km and
(80, 4) km.

cantly outperformed by the end-to-end deep learning optical
system. At 40 km, the proposed system outperforms both the
42 Gbaud PAM2 and the 21 Gbaud PAM4 schemes, as neither
of these can achieve BERs below the HD-FEC threshold. On
the other hand, the ANN-based system achieved BERs below
1.4 · 10−3 at all distances in the examined range. In particular,
BERs of 1.05 · 10−3 at 40 km and a lowest BER of 5.75 · 10−4 at
38.82 km have been obtained. Furthermore, we see that both sets
of experimental results at 20 km and at 40 km are in excellent
agreement with the simulation results.

Figure 7 shows the experimental results at 60 km and 80 km
fiber length and TDM dispersion swiped between −40 ps
and +40 ps, yielding effective link distances in the ranges
57.65 − 62.35 km and 77.65 − 82.35 km, respectively. For both
systems we see that BERs below the HD-FEC threshold can-
not be achieved by the end-to-end deep learning approach, as
predicted by the simulation. Nevertheless, at 60 km the system
still outperforms the PAM2 and PAM4 links. However, for the
80 km, link the thermal noise at the receiver becomes more
dominant due to the low signal power levels without optical
amplification. In combination with the accumulated dispersion,
whose effects at 80 km extend across multiple blocks and cannot
be compensated by the block-by-block processing, this results
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in operation close to the sensitivity limits of the receiver which
ultimately restricts the achievable BERs.

To further investigate the impact of received signal power on
the performance of the system, we included an erbium-doped
fiber amplifier (EDFA) in the deep learning-based test-bed for
pre-amplification at the receiver. Thereby, the received power
is increased from −13 and −17 dBm at 60 km and 80 km,
respectively to −7 dBm. The obtained BERs at these distances
are shown as well in Fig. 7. We see that by changing the link
to include an extra EDFA, the end-to-end deep learning sys-
tem achieves significantly improved performance. In particular,
at 60 km, a BER of 3.8 · 10−3 , slightly below the HD-FEC
threshold, can be achieved. Due to dispersion and block-based
processing, there is a significant impact at 80 km as well, where
the obtained BER is 2.8 · 10−2 . These results highlight the great
potential for performance improvement by including different
link configurations inside the end-to-end learning process.

VI. DISCUSSION

A. Transmitted Signal Characteristics

In our end-to-end optimization of the transceiver, the trans-
mitter learns waveform representations which are robust to the
optical channel impairments. In the experiment, we apply ran-
dom sequences to the transmitter ANN, followed by 32 GHz
LPF to generate the transmit waveforms. We now exemplify
the temporal and spectral representations of the transmit signal.
Figure 8 (top) shows the filtered output of the neural network,
trained at (40, 4) km, for the representative 10-symbol message
sequence (mt)10

t=1 = (2, 36, 64, 40, 21, 53, 42, 41, 34, 13), with
mt ∈ {1, . . . , 64} denoting the input message to the ANN at
time/block t. Each symbol carries 6 bits of information, con-
sists of 48 samples, and is transmitted at 7 GSym/s, yielding
a symbol duration T ≈ 143 ps. We observe that, as an effect
of the clipping layer in our transmitter ANN, the waveform
amplitude is limited in the linear region of operation of the
Mach-Zehnder modulator with small departure from the range
[0; π

4 ] due to the filtering effects. Figure 8 (bottom) also shows
the un-filtered 48 samples for each symbol in the sub-sequence
(mt)7

t=6 = (53, 42). These blocks of samples represent the di-
rect output of the transmitter ANN. The trained transmitter can
be viewed as a look-up table which simply maps the input mes-
sage to one of M = 64 optimized blocks. Figure 9 illustrates
the 48 amplitude levels in each of these blocks. Interestingly,
we see that the extremal levels 0 and π

4 are the prevailing levels.
It appears that the ANN tries to find a set of binary sequences
optimized for end-to-end transmission. However, some interme-
diate values are also used. Unfortunately, it is not easy to say if
this is intended by the deep learning optimization or an artefact.
To bring more clarity, we visualize the constellation of modu-
lation format by using state-of-the-art dimensionality reduction
machine learning techniques such as t-Distributed Stochastic
Neighbor Embedding (t-SNE) [28]. Figure 10 shows the two-
dimensional t-SNE representation of the un-filtered ANN out-
puts of Fig. 9. We can see that the 64 different waveforms are
well-separated in the t-SNE space and can hence be discrimi-
nated well enough.

Figure 11 shows the spectrum of the real-valued electrical
signal at the transmitter. Because of the low-pass filtering the
spectral content is confined within 32 GHz. The LPFs at both
transmitter and receiver ensure that the signal bandwidth does
not exceed the finite bandwidth of transmitter and receiver hard-
ware. We can further observe that, as a result of the block-based
transmission, the signal spectrum consists of strong harmonics
at frequencies that are multiples of the symbol rate. After DAC,
modulation of the optical carrier, fiber propagation and direct
detection by a PIN+TIA circuit, the samples of the distorted
received waveforms are applied block-by-block as inputs to the
receiver ANN for equalization.

B. Comparison With Receiver-Only and Transmitter-Only
ANN-Processing

In contrast to systems with transmitter-only and receiver-only
ANNs, the proposed end-to-end deep learning-based system
enables joint optimization of the message-to-waveform map-
ping and equalization functions. To highlight the advantages of
optimizing the transceiver in a single end-to-end process we
compare—in simulation—our end-to-end design with three dif-
ferent system variations: (i) a system that deploys PAM2/PAM4
modulation and ANN equalization at the receiver; (ii) a system
with ANN-based transmitter and a simple linear classifier at the
receiver and (iii) a system with individually trained ANNs at
both transmitter and receiver. In this section, we provide a de-
tailed discussion on the implementation of each of these bench-
mark systems and relate their performance to the end-to-end
deep learning approach. For a fair comparison all systems have
a bit rate of 42 Gb/s and 6 bits of information are mapped to a
block of 48 samples (including oversampling by a factor 4). All
simulation parameters are as in Table I. All hyper-parameters
of the ANNs, such as hidden layers, activation functions, etc. as
well as the other system and training parameters are identical to
those used in the end-to-end learning system in Sec. IV.

1) PAM Transmitter & ANN-Based Receiver: The PAM2
transmitter directly maps 6 bits into 6 PAM2 symbols
({0;π/4}). The PAM4 transmitter uses the best (6,3) linear
code over GF(4) [29] to map the 6 bits into 6 PAM4 sym-
bols ({0;π/12;π/6;π/4}). The symbols are pulse-shaped by
a raised-cosine (RC) filter with roll-off 0.25 and 2 samples per
symbol. The waveform is further oversampled by a factor of 4 to
ensure that a block of 48 samples is transmitted over the channel
(as in the reference setup). The first element of the channel is
the 32 GHz LPF. The received block of distorted samples is
fed to the ANN for equalization. Training of the receiver ANN
is performed using the same framework as in Sec. IV by la-
beling the transmitted PAM sequences. Figure 12 compares the
symbol error rate performance of the described PAM2/PAM4
systems and the system trained in an end-to-end manner (curves
“TX-PAMx & RX-ANN”). For training distances of 20 km and
40 km, the end-to-end ANN design significantly outperforms
its PAM2 and PAM4 counterparts. In particular, at 20 km the
symbol error rate of the end-to-end system is below 10−6 , while
the PAM2 and PAM4 systems achieve 5.5 · 10−4 and 2.9 · 10−3 ,
respectively. At distances beyond 40 km, the PAM-based sys-
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Fig. 8. Top: Output of the transmitter ANN, trained at (40,4) km, after filtering with 32 GHz Brickwall LPF for the representative random sequence of 10
symbols (mt )10

t=1 = (2, 36, 64, 40, 21, 53, 42, 41, 34, 13) transmitted at 7 GSym/s, i.e. T ≈ 143 ps. Bottom: Un-filtered ANN output samples, 48 per symbol,
for the sub-sequence (mt )7

t=6 = (53, 42).

Fig. 9. All 64 possible outputs (m = 1 to m = 64, upper left to bottom right) of the transmitter ANN before low-pass filtering.

tems with receiver-only ANN cannot achieve symbol error rates
below 0.1.

2) ANN-Based Transmitter & Linear Receiver: In order to
implement a system where the main ANN processing com-
plexity is based at the transmitter, we employ the same ANN-
based transmitter as in Fig. 1. At the receiver, we impose a
simple linear classifier as shown in Fig. 13. This receiver is a
linear classifier with M classes, a so-called multiclass-
perceptron and carries out the operation y = softmax(WRx +

bR), with WR ∈ Rn×M and bR ∈ RM . The decision is
made by finding the largest element of y, i.e., m̂ =
arg maxm∈{1,...,64} ym . The receiver thus employs only a single
fully-connected layer with softmax activation to transform the
block of n = 48 received samples into a probability vector of
size M = 64 (i.e. the size of the input one-hot vector, see Sec.
III-A,C). At the transmitter, we use the exact same structure as
in our deep ANN-based end-to-end design. Both the transmit-
ter ANN parameters and the receiver parameters WR and bR
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Fig. 10. t-SNE representation of the multi-dimensional waveforms output of
the transmitter ANN on the two-dimensional plane. The points are labeled with
their respective message number m.

Fig. 11. Spectrum of the 32 GHz Brickwall low-pass filtered waveform at the
output of the transmitter ANN, trained at (40,4) km.

are optimized in an end-to-end learning process. Hence, such a
system exclusively benefits from the ANN-based pre-distortion
of the transmitted waveform and has a low-complexity receiver.
Figure 12 also shows the performance of this system trained
at distances 20 km and 40 km (“TX-ANN & RX-linear”). The
system trained at 20 km achieves symbol error rate performance
close to our deep learning-based end-to-end design. Moreover,
we can see that it exhibits slightly better robustness to distance
variations. This may be accounted to the absence of a deep ANN
at the receiver, whose parameters during training are optimized
specifically at the nominal distance and thus hinder the tolerance
to distance changes. However, when the training is performed at
40 km, this system exhibits a significantly inferior performance

Fig. 12. Symbol error rate as a function of transmission distance for (i)
PAM2/PAM4 systems with ANN-based receiver, (ii) deep ANN-based trans-
mitter and a multiclass-perceptron receiver, (iii) ANN-based transmitter with
ANN-based receiver optimized for PAM2 transmission and (iv) end-to-end deep
ANN-based system. Training is performed at a fixed nominal distance of 20 km
(left) or 40 km (right).

Fig. 13. Schematic of the multiclass-perceptron used as receiver when having
a deep ANN at the transmitter only.

compared to the proposed end-to-end deep learning-based
design.

3) ANN-Based Transmitter & ANN-Based Receiver, Sep-
arately Trained: Our final benchmark system deploys deep
ANNs at both transmitter and receiver, which, in this case, are
trained individually as opposed to performing a joint end-to-end
optimization. For this comparison we fix the receiver ANN,
whose parameters were previously optimized for PAM2
transmission, and aim to optimize only the transmitter ANN to
match this given receiver in the best possible way. Training is
carried out in the same end-to-end manner as detailed in Sec. IV,
however, we keep the receiver ANN parameters fixed. Figure 12
shows the symbol error rate performance of such a system
(“TX-ANN & PAM2-opt. RX-ANN”). For training at the nom-
inal distance of 20 km, this system design achieves a symbol
error rate of 2.67 · 10−6 . Interestingly, one can clearly observe
the benefits of the ANN-based waveform pre-distortion, which
significantly lowers the error rate compared to the PAM2 system
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Fig. 14. Comparison of the experimental BER performance for systems
trained at (20, 4) km and (40, 4) km (i) without re-training of the receiver
ANN, (ii) re-training the receiver ANN by fine-tuning, (iii) training the receiver
ANN by randomization.

with receiver-only ANN. For systems trained at 40 km however,
the individually trained transmitter and receiver ANNs cannot
outperform our proposed, jointly trained, end-to-end system.

C. Further Details on the Experimental Validation

As explained in Sec. V, after propagation of the optimized
waveforms during the experiment, the receiver ANN was fine-
tuned (re-trained) to account for the discrepancies between the
channel model used for training and the real experimental set-
up. Re-training can be carried out in two different ways: In the
first approach, denoted “fine-tuning”, we initialize the receiver
ANN parameters with the values previously obtained in simula-
tion and then carry out re-training using the labeled experimental
samples. In the second approach, denoted “randomization”, we
initialize the receiver ANN parameters with randomly initialized
parameters sampled from a truncated normal distribution before
re-training. Figure 14 shows the experimental BER curves at 20
and 40 km for the two re-training approaches and compares them
with the raw experimental results, obtained by applying the ini-
tial Rx ANN acquired from the simulation ’as is’ without any
fine-tuning. We can observe that accounting for the difference
between the real experimental environment and the assumed
channel model by re-training improves performance at both dis-
tances. Moreover, expectedly, we confirm that both re-training
solutions converge to approximately the same BER values at all
examined distances. Although we kept the number of training
iterations for the two approaches equal, initializing the ANN pa-
rameters with pre-trained values had the advantage of requiring
less iterations to converge for most of the presented values. It is
also worth noting that the BER performance of the system with-
out any re-training is well below the HD-FEC threshold around
20 km, achieving a minimum value of 4.2 · 10−4 at 20.59 km.
More accurate and detailed channel models used during training
will likely further reduce this BER.

It is important to point out that for the experimental eval-
uation of ANN-based transmission schemes and hence in the
framework of our work, the guidelines given in [12] need to

be meticulously followed to avoid learning representations of a
sequence (e.g., PRBS) used in the experiment and hence bias-
ing the error rates towards too low values. In our work, during
the offline training, we continuously generate new random in-
put messages using a random number generator with a long
sequence (e.g., Mersenne twister). In the experimental valida-
tion, we generated a long random sequence (not a PRBS, as
suggest in [12]) which is processed by the transmitter ANN
to generate a waveform, loaded (after filtering and resampling)
into the DAC, and transmitted multiple times, to capture differ-
ent noise realizations. For re-training the receiver ANN, mini-
batches are formed by picking randomly received blocks from
a subset of the database of experimental traces (combining mul-
tiple measurements). Finally, in order to obtain the results pre-
sented throughout the manuscript, we use the trained and stored
models to perform testing on a disjoint subset of the database
of experimental traces, having no overlap with the subset used
for training. This procedure ensures that the presented experi-
mental results are achieved with independent data. Finally note
that, due to the long memory of the fiber, it is not possible to
capture the interference effects of all possible sequences of sym-
bols preceding and succeeding the symbol under consideration
in the experiment. Hence, it is possible that the results after re-
training under-estimate the true error rate as the re-trained ANN
may learn to adapt to the interference pattern of the sequence.
Hence, the performance of all such ANN-based (re-trained) re-
ceivers can be considered to be a lower bound on the true system
performance. We closely studied the effects of re-training based
on repeated sequences and verified that a sufficiently large set
of different experimental traces was captured.

VII. CONCLUSION

For the first time, we studied and experimentally verified the
end-to-end deep learning design of optical communication sys-
tems. Our work highlights the great potential of ANN-based
transceivers for future implementation of IM/DD optical com-
munication systems tailored to the nonlinear properties of such a
channel. We experimentally show that by designing the IM/DD
system as a complete end-to-end deep neural network, we can
transmit 42 Gb/s beyond 40 km with BERs below the 6.7%
HD-FEC threshold. The proposed system outperforms IM/DD
solutions based on PAM2/PAM4 modulation and conventional
receiver equalization for a range of transmission distances. Fur-
thermore, we proposed and showed in simulations a novel train-
ing method that yields transceivers robust to distance variations
that offer a significant level of flexibility. Our study is the first
attempt towards the implementation of end-to-end deep learn-
ing for optimizing neural network based optical communication
systems. As a proof of concept, we concentrated on IM/DD sys-
tems. We would like to point out that the method is general and
can be extended to other, eventually more complex models and
systems.

ACKNOWLEDGMENT

The authors would like to thank Dr. J. Hoydis and S. Cam-
merer for many inspiring discussions on the application of deep
learning for communication systems.



KARANOV et al.: END-TO-END DEEP LEARNING OF OPTICAL FIBER COMMUNICATIONS 4855

REFERENCES

[1] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo, “Machine
learning paradigms for next-generation wireless networks,” IEEE Wireless
Commun., vol. 24, no. 2, pp. 98–105, Apr. 2017.

[2] F. Khan, C. Lu, and A. Lau, “Machine learning methods for optical com-
munication systems,” in Proc. Adv. Photon. IPR, NOMA, Sensors, Netw.,
SPPCom, PS, OSA Tech. Dig., 2017, Paper SpW2F.3.

[3] J. Thrane, J. Wass, M. Piels, J. C. M. Diniz, R. Jones, and D. Zibar,
“Machine learning techniques for optical performance monitoring from
directly detected PDM-QAM signals,” J. Lightw. Technol., vol. 35, no. 4,
pp. 868–875, Feb. 2017.

[4] D. Zibar, M. Piels, R. Jones, and C. Schäffer, “Machine learning tech-
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