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Abstract—This work studies how the local current density in
a metal–semiconductor–metal photodetector (MSM PD) corre-
sponds to the plasmonic enhancement and therefore affects the
overall enhancement of the device. For this type of semiconductor
photodetector, the enhancement of incident light due to plasmonic
structures is most critical inside the substrate, where the photocur-
rent is generated. This work develops a relationship between the
total device optical enhancement and the current density by con-
sidering the average optical enhancement, weighted by the current
density in the GaAs layer of a simulated MSM PD. This corre-
sponds to an increased overall current in the device. Effects of the
wire and nanoslit widths on the total weighted optical enhancement
were studied. The results showed that both widths have a signifi-
cant impact on the total weighted optical enhancement, improving
it by two orders of magnitude when using the smallest possible wire
widths and nanoslits.

Index Terms—Current density, MSM photodetector, nanoslit,
nanogap, plasmonic.

I. INTRODUCTION

WHEN light of a specific wavelength illuminates a metal
(gold, for example), it will interact with the electrons in

the conduction band, causing them to oscillate with a particular
corresponding frequency.
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The collective oscillation of the electrons within the metal
is called a plasmon [1]. The geometry of the metallic struc-
ture is one factor that can play a major role in the light-matter
interaction [2]. It is possible to generate a strengthened local
electric field near one or more nanostructures due to these
plasmonic effects. These regions of increased electric field
strength are known as hotspots. This phenomenon can be uti-
lized to develop applications related to enhanced optical inten-
sity such as photodetectors [3]–[6], photovoltaics [7]–[14], bio-
sensors [15]–[22], terahertz antennas [23], lenses with tunable
parameters [24]–[27], single-molecule detection [28]–[31] and
surface-enhanced Raman spectroscopy (SERS) [32]–[34].

When it comes to high-speed optical communication sys-
tems, photo-sensing devices such as metal-semiconductor-metal
(MSM), p-i-n, avalanche, and heterojunction photo-detectors
(PDs) are used. Of these, the MSM PD is optimal because it is
simple, easy to fabricate, and has low capacitance. This low ca-
pacitance makes MSM PDs especially attractive for high-speed
optical communications, because they typically exhibit large
detection bandwidths.

Due to their application in optical communications, MSM
PDs have been extensively studied for many years. The majority
of these studies have focused on micro-scale metallic structures
[35], [36], whereas recent research investigates nanoscale MSM
PD structures to take advantage of plasmonic enhancement ef-
fects [37]–[39]. One type of nanostructure used to enhance the
optical signal in MSM PDs is a plasmonic grating. The light pro-
duced by the grating can be increased even further by moving
the metal structures closer together, creating nanoslit spacing.
Previous work has investigated the optical response of nanos-
tructure PDs [40]–[43], however, the effects of current density
in the device were not taken into consideration.

This work models a gold grating on a GaAs substrate and
calculates an overall enhancement based on both the plasmonic
enhancement effects in the device and the current density pro-
file in the structure, unlike other works that just model the
total optical transmission or absorption [3]–[7], [39], [40], [43].
Specifically, this approach weighs the optical electric field en-
hancement at each point within the PD substrate by the value of
the current density at that location. In this way, regions of more
optical enhancement, which cause more carrier generation, are
considered as more ‘valuable’ if they also correspond to re-
gions of high current density. It is important to consider that the
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Fig. 1. Sketch of the proposed device geometry. (a) 3D depiction of the sim-
ulated MSM PD with interdigitated electrodes. GaAs was used as a substrate,
and the applied bias voltage (Vb) was 5 V. (b) A cross-sectional view of one pe-
riod (P = 2w + 2g) showing wire width (w), wire thickness (twire), and nanoslit
width (g).

regions of highest current density in the GaAs are near the Au
electrodes, where the electric field enhancement is also greatest
due to the presence of plasmonic hotspots.

II. METHOD

A finite element method (FEM) model [44] was created to
determine the optical and electrical responses for device ge-
ometries of interest. The proposed device consists of two pads
containing interdigitated electrodes separated by nanoslits as
shown in Fig. 1(a). Since the lengths of the interdigital elec-
trodes are very long relative to the cross-sectional nanoscale
dimensions, it is reasonable to approximate the structure as ex-
tending infinitely into and out of the page, allowing for the use of
a 2D model as shown in Fig. 1(b). The electrodes were modeled
on a GaAs substrate and biased at Vb = 5 V.

The cross-sectional view of the device has periodic bound-
ary conditions where one period represents two nanostruc-
ture widths (w) separated by a nanoslit of width g, such that
P = 2g + 2w, with the gold electrodes having a thickness of
twire = 15 nm. The top edges of the nanostructures were beveled
with a 5 nm radius. Light with a wavelength of 875 nm (near
the bandgap energy of GaAs), linearly polarized along x, was
simulated as normally incident upon the nanostructures from
above. Frequency-dependent optical material properties were
taken from experimental results [45], [46]. The slit width, g, is
modeled down to sub-10 nm values, which can be fabricated
using the previously outlined nanomasking technique [47].

The normalized electric field distribution for incident light ir-
radiation was calculated (Elocal/E0), and the results are depicted
in Fig. 2(a), which shows the location of plasmonic hotspots in
the GaAs. This example demonstrates a grating structure with a

Fig. 2. Computational results. (a) Electric field enhancement distribution of
one period, P = 110 nm, corresponding to w = 50 nm. (b) Current density dis-
tribution for the same period in (a).

period of 110 nm, which corresponds to w = 50 and g = 5 nm.
Hotspots appear at the bottom edges of the nanostructures due
to the plasmonic resonance. In addition, the normalized cur-
rent density distribution (J/Jmax) was calculated as shown in
Fig. 2(b) for the same structure as in Fig. 2(a). The current
density is calculated using Maxwell’s equations, assuming a
steady-state case and the application of a DC bias voltage. In
this case, the regions of high current density are at similar loca-
tions within the substrate as those with the highest electric field
enhancement. The results displayed in Fig. 2 demonstrate the
key implication of the current work. Here, a weighted average
optical enhancement was determined based on the local optical
enhancement due to the plasmonic structures, weighted by the
local current density at each calculation point.

The generation of carriers in the GaAs in regions with very
low current density, due to the biasing configuration, is less sig-
nificant to the overall device photocurrent than generation of
carriers in high current density regions. Therefore, plasmoni-
cally enhancing the light (the number of photons), and therefore
the number of carriers generated, is less significant in regions
of low current density as well. Conversely, when the light is
plasmonically enhanced in regions of high bias potential, and
therefore high current density, the carriers generated here will
contribute more significantly to the overall photocurrent of the
device. This local ‘enhancement significance’ is treated quanti-
tatively through a weighted average as follows.

From the results of the calculations used to create Fig. 2, the
electric field (E) and current density at each point in the GaAs,
Eij and Jij respectively, can be obtained. From these values, a
weighted average optical enhancement, GΛ , was calculated for
a single period of the grating device. In this calculation, the
current density was used to generate the weighted average of
the optical enhancement using (1).

GΛ =

∑[
(Eij/E0)

2Jij

]

∑
Jij

(1)

The normalized optical intensity, (Eij/E0)2 , indicates the
optical enhancement, where Eij and E0 are the local and incident
electric field strengths, respectively. Thus, the field enhancement
is given more weight in local substrate regions with high current
density.

For a constant device area, a smaller period will mean a higher
density of interdigitated finger pairs on the device. Therefore,



2432 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 36, NO. 12, JUNE 15, 2018

Fig. 3. Computational results. (a) Weighted optical enhancement for one pe-
riod (GΛ ) versus w. The twire and g were fixed at 15 nm and 5 nm, respectively.
(b) Total weighted optical enhancement over the device area (G) as a function
of w.

for smaller periods, the overall contribution of the weighted
optical enhancement per pair will be greater since more of these
sections will be part of the device’s active region. Each pair of
electrodes adds to the total optical enhancement of the device,
G, calculated by (2).

G = GΛ

(
Wtot

P
− 1

)

(2)

Here, Wtot = 10 µm is the total width of the proposed device’s
active area. The effective number of periods in the active area
that contribute to the total photocurrent in the device is given
by W t o t

P − 1, where the subtraction of one corrects the calcu-
lation by neglecting the two electrodes at the edges of the full
device, as no current flows at the absolute outside of the device.
In this way, the weighted enhancement between each electrode
is multiplied by the total number of electrodes in the full device
area. The value of G corresponds to a theoretical total current-
density-weighted optical enhancement, which is correlated to an
increased total current in the device. Without modeling the semi-
conductor nature of the substrate by including parameters such
as carrier generation and recombination, this approach serves
to approximate the optimal MSM PD nanostructure geometry.
The results, calculated via the weighted enhancement method,
provide insight into the effects of plasmonic gratings on PDs and
give an approximation of an ideal plasmonic structure design.

III. RESULT AND DISCUSSION

The weighted optical enhancement of one period, GΛ , is
plotted versus w in Fig. 3(a) using (1) for widths of w from
50 to 400 nm. The electrode thickness and spacing were held
at twire = 15 nm and g = 5 nm, respectively, corresponding to

Fig. 4. Total weighted optical enhancement for the entire device (G) versus
nanoslit width (g) for two different wire widths, w = 50 and 160 nm. The wire
thickness was fixed at 15 nm, and the nanoslit was swept from 5 to 50 nm.

dimensions capable of being fabricated via nanomasking. The
total weighted optical enhancement as a function of w is also
plotted in Fig. 3(b).

Both the weighted optical enhancement for one period (GΛ )
and the total across the device area (G) increase with decreas-
ing w. For GΛ , peaks were observed over the range of w,
with the maximum notable peak at w = 160 nm. This strong
peak, as well as other peaks at higher w values, correspond to
Fabry-Perot-like oscillations of the plasmonic waves resonating
strongly for specific width values, similar to previous results
[47]. As w decreases down to 50 nm, GΛ continues to increase
as the plasmonic effect increases with smaller structure sizes.
The total enhancement over the entire device, G, also increases
inversely with w. Since the density of electrodes increases with
decreasing w, the total number of electrode pairs per unit area
also increases. This effect, along with the fact that GΛ increases
as w decreases, leads to the larger G values occurring for smaller
electrode widths.

The effect of electrode spacing, g, on G was then studied; the
results are plotted in Fig. 4. Two structure widths which gave
large enhancement values (w = 50 and 160 nm) were tested,
with twire again fixed at 15 nm. The total weighted optical en-
hancement is plotted as a function of g, which was swept from
5 to 50 nm. Note that once the electrode spacing decreases be-
low 10 nm for w = 50 nm, the value of G significantly increases
due to plasmonic nanogap effects [48]. For both widths, the to-
tal weighted optical enhancement increases as gap decreases
due to two main contributions. As the gap decreases: (1) the
optical enhancement increases in each gap due to nanogap plas-
monic effects, and (2) the density of electrode pairs increases,
increasing the total current. For smaller gaps, more area of the
GaAs is covered by Au, causing some reflection, absorption, or
scattering of the light by the electrodes. However, this effect is
much smaller than the positive effects of the other factors listed.
Therefore, the net effect is an increase in optical gain within
the GaAs as a function of electrode spacing. Also, since the
thickness of electrodes is small, the reflection is also minimal.
In general, for thicker electrodes, the reflection effect would
be greater and the enhancement diminished. However, one can
tune the thickness as well to optimize the signal, as shown in
Ref. [48].
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IV. CONCLUSION

The total weighted optical enhancement effects in a photode-
tector containing interdigital plasmonic electrodes were inves-
tigated by considering both the plasmonic optical enhancement
and the current density within the semiconductor substrate. The
simultaneous consideration of these effects was utilized to de-
termine the total enhancement for MSM PD applications since
enhanced photogeneration in regions of high current density
should lead to greater overall photocurrent. The two key pa-
rameters studied were wire and nanoslit width, which greatly
influence the total optical enhancement of the device. It was
demonstrated that the regions of highest current density (bot-
tom edges of the nanoscale electrodes) are near the highest
optical enhancement (hotspot) regions. This can lead to a fur-
ther increase in the total current of the device. To predict this
increase for the proposed range of device geometries, the total
optical enhancement was calculated and weighted by the local
current density. The results showed that fabricating the smallest
possible electrodes and electrode spacing can lead to enhance-
ment values more than an order of magnitude greater than those
for non-plasmonic devices. Optimizing the structure by decreas-
ing the structure period and width for small, constant nanoslit
widths has been demonstrated to increase the enhancement by
up to two orders of magnitude compared to that of larger struc-
tures/periods. Nanoslits below 10 nm and electrode widths down
to 50 nm are the predicted optimal geometric specifications to
optimize device current. This work also shows that plasmonic
gap enhancement effects outweigh any unwanted shadowing
effect when using optically thin electrodes.
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