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Abstract—We report the transmission of probabilistically
shaped (PS) 64-ary quadrature amplitude modulation (QAM) at
7.46 b/s/Hz over a 5523-km in-service trans-Atlantic fiber-optic ca-
ble that consists of 65–89-km spans of Erbium-doped fiber ampli-
fier only amplified fiber. Using a looped-back system configuration,
we achieve 5.68 b/s/Hz over a trans-Pacific-equivalent distance of
11 046 km. Net spectral efficiencies are increased by 18% and 80%
by using PS, at 5523 km and 11 046 km, respectively, compared
to uniform square QAM. Throughout our experiments, we pay
particular attention that our claims are backed by implementable
forward error correction schemes. In addition, we demonstrate
real-time coherent transmission of single-carrier 200 and 250-Gb/s
uniform 8-QAM and 16-QAM at 4 b/s/Hz over the 5523-km cable.

Index Terms—Coherent detection, field trial, modulation, prob-
abilistic constellation shaping, submarine transmission.

I. INTRODUCTION

THE exponential growth of global data traffic driven by
cloud-based applications has attracted significant atten-

tion from operators of web-scale cloud platforms to build their
own intercontinental submarine fiber-optic cables [1]. Web-
scale companies are investing in at least 106,460 km of sub-
marine fiber-optic cables that are deployed between 2010 and
2018 [2], including the trans-Atlantic AEC-1 cable between
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Shirley, New York, USA, and Killala, Ireland, which began ser-
vice in January 2016 [3], the trans-Atlantic MAREA cable be-
tween Virginia Beach, Virginia, USA, and Bilbao, Spain, whose
initial service is planned for the 1st quarter of 2018, and the
trans-Pacific PLCN cable between Manhattan Beach, Califor-
nia, USA, and Tseung Kwan O, Hong Kong, which will begin
service in May 2018, on all of which Facebook operates or will
operate on dedicated fibers [2].

Once deployed, it is crucial to maximize cable capacity
through best-in-class transponders across the industry, in the
spirit of open submarine line systems. The capacity of legacy
submarine cables designed for past-generation technologies
such as on-off keying and dispersion-managed fibers that com-
monly provide uneven channel qualities across the optical spec-
trum is also upgraded by latest coherent-optical transponders
[4], since laying new submarine cables is extremely costly and
time-consuming.

Both on the most advanced cables with minimum quality vari-
ations across wavelength division multiplexed (WDM) channels
and on legacy cables with large channel-to-channel quality vari-
ations, rate-adaptable coded modulation is an essential tech-
nology to achieve maximum cable capacity. In today’s most
advanced commercial systems, rate adaptation is substantially
limited to the ability to coarsely switch between a handful of pre-
defined quadrature amplitude modulation (QAM) formats, such
as binary and quadrature phase shift keying (BPSK, QPSK),
8-QAM, 16-QAM, and 64-QAM [5]. Recently, however, prob-
abilistically shaped (PS) QAM re-emerged within the research
community, offering a very fine granularity of information rates
(IRs) and hence the ability to dynamically adapt the transponder
to the physical channel on a per-wavelength basis [6]– [10].

Previous submarine field trials have reported 125 Gb/s per car-
rier over 4,108 km [11] and 200 Gb/s per carrier over 6,577 km
[12] using off-line processing, but not in a fully-loaded dense
WDM (DWDM) context, and without rate adaptability. In lab-
oratory recirculating loops, fully-loaded DWDM experiments
have achieved spectral efficiencies (SEs) of 8.3 b/s/Hz over
6,375 km on 56-km spans of hybrid ‘quasi-single-mode’ and
150-μm2 effective area fiber [13], 7.3 b/s/Hz over 6,600 km of
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Fig. 1. Record SEs reported in literature to date.

55-km spans of 150-μm2 effective area fiber in C+L band [9],
∼6 b/s/Hz over 9,150 km of hybrid Raman/EDFA amplified
50-km spans of 134-μm2 effective area fiber [14], and
7.23 b/s/Hz over 7,600 km of 52.8-km spans of 150-μm2

effective area fiber in C+L band [15]. Laboratory records in
terms of spectral efficiency and reach are summarized in Fig. 1,
including WDM experiments (squares) and spectrally narrowly
confined single-channel experiments (triangles); for the latter,
the data points represent upper bounds to a potentially achiev-
able SE.

Using PS constellations, 3 previous laboratory experiments
(red [7], blue [16], and yellow [8] diamonds and circles) were
used to trade off rate and reach; however, Buchali et al. [7]
used only a single WDM channel; Yankov et al. [16] used five
10-GBaud signals, but on a 25-GHz grid, which leads to a
significant reduction in SE compared to their reported per-
channel achievable information rates (AIRCh ). Hence, as an
upper bound to the potentially achievable SE performance of
Refs. [7] and [16], we show in Fig. 1 their AIRWDM , i.e.,
their AIRCh scaled back by their spectral excess bandwidths,
AIRWDM = AIRCh/(1 + r), where r is their root raised cosine
(RRC) roll-off factor (diamonds). Our laboratory results (yellow
[8]) achieve record AIRWDM over a wide range of rate/reach
combinations, with AIRWDM ranging from 14.1 b/s/Hz at 500
km to 8.9 b/s/Hz at 4,000 km. In terms of actually decoded per-
formance, we show in Fig. 1 the (excess bandwidth corrected)
scaled-back results of Refs. [7] and [16] (circles), together with
our results of 12.6, 11.4, and 10.1 b/s/Hz at 500, 1,000, and
2,000 km [8]. The PS results fill the wide gap between [17],
which demonstrated 14 b/s/Hz over 720 km, albeit at only
2.5 GBaud and in self-homodyne operation, and [13], which
got 8.3 b/s/Hz over 6,375 km. Using geometrically shaped 32-
QAM, 6.14 b/s/Hz at 11,185 km was demonstrated in C+L band
in a laboratory experiment, without rate adaptability [18].

Based on the above laboratory records, we reported in [10] a
field trial on the 5,523-km AEC-1 in-service, EDFA-only sub-
marine cable consisting of 65 spans with an average length
of 89 km. We demonstrated a rate-adaptable 5-carrier PS-64-
QAM superchannel an off-line processed SE of 7.46 b/s/Hz on

Fig. 2. Location and specification of the AEC-1 Cable.

the field-deployed submarine cable, which is close to current
laboratory records and suggests a capacity upgrade from the
designed 13 Tb/s to 32 Tb/s per fiber on this cable. In loop-back
mode, we achieved a record 5.68 b/s/Hz over 11,046 km. Using
Nokia’s PSE-2s digital signal processing (DSP) engine [5], we
also reported a record SE of 4 b/s/Hz using real time processed
200-Gb/s and 250-Gb/s single-carrier 8-QAM and 16-QAM,
thereby upgrading the capacity of the deployed submarine cable
to 17.2 Tb/s per fiber with commercial margins and existing co-
herent transmission products. In this extended paper, we discuss
in more detail our previously reported field trial results together
with the underlying strategies that allowed us to achieve these
record spectral efficiencies.

II. SYSTEM CONFIGURATION

A. Trans-Atlantic AEC-1 Cable

The AEC-1 submarine cable connects Shirley, New York,
USA, and Killala, Ireland, as shown in Fig. 2. The submarine
link, built by TE Subcom and managed by AquaComms, con-
sists of 65 spans of pure silica core fiber (Sumitomo Z+) whose
effective area is 130-μm2 , and whose average loss, dispersion,
and dispersion slope at 1550 nm is 0.156 dB/km, 20.5 ps/nm/km,
and 0.06 ps/nm2 /km, respectively. The average span length is
89 km and the average span loss is 14.4 dB. It uses only Erbium-
doped fiber amplifiers (EDFAs) of 4.3 THz bandwidth for signal
amplification, ranging from 191.633 THz to 195.966 THz (ex-
tended C band) with a constant output power of 19 dBm.

B. Transponder Setup

The transmit site in Shirley, New York, contains three Nokia
500G DWDM Muxponder line cards (D5X500) [19] as part of
Nokia’s 1830 Photonic Service Switch (PSS) optical transport
platform [20], as illustrated in Fig. 3(a). Each line card can
generate two independent optical carriers that are fully tunable
across the extended C band with various modulation formats [5],
of which 200-Gb/s 8-QAM, 200-Gb/s and 250-GB/s 16-QAM,
and 100-Gb/s QPSK (all single-carrier) were used in this trial;
up to 6 modulated carriers were combined and passed through
an optical line loading apparatus that used EDFAs together with
wavelength-selective switches (WSS) to fill the unused system



CHO et al.: TRANS-ATLANTIC FIELD TRIAL USING HIGH SPECTRAL EFFICIENCY PROBABILISTICALLY SHAPED 64-QAM 105

Fig. 3. Experimental setup.

bandwidth with amplified spontaneous emission (ASE) as a re-
placement for WDM channels. (We will discuss this line loading
approach in more detail in Section II-C below.) In addition, a
fourth line card that generates 32-Gbaud polarization-division
multiplexed (PDM)-QPSK is used as a supervisory channel. It
serves several purposes that include providing a private com-
munication channel between the two locations as well as other
functions for accessing the D5X500 channels. The respective
channel under test [CUT; either a real-time D5X500 channel,
indicated by the green dashed line, or an off-line PS-64-QAM
superchannel, indicated by the blue dashed line in Fig. 3(a)] by-
passes the line loading apparatus using a 10/90 coupler before
entering the submarine link. This is done to avoid any degrada-
tion of the optical signal-to-noise ratio (OSNR) due to the line
loading apparatus for the test channel.

Real-time experiments with the D5X500 channels are per-
formed both by distributing them uniformly across the system
bandwidth and by placing them next to each other at various
channel spacings. For our real-time testing, a set of three 1830
PSE-2s transponders identical to those used at the transmitter
serve as receivers, as shown in Fig. 3(c).

The off-line PS-64-QAM superchannel experiments use the
transmitter shown in Fig. 3(a). A Redfern 1-kHz linewidth fixed-
frequency external cavity laser (ECL1) at 193.4 THz is used to
generate a comb of 5 carriers with 16.2-GHz spacing using sinu-
soidally driven Mach-Zehnder modulators (MZMs) that produce
two interleaved sets of 32.4-GHz spaced tones [8]. The MZM
generating the even subcarriers (f2,4) is biased at its transmis-
sion null and driven at 16.2 GHz, and the MZM generating
the odd subcarriers (f1,3,5) is biased at quadrature and driven
at 32.4 GHz. As an alternative to ECL1, we also use a line
from a Roshmere narrow-linewidth comb [21], [22] at the trans-
mitter to validate the applicability of broadband yet narrow-
linewidth comb sources to higher-order modulation systems,
including PS-64-QAM. No noticeable system performance dif-
ference is found between ECL1 and the comb source. Even
and odd 32.4-GHz spaced carrier sets are independently mod-
ulated by LiNbO3 PDM in-phase/quadrature (I/Q) modulators,
driven by two 4-channel digital-to-analog converters (DACs)
at 88 GSa/s to produce 16-GBd 0.01-roll-off root-raised co-
sine signals derived from pseudo-random bit patterns of length

3 × 216 . The modulated signals are passively combined to form
a 5-carrier superchannel.

Fig. 3(c) shows the setup of the receive site in Killala, Ire-
land. A second free-running ECL of the same type as ECL1 is
used to generate five 16.2-GHz spaced carriers using a MZM
sinusoidally driven at 16.2-GHz. A WSS selects one of the car-
riers as optical local oscillator (OLO) for intradyne detection.
A second WSS scans through the 5 superchannel tributaries. A
PDM 90◦ hybrid with balanced detection and 4 analog-to-digital
converters (ADCs) at 80 GSa/s (Keysight 63-GHz real-time os-
cilloscope), acts as the coherent front-end.

C. ASE Line Loading

In submarine systems, line loading is important as optical am-
plifiers are typically operated in constant output power mode.
In a fully populated system, the per-channel power is therefore
given, to first order and neglecting gain tilts and channel power
pre-emphasis, by the total optical amplifier power (19 dBm in
our case) divided by the number of WDM channels. Test sys-
tems that do not use a fully populated set of WDM channels
require loading channels to use up the remaining optical ampli-
fier power. Several different approaches have been demonstrated
in the literature to achieve such channel loading. In Refs. [13]
and [15], a large bank of laser sources that cover the entire am-
plifier bandwidth is modulated separately from the CUT. A few
others use sparsely spaced continuous wave (CW) sources over
the amplifier bandwidth [11]. An alternative method is to use
spectrally shaped ASE noise instead of independently modu-
lated channels [23]–[25]. When the spectrally shaped ASE is
sparse and does not fill the entire amplifier bandwidth, the non-
linear interference noise (NLIN) produced on the CUT is not
the same as when the ASE fills the bandwidth completely, since
NLIN from WDM channels across the entire system bandwidth
plays an important role [26], [27].

In our field trial, we paid particular attention to accurately em-
ulate a WDM system that is fully-populated with PS-64-QAM.
Taking note of the fact that the complex amplitude distribution
of our PS-64-QAM signal closely resembles a Gaussian opti-
cal field distribution, we chose complex Gaussian ASE as an
accurate substitute for PS-64- channels.
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Fig. 4. Comparison of ASE line loading and fully modulated systems through
split step simulations.

To ensure that ASE-based line loading indeed closely em-
ulates a massive multiplex of modulated PS-64-QAM chan-
nels, we performed split-step simulations using the system
parameters of the field-installed submarine cable, and assum-
ing 41 PS-64-QAM WDM channels spaced at 16.2 GHz.
Fig. 4 shows the recovered electrical signal-to-noise ratio (SNR)
of the center carrier as a function of the launch power per
16.2-GHz channel. The solid curves represent 41 actually mod-
ulated WDM channels, while the dashed curves assume only 5
modulated center channels, replacing the remaining 18 channels
to each side of the 5 modulated channels with ASE bands with
a width of 18 × 16.2 GHz = 291.6 GHz each, with the same
power per 16.2 GHz as the center channel. The system with
ASE-based line loading exhibits almost indistinguishable per-
formance compared to actually modulated WDM channels, both
with and without single-channel digital back-propagation (DBP)
for nonlinearity compensation. This quantitatively justifies our
ASE-based line loading scheme as an accurate emulation of
full-band WDM transmission. Note that the system bandwidth
is restricted to 41 × 16.2 ≈ 664 GHz due to the complexity of
numerical split-step simulations. However, the purpose of this
study is not to investigate the role of system bandwidths on
NLIN but to compare ASE-based channel loading with true
WDM channel loading. Fully loaded scenarios are expected to
show similar results to those of Fig. 4 in terms of the difference
between the SNR in systems with modulated channels and sys-
tems with ASE noise. This is particularly due to the fact that
probabilistic shaping makes the per-sample distribution very
close to Gaussian distribution.

In our experiments, we consequently vary the per-channel
optical launch power on the AEC-1 submarine cable by altering
the system bandwidth to preserve a constant PSD across the en-
tire system bandwidth. This is visualized in Fig. 5: Distributing
19 dBm of constant EDFA output power across 2 THz, 2.55 THz,
3.2 THz, and 4 THz, respectively, yields −2 dBm, −3 dBm,
−4 dBm, and −5 dBm per 16.2-GHz channel. This approach
limits us to a minimum launch power of −5 dBm/16.2 GHz.

In order to determine the correct spectral pre-emphasis of
the line loading ASE across the system bandwidth for each

Fig. 5. Adjustment of the per-channel launch power from a constant EDFA
output power.

targeted per-channel launch power, we distributed all 6 PSE-2s
channels operating in 200-Gb/s 8-QAM mode across the system
bandwidth and calibrated the pre-emphasis filter such that the
measured real-time pre-FEC bit error ratios (BERs), expressed
by their Q-factors, were within 0.1 dB of each other. The ASE
was then set to fill in the gaps between the PSE-2s channels at
equal PSD as smoothly as possible. The resulting optical spectra
measured at transmit and receive sites are shown in Fig. 6.

III. REAL-TIME TRANSMISSION OF UNIFORM QAM

Fig. 7 summarizes the real-time test results using Nokia’s
D5X500 line cards. A root-raised cosine roll-off factor of
0.2 was conservatively chosen throughout these tests. Using
200-Gb/s single-carrier 8-QAM on a 50-GHz grid, the trans-
Atlantic link was bridged with ∼1.6-dB Q-factor margin at a
SE of 4 b/s/Hz. Using single-carrier 16-QAM at 200 Gb/s and
at 250 Gb/s, the link could still be bridged with long-term error-
free real-time performance at SEs of up to 4 b/s/Hz, verified by
decoding the received data for one second every 15 minutes over
8 hours, i.e., for a total of 6 to 8 Tb, corresponding to a BER
below ∼1.6 × 10−13 . Note that these spectral efficiencies and
single-carrier bit rates represent record numbers for real-time
commercial coherent systems over submarine distances.

In loop-back mode, a fiber jumper at Killala directly connects
the incoming signal port to the outgoing signal port without any
amplification or filtering, realizing a total transmission distance
of 11,046 km that is equivalent to a trans-Pacific cable. 100-Gb/s
QPSK channels showed more than 3 dB of Q-factor margin
(cf. Fig. 7(b); note the different reported spectral window of the
loop-back results); 8-QAM channels barely missed the Q-factor
threshold by �0.3 dB due to the insufficient time available to
fine-tune various real-time coherent transponder settings.

The fact that our real-time transponder enabled trans-Pacific
QPSK with excessive margin and could barely establish an 8-
QAM link nicely illustrates a shortcoming of all current com-
mercial as well as experimental transponders, i.e., the lack of
fine-grained rate adaptation to maximize capacity on any given
physical channel. This limitation is overcome by PS-QAM, as
will be shown in the following section.

IV. TRANSMISSION OF PS-64-QAM

A. PS-64-QAM With Maxwell-Boltzmann Distribution

For the off-line PS-64-QAM experiments, we used proba-
bilistic amplitude shaping (PAS) [6] with constant composition
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Fig. 6. Optical spectra measured with a resolution bandwidth of 0.1 nm at transmitter (upper figures) and receiver (lower figures) with system bandwidths of
(a) 2 THz, (b) 2.55 THz, (c) 3.2 THz, and (d) 4 THz, that yield signal launch powers of −2 dBm, −3 dBm, −4 dBm, and −5 dBm per 16.2 GHz, respectively.

Fig. 7. Results of real-time processing: (a) with 8-QAM (dashed line) and
16-QAM (solid lines) at 5,523 km, and (b) with QPSK at 11,046 km.

distribution matching [28] to transform a binary information bit
stream into a 64-QAM symbol stream, which is considered one
of the most practical implementations of probabilistic constel-
lation shaping known to date.

It enables separate optimization of forward error correc-
tion (FEC) and PS and offers near-optimal shaping gain given
by the Maxwell-Boltzmann distribution [6], [29]. The shap-
ing factor is defined by the entropy β := H(p), where p de-
notes the probability mass function (PMF) of the positive
half part of the constituent amplitude shift keying (ASK)
constellation. For example, a PMF p := (p1 , p2 , p3 , p4) =
(0.4995, 0.3250, 0.1376, 0.0379) for the positive half of an

Fig. 8. Distribution of PS-64-QAM symbols with various shaping factors.

8-ASK constellation leads to a shaping factor of β =∑4
i=1 −pi log2 pi ≈ 1.6. The maximum β is log2

√
M − 1, in

which case PS-M -QAM is equivalent to uniform M -QAM. As
β decreases, the PS-QAM constellation becomes Gaussian with
a reduced variance. With β = 0, the constellation degenerates
to QPSK. This progression is illustrated in Fig. 8. The entropy
rate, which is the maximum information rate that a symbol can
carry at high SNR is given for PDM PS-M -QAM as

H = 4(1 + β) [b/symb/2-pol]. (1)

B. Forward Error Correction

In an auxiliary additive white Gaussian noise (AWGN)
channel expressed by a conditional probability distribution
qY |X (y|x) = 1/

√
2πσ2 · e−|y−x|2 /(2σ 2 ) , the generalized mutual

information (GMI) [30] of uniform QAM under bit-metric de-
coding can be modified to PS-M -QAM, which can be estimated
from the measured complex-valued waveform samples yk for
k = 1, . . . , N as

GMI ≈ H − 2
N

N∑

k=1

m∑

i=1

log2

∑
x∈χ qY |X (yk |x)P (x)

∑
x∈χb k , i

qY |X (yk |x)P (x)
, (2)

in b/symb/2-pol, where P (x) denotes the probability of a sym-
bol x, χ is the set of (single-polarization) M -QAM symbols,
bk,i ∈ {0, 1} is the i-th bit of the k-th transmit symbol, and
χbk , i

is the set of the M -QAM symbols whose i-th bit value
is bk,i . Note that this is termed the bit-metric decoding rate
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in [6]. The GMI in (2) represents an AIR that can be achieved
by ideal rate-adaptable binary FEC codes, which will generally
not be the case in practice and therefore makes GMI a metric of
limited relevance. Papers reporting mutual information (MI) or
GMI as their final result [31]–[34] assume the existence of ideal
FEC codes and hence give only upper bounds on the achievable
performance.

In a practical scenario, given the availability of only a limited
number of fixed-rate FEC codes with non-negligible implemen-
tation penalty, the IR that can actually be demonstrated with
realistic FEC decoders is strictly smaller than GMI. If a code
rate Rc (code overhead 1/Rc − 1) of a practical FEC code leads
to error-free decoding, the IR of the coded PS-M -QAM corre-
sponds to

R := H − 2(1 − Rc) log2 M [b/symb/2-pol], (3)

where the second term on the right-hand side is the amount
of redundant information transmitted through the channel in
the PAS architecture [6]. This indicates that the largest IR is
achieved by using the code with the largest Rc among the set of
practical FEC codes that still leads to a BER below 10−15 . The
remaining question is then how to accurately predict from much
less than 1015 measured bits whether a chosen practical FEC
code can indeed yield a post-FEC BER below 10−15 . Recent
studies have shown [35] that this can be done by estimating the
normalized GMI (NGMI) from measured data, given by

NGMI = 1 − H − GMI
2 log2 M

. (4)

More specifically, error-free decoding can be declared if NGMI
estimated from the measurement samples is larger than the
threshold value NGMI� of an FEC code. This is because NGMI�

is a unique characteristic quantity determined only by the under-
lying (practical) FEC coding scheme (i.e., an FEC code and a
decoding algorithm), which provides a consistent FEC threshold
across a wide range of information rates, both with and without
PS [35].

In this field trial, we use only a single FEC code, which lets
all rate adaptability be performed entirely through PS-QAM
and conveniently decouples FEC code design and optimization
from rate adaptation. This approach is attractive for practical
ASIC implementation. In particular, we use a rate-0.8 binary
spatially-coupled low-density parity-check (SC-LDPC) code
(SC Code B in [36]), which has been proven through extensive
field-programmable gate array (FPGA) emulation to achieve a
post-FEC BER <10−15 without an error floor within 0.94 dB
of the Shannon limit on a binary-input AWGN channel with a
real, fixed-point decoder with limited input and internal mes-
sage resolutions. Fig. 9 shows the post-FEC BER of our SC-
LDPC code as a function of the NGMI. The FPGA emulation
results (circles) show that low-complexity decoding does not
cause any error floor above a BER of 10−15 , with a decoding
window of 7,500 bits × 14 copies = 105,000 bits and a single
decoding iteration. The software simulation results (diamonds)
show that larger decoding complexity improves the waterfall
performance with a decoding window of 21,850 bits × 6 copies
= 131,100 bits and 5 decoding iterations for the code C4 of

Fig. 9. Post-FEC BER of a rate-0.8 SC-LDPC code as a function of the NGMI.
The dotted curve denotes extrapolation.

[36]. The former curve (solid line with circle markers) shows
the NGMI threshold of NGMI� = 0.861 for the FPGA-verified
low-complexity SC-LDPC code, and the extrapolation of the
latter curve (dotted line) provides an estimated NGMI thresh-
old of NGMI� = 0.845 for the moderate-complexity code. It is
important to note in this context that a careful assessment of re-
alistic FEC performance is key in claiming off-line transmission
records that avoid unjustified over-claims.

C. Digital Signal Processing

We perform off-line coherent DSP at the receiver, individually
for each 16.2-GHz optical subcarrier. The DSP consists of chro-
matic dispersion compensation (or single-carrier DBP using the
split-step Fourier method), clock recovery, resampling the cap-
tured records of 2 × 106 samples per polarization and quadra-
ture to 2 samples/symbol, polarization demultiplexing using an
adaptive butterfly equalizer with 256 half-symbol-spaced filter
taps. For polarization demultiplexing, least-mean square (LMS)
equalization is pre-converged by pilots, then operated blindly.
Only blindly recovered bits are used for subsequent performance
assessment. The carrier phase is recovered based on the blind
phase search algorithm [37].

D. Launch Power Optimization

To find the optimal launch power as a function of the PS-
64-QAM shaping factor, we measure system performance at
different combinations of launch powers and shaping factors.
The results are shown in Fig. 10 in terms of the experimentally
measured electrical symbol SNR (a, c) and the AIR (b, d), both
for trans-Atlantic (a, b) and trans-Pacific (c, d) transmission
scenarios. As explained above, launch powers were restricted to
≥−5 dBm/16.2 GHz due to the fixed 19-dBm repeater output
power. This also represents the best launch power we could ob-
tain, for all shaping factors ranging from 1.1 to 1.5 at 5,523 km
[see Fig. 10(a) and (b)], regardless of whether (solid) or not
(dashed) single-channel DBP was employed. We see that the
optimal launch power is not very sensitive to the shaping factor.
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Fig. 10. SNR and AIR as a function of the launch power per 16.2 GHz at 5,523 km (a and b) and at 11,046 km (c and d). Solid and dashed lines indicate the
results with and without DBP, respectively. (a) Trans-Atlantic. (b) Trans-Atlantic. (c) Trans-Pacific. (d) Trans-Pacific.

Fig. 11. AIR of U-16-QAM at 5,523 km with various power configurations: (a) illustration of the ASE power (PASE) and the CUT power (PCUT), (b) AIR curves
for constant PASE, and (c) AIR curves for constant PCUT. Dashed and solid curves show the results without and with DBP, respectively.

With β = 1.5, and without DBP, the SNR measured in the field
trial matches well the simulated SNR shown in Fig. 4, with a dis-
crepancy of 0.29 dB at the launch power of −5 dBm/16.2 GHz.
When DBP is performed, the discrepancy increases to 0.39 dB,
indicating that DBP performs slightly worse in the field than
what is predicted by simulations.

To assess the impact of self phase modulation (SPM) and cross
phase modulation (XPM) on the AIR in more detail, we vary the
optical launch power by varying the system bandwidth as before
(cf. Fig. 5), and in addition we adjust the CUT power indepen-
dent of the surrounding ASE power, as shown in Fig. 11(a)
(Owing to experimental limitations, the two channels to each
side of the CUT have the same power as the CUT.) In this set of
experiments, we use uniform 16-QAM (U-16-QAM) that has a
large operating margin from the channel SNR, for recovery of
signals even under severe NLIN.

The measured AIRs [estimated using (2)] are visualized from
two different perspectives: (i) by changing the CUT power (and
the neighboring channel powers) while leaving constant the
ASE power PASE [see Fig. 11(b)], and (ii) by changing the ASE
power (through changing the system bandwidth) while leaving
constant the CUT power PCUT [and the neighboring channel
powers, Fig. 11(c)]. The x-axes of these figures represent

PASE − PCUT (in dB), such that 0 means PASE = PCUT,
negative values mean PASE < PCUT and positive values mean
PASE > PCUT. In all other results reported in this paper,
PCUT = PASE, and according to Fig. 10(b), −5 dBm/16.2 GHz
and −4 dBm/16.2 GHz lead to the maximum AIRs for uniform
16-QAM, without and with single-channel DBP, respectively.
The data points that also appear as black crosses in Fig. 10(b)
are highlighted as solid circle markers in Fig. 11(b) and (c). At a
fixed ASE power of PASE = −5 dBm/16.2 GHz [blue curves in
Fig. 11(b)], the AIR gain offered by increasing PCUT is limited
to 0.04 b/symb/2-pol without DBP (dashed) due to SPM. When
using single-channel DBP (solid), as much as 0.14 b/symb/2-pol
could be gained by increasing PCUT. The same phenomenon
is observed for higher ASE powers, with increasing single-
channel DBP gains yet lower overall performance due to
stronger XPM. Notably, although increasing the ASE power
from −5 dBm/16.2 GHz to −2 dBm/16.2 GHz monotonically
reduces the maximum AIR obtained from each of the optimal
choices of PCUT due to increasing XPM, the optimal launch
power of the CUT in all cases is around −4 dBm/16.2 GHz
and −3 dBm/16.2 GHz, without and with single-channel DBP,
respectively. These points are indicated by diamond markers in
the figure.
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Fig. 12. SNR and AIR as a function of the shaping factor. Dashed and solid
lines indicate the results without and with DBP, respectively.

Fig. 11(c) shows the same data from a different angle, keeping
the power of the CUT fixed for each curve while changing the
power of the ASE. This visualizes the role of XPM at constant
SPM. As expected, the single-channel DBP (solid) curves run
now in parallel to the curves without DBP (dashed); the gaps
between them are the DBP gains, which are large for high CUT
powers of PCUT = −2 dBm/16.2 GHz and small for low powers
of PCUT =−6 dBm/16.2 GHz. As soon as XPM dominates SPM
in terms of nonlinear distortions, we see a 0.35-b/symb/2-pol
drop in AIR per dB of increased ASE power.

E. Transmission Results

For optimal rate adaptation, we measure performance metrics
by varying the shaping factor in steps of 0.1 (0.05 in the region
of interest).

The SNR estimated from the recovered signal is depicted in
Fig. 12(a) as a function of the shaping factor β, where the results
of U-16-QAM and U-QPSK are also shown for comparison.
Although analytic models and simulations anticipate an SNR
reduction of ∼0.3 dB in PS-64-QAM over 2000 km when the
shaping factor decreases greatly by ∼1.67 [38], our field trial
yields constant SNR within measurement accuracies, despite a
change of the shaping factor by 0.6.

The measured GMI, which is an AIR in our system
configuration1, is shown in Fig. 12(b), where it can be seen

1GMI and MI, respectively, represent AIRs under bit-metric decoding and
symbol-metric decoding.

Fig. 13. (a) NGMI measured at the center channel, and (b) typical recovered
constellations.

that the AIR increases with increasing shaping factor β. In prin-
ciple, one should expect a single maximum in the AIR as a
concave function of β, at some optimal value β∗ for which
the shaped PMF is ideally matched to the underlying auxil-
iary AWGN channel. However, when gradually increasing β in
the field trial, i.e., reducing the shaping and more closely ap-
proaching a uniform 64-QAM constellation, we found that the
coherent DSP gradually fails to robustly recover the received
signals, hence the decrease of AIR was not observed. This is be-
cause a more uniform PS constellation has a smaller minimum
Euclidean distance between constellation symbols for the same
average power. Therefore, for a given noise power, the perfor-
mance of those DSP functions that rely on symbol decisions,
such as the LMS equalization, can deteriorate as the constella-
tion becomes more uniform. This practical aspect of PS nicely
reveals that implementation penalties, both from hardware im-
perfections and from DSP and coding imperfections, cannot be
neglected in optimizing a PS system.

In Fig. 12(b), at 5,523 km, the gain in AIR due to PS-64-
QAM relative to uniform QAM amounts to 0.84 b/symb/2-pol
and 0.97 b/symb/2-pol, without and with DBP, respectively,
thereby achieving 12% to 13%-larger AIRs. At 11,046 km,
the gain is significantly larger, reaching 2.13 b/symb/2-pol and
2.5 b/symb/2-pol, without and with DBP, respectively. This is
because the AIR of U-QPSK is saturated almost at its entropy
rate with a large SNR margin with a negligible FEC overhead
(OH), suggesting that U-16-QAM with a greater FEC OH will
yield a better AIR, which however could not be implemented due
to unstable coherent DSP for U-16-QAM. As a consequence,
54% to 63%-larger AIRs were achieved by using rate-adaptable
PS-QAM compared to uniform QAM.

The NGMI measured on the AEC-1 cable is shown in
Fig. 13(a). The net SE on the top horizontal axis can be
directly calculated from β and (1) and (3) as SE = R ·
16 GHz/16.2 GHz, by taking into account the 25% FEC OH
and the 16.2-GHz WDM channel spacing. With moderate-
complexity SC-LDPC coding, the largest shaping factors that
lead to NGMI > NGMI� , and hence realistically error-free de-
codable performance, are 1.45 (5,523 km), 1.5 (5,523 km with
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Fig. 14. AIRs (open markers) and actually achieved IRs (closed markers) with
U-QAM and PS-QAM. Left and right markers in each pair of markers indicate
the results obtained without and with DBP, respectively. Dotted and solid lines
denote U-QAM and PS-QAM capacities in AWGN, respectively.

DBP), 0.95 (11,046 km), and 1.05 (11,046 km with DBP), with
the corresponding SEs of 7.26, 7.46, 5.29, and 5.68 b/s/Hz. With
low-complexity SC-LDPC coding as verified by FPGA emula-
tion, the SEs are reduced by 0.2 b/s/Hz for all cases, which
amount to 7.06, 7.26, 5.09, and 5.48 b/s/Hz, respectively. The
net SEs of uniform modulations correspond to 6.32 b/s/Hz (U-
16-QAM) and 3.16 b/s/Hz (U-QPSK), respectively, at 5,523 km
and 11,046 km. The 5 superchannel tributaries show uniformly
good performance with NGMIs between 0.851 and 0.86 (aver-
aged to 0.854), greater than NGMI� = 0.845 for the moderate-
complexity SC-LDPC code. We actually decoded the measured
data individually and jointly, and found error-free performance.

The AIRs and the IRs that are achieved with our SC-LDPC
code at optimum shaping factors with PS-64-QAM, and those of
U-QPSK and U-16-QAM are plotted in Fig. 14 as a function of
SNR, with reference to theoretic capacities in the AWGN chan-
nel, where the SNR is estimated from the recovered constella-
tions using the mean squared error between the transmitted and
the corresponding received symbols. With respect to the AIRs,
PS-64-QAM approaches the Shannon limit to within 0.5 dB (at
5,523 km) and 1 dB (at 11,046 km), while U-QAM produces
a huge gap of 2.2 dB (at 5,523 km) and 5 dB (at 11,046 km),
when DBP is performed. In terms of the actually achieved IRs
with our practical SC-LDPC code, PS-64-QAM has a gap of
1.4 dB (at 5,523 km) and 2.3 dB (at 11,046 km), and U-QAM
has a gap of 3.7 dB (at 5,523 km) and 6.5 dB (at 11,046 km).

V. CONCLUSION

In this paper, we demonstrated record or near-record SEs of
7.46 and 5.68 b/s/Hz at transmission distances of 5,523 and
11,046 km, respectively, using PS 64-QAM in a field trial on
an in-service trans-Atlantic fiber-optic cable. Compared to uni-
form square QAM, the field trial results achieved 18% and
80% increases of SE in carefully emulated full C-band DWDM

transmission. We also demonstrated record real-time coherent
transmission of single-carrier 200-Gb/s and 250-Gb/s uniform
8-QAM and 16-QAM at 4 b/s/Hz over the 5,523-km cable.

We introduced a systematic approach to optimizing the un-
derlying PS-QAM by finding the maximum shaping factor that
leads to the greatest IR and SE under an actually implementable
fixed-rate FEC coding scheme, where error-free FEC decoding
was accurately examined by the NGMI threshold. With this
optimization of coded modulation, we showed that our field
trial results approached the Shannon limit to within 1.4 and
2.3 dB at 5,523 and 11,046 km, respectively, with a practical
FEC coding scheme.
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