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Abstract—In this paper, we present long-haul 32-core dense
space-division-multiplexed (DSDM) unidirectional transmission
over a single-mode multicore transmission line. We developed a
low-crosstalk heterogeneous 32-core fiber with a square lattice
arrangement, and a novel partial recirculating loop system. The
span crosstalk of the 51.4-km 32-core transmission line was less
than -34.5 dB. This allowed the transmission of polarization-
division-multiplexed 16 quadrature amplitude modulation (PDM-
16QAM) signals through all 32 cores over a long distance exceeding
1000 km. We demonstrate 32-core DSDM 20 wavelength-division-
multiplexed PDM-16QAM transmission over 1644.8 km with a
high aggregate spectral efficiency of 201.46 b/s/Hz Additionally, we
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examine the effect of crosstalk on the transmission performance of
each core, and show that the Q-penalty has strong correlation with
intercore crosstalk.

Index Terms—Coherent communications, crosstalk, long-haul
transmission, multicore fiber (MCF), optical communication sys-
tems, optical fibers, optical fiber communication, space division
multiplexing (SDM), spectral efficiency, wavelength division mul-
tiplexing (WDM).

I. INTRODUCTION

PACE division multiplexing (SDM) has been studied in-
S tensively as the next generation multiplexing technology
for increasing capacity of optical fiber transmission systems
[1]. Many transmission experiments have been performed using
multicore fibers (MCFs) or few-mode fibers (FMFs), and have
demonstrated high capacity [2]-[6] and long-distance [7]-[14]
transmission. Fig. 1 shows the spatial multiplicity as a function
of distance in recent SDM experiments. MCFs with seven to
19 cores, and FMFs with three to six modes were commonly
used as the transmission media. With a view to further increase
capacity, we have presented dense SDM (DSDM) transmission
with over 30 spatial multiplicity by simultaneous use of multiple
core and multiple mode multiplexing. Polarization division mul-
tiplexed 32 quadrature amplitude modulation (PDM-32QAM)
signals were transmitted over 40.4 km 12-core x 3-mode mul-
ticore few-mode fiber (MC-FMF) with a high aggregate spec-
tral efficiency (SE) of 247.9 b/s/Hz [15]. Subsequent experi-
ments have further advanced multicore multimode transmission
technology, including 200 Tb/s high capacity transmission over
7-core x 3-mode fiber [16], transmission of 12-core x 3-mode
PDM-QPSK signals over 527-km realized by the first multicore
multimode recirculating loop experiment [17], fabrication of 36-
core X 3-mode fiber [18], demonstration of 19-core x 6-mode
fiber and 2.05 Pb/s transmission capacity [19], [20], and the
realization of 19-core x 6-mode fiber with a relative core multi-
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Fig. 1. Spatial multiplicity as a function of distance in recent SDM
experiments.

plicity factor of more than 60 [21]. Although these reports have
shown the potential for further capacity scaling, the transmission
distance was limited to around 500 km for the MC-FMFs with
36 spatial multiplicity [17], and less than 10-km for MC-FMFs
with over 100 spatial multiplicity [18]-[21]. As regards long-
haul transmission exceeding 1000 km, three-mode [7], [8],
12-core bi-directional (six-core unidirectional) [9], seven-core
[10]-[12], three- and six-coupled-core [13], [14] transmission
have been achieved. However, the spatial multiplicity of these
experiments was less than seven. In future scalable and flexible
optical transport network, long-haul DSDM system with more
than 30 spatial channels and over 1000 km transmission distance
is necessary for application to terrestrial networks. To reach
this target with multicore transmission requires overcoming the
tradeoff between increasing core-count, maintaining sufficient
effective area (Aeq), and reducing inter-core crosstalk within
the limited cladding diameter considering fiber reliability.

In this paper, we describe the first demonstration of the long-
haul DSDM transmission with over 30 spatial multiplicity and
over 1000 km distance [22]. First, we review our low-crosstalk
heterogeneous 32-core single-mode transmission line and our
novel partial recirculating loop system, and then we present the
experimental demonstration of the 32-core single-mode unidi-
rectional transmission of PDM-16QAM signals over 1644.8 km.
In addition, we investigate the effect of inter-core crosstalk on
transmission performance.

This paper is organized as follows. Section II presents the
low-crosstalk DSDM transmission line consisting of a hetero-
geneous single-mode 32-core fiber and free-space optics type
fan-in/fan-out (FI/FO) devices. Section III reviews the experi-
mental setup of conventional long distance transmission experi-
ments and proposes our novel partial recirculating loop system.
Section IV describes the experimental setup and Section V dis-
cusses the experimental results of the long-haul DSDM trans-
mission and the verification of the relation between inter-core
crosstalk and transmission performance. Section VI summarizes
the main content and concludes the paper.

II. LOW-CROSSTALK 32-CORE TRANSMISSION LINE

We have previously designed and fabricated a heterogeneous
30-core single-mode MCF using four types of refractive in-
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Fig. 2. (a) Cross sectional view of the heterogeneous 32-core single-mode
MCEF, (b) four cores in the diagonal position with the same refractive index type
relative to the center core, and (c) four cores in the nearest position with the
different refractive index type relative to the center core.
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Fig.3. Schematic diagram showing the components and splicing points for (a)
measuring the characteristics of the free-space optics based 32-channel FI/FO
devices, and (b) constructing the 32-core DSDM transmission line.

dex design, and a homogeneous 31-core quasi-single-mode
MCF [23]. The core arrangement of both of these fibers were
based on a hexagonal closed-pack structure, where the 30 and
31 cores were densely arranged within a cladding diameter of
228 and 231 pm, respectively, typical for an MCF. The fiber
length was 9.6 and 11.0 km, and the A.g at 1550 nm was 77 and
75 pm?, respectively. The span crosstalk including fan-in/fan-
out (FI/FO) devices of the 30-core and 31-core fiber was —31.9
and —21.6 dB, respectively. We define the inter-core crosstalk
as the difference between the power of light output from the
core under measurement when light was input only to the core
under measurement and when light with equal intensities were
input to all other cores. Although we showed that these DSDM
fibers are capable of transmitting PDM- quadrature phase shift
keying (QPSK) and PDM-16QAM signals, further reduction of
inter-core crosstalk was required in order to realize long-haul
DSDM transmission.
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Crosstalk after 1000-km transmission as a function of the number of core per fiber in a single-mode MCEF. The filled and blank plot shows characteristics

of multicore transmission line including FI/FO devices and multicore fiber, respectively. Dotted lines show the crosstalk levels required for various modulation

formats assuming 0.5 dB penalty.

We have designed and fabricated a novel heterogeneous
32-core single-mode MCF to realize a low-crosstalk DSDM
transmission line suitable for long-haul transmission. Fig. 2(a)
shows the cross sectional view of the heterogeneous 32-core
fiber [24]. A square lattice arrangement effectively minimizes
inter-core crosstalk for heterogeneous MCF having two types
of refractive index designs. The odd and even numbered cores
representing cores with higher and lower refractive index differ-
ence, respectively, were placed adjacent to each other to suppress
crosstalk. Trench structure was formed around each core for ad-
ditional crosstalk reduction. The length of the fabricated MCF
spool was 51.4 km, the core pitch was 29.0 pm, and the cladding
diameter was 243 pum. The cutoff wavelength at a length of 1
km was <1.53 pm. The attenuation and the A.g at 1550 nm
was 0.24 dB/km and > 80.3 i m?, respectively.

The inter-core crosstalk of the MCF depended on the position
of the cores. The worst crosstalk was <—39.4 dB when light
was input to the second nearest cores (four adjacent cores with
the same refractive index type in the diagonal position relative to
the core under interest as shown in Fig. 2(b)). On the other hand,
the inter-core crosstalk was <—54.0 dB when light was input
to the first nearest cores (four adjacent cores with the different
refractive index type in the nearest position relative to the core
under interest as shown in Fig. 2(c)), and it was negligible even
though the inter-core distance was smaller than that of the cores
in the diagonal position. This result reveals that the inter-core
crosstalk from cores with the different refractive index type is
effectively suppressed by the destructive interference of light
due to difference in propagation constants.

We used free-space optics based [25] 32-channel FI/FO de-
vices for multi/demultiplexing light into/from the 32-core fiber.
First, the MCF-side of the FI and FO devices were directly
spliced as shown in Fig. 3(a), and the characteristics were mea-
sured. The insertion loss ranged from 0.8 to 1.4 dB, and the
worst crosstalk ranged from —39.5 to —46.7 dB at 1550 nm.
Then, the FI and FO devices were each spliced to the input and
output of the 51.4-km spool of the 32-core MCEF, respectively,
to construct a 32-core DSDM transmission line. The total span
loss and the worst inter-core crosstalk including the FI/FO de-

vices were <14.1 dB/ span and <—34.5 dB/span at 1550 nm,
respectively.

Fig. 4 shows the crosstalk after 1000-km transmission as a
function of the number of core per fiber in a single-mode MCF.
The filled plots show characteristics of an MCF transmission
line including a fiber and FI/FO devices, and the blank plots
show characteristics of a plain MCFE. The 1000-km crosstalk
was estimated from per span or per length crosstalk values given
in references assuming that the crosstalk accumulates linearly
with distance. The dotted lines also shown in the figure are the
crosstalk levels required for various modulation formats assum-
ing 0.5 dB penalty [26], [27]. Crosstalk would normally increase
when we increase the number of core in an MCF. Technique
such as bi-directional transmission may reduce crosstalk. How-
ever, no MCF transmission lines have ever reached the target
area of over 30 cores and a worst crosstalk of less than around
—19 to —31 dB/1000 km. By the heterogeneous design and the
square lattice arrangement, we have successfully reduced the
worst crosstalk to <—21.6 dB even after 1000 km making long-
haul DSDM transmission feasible for the first time.

III. PARTIAL RECIRCULATING LOOP SYSTEM

Features of long distance transmission experiments over an
MCEF transmission line are listed in Table I. Various experimen-
tal setups have been employed for approximating long distance
MCEF transmission line. The commonly used method involves
parallel recirculating loop system with core averaging by core-
to-core rotation [9]-[12], [28], without core averaging [17], and
with mixing of signals between cores during propagation [13],
[14]. These experiments represent long-distance parallel trans-
mission over each core in an MCF. On the other hand, the method
requires N sets of optical components to construct parallel re-
circulating loops. To date, up to 12 parallel recirculating loops
with 12-core MCFs have been demonstrated [9], [28].

As an alternative to parallel core transmission, transmission
experiments over serially connected cores of an MCF were re-
ported [29], [30]. In a bi-directional transmission experiment
over a 16-core fiber, eight cores were connected in series to
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TABLE I
FEATURE OF LONG DISTANCE TRANSMISSION EXPERIMENTS OVER AN MCF TRANSMISSION LINE

Refs. Number of cores ~ MCEF structure Span length Experimental setup Inter-core crosstalk (dB) ~ Modulation format Transmission
(km) distance (km)
[28] 12 Dual ring 50 12 parallel loops, 3-core rotation, —50 dB/span at C-band PDM-32QAM 450
bi-directional
[9] PDM-16QAM 1500
[10] 7 Hexagonal 40 7 parallel loops, 7-core rotation —29.6 dB/span at PDM-QPSK 2520
MC-EDFA
[11] 7 Hexagonal 76.8 7 parallel loops, 7-core rotation —34 dB/span PDM-QPSK 2688
[12] 7 Hexagonal 45.5 7 parallel loops, 7-core rotation ~ —51 dB/span, pair of PDM-QPSK 7326
cores
[17] 12 Square lattice, 52.7 12 parallel multimode —48.4 dB/500 km PDM-QPSK 527
heterogeneous recirculating loops
[13] 3 3 coupled-core 60 3 parallel recirculating loops PDM-QPSK 4200
[14] 6 6-coupled-core 31 6 parallel recirculating loops - PDM-QPSK 1705
[29] 16 Square lattice, 55 Serial connection of 16 cores, —34 dB/span PDM-16QAM 880
heterogeneous bi-directional
[30] 12 N/A 46 Single recirculating loop with —54 dB/span 8D-APSK 14350
serial connection of 12 cores
[22] 32 Square lattice, 514 Partial recirculating loop system —34.5 dB/span PDM-16QAM 1644.8

heterogeneous

transmit in one direction and the remaining eight cores were
connected in series to transmit in the opposite direction. This
yielded a serially connected bi-directional 880-km (=55 km x
8 cores x 2 directions) transmission line [29]. In another ex-
periment, 12 cores of a 12-core MCF were connected in series
to construct a span of 552 km (=46 km x 12 cores), and a
recirculating loop experiment was conducted with this serially-
connected span [30]. The configurations of these experiments
are simple and require few optical components. On the other
hand, the drawback is that the measurement cannot distinguish
the performance of individual cores.

The parallel recirculating loops with core averaging and the
serially connected measurement may be a good method to ap-
proximate an MCF transmission line when the variation among
core is modest, whereas the parallel recirculating loops without
core averaging can measure the worst case performance, and is
suitable for an MCF transmission line such as a high-core count
MCEF having variations in loss and crosstalk among cores de-
pending on the core position. To characterize a long-haul MCF
transmission line with good degree of approximation, it is favor-
able to have the ability of measuring performance of each core.
However, an MCF having many cores, in particular, those with
over several tens of cores, requires massive optical components
to construct a full recirculating loop system.

We propose a novel partial recirculating loop system as shown
in Fig. 5 as an effective method for characterizing long distance
transmission performance of an MCF for DSDM transmission.
In this experimental setup, we form recirculating loops with part
of the cores of an MCF including cores under measurement, and
load non-recirculating signals to all other cores of an MCF. The
optical power of signal input to each core of the MCF is set
at the same value. In the initial experimental setup reported in
[22], we constructed five recirculating loops, and configured the
transmission line so that the recirculating signals are input to
the core under measurement and the four adjacent cores with
the same refractive index type in the diagonal position relative
to the core under measurement as was shown in Fig. 2(b) having
higher inter-core crosstalk in the MCF. Non-recirculating sig-

nals are input to all other cores. With this setup, recirculating
signals were loaded to cores that could have larger effect on
the core under measurement during propagation in the MCF to
approximate a full parallel recirculating loop system. We incor-
porated 32 channel matrix switches into the transmission line
to cross-connect cores of the MCF with the recirculating loops
and non-recirculating crosstalk signals, and switched the core
connections for each measurement. Suppose that when core #28
was under measurement, cores #28, #12, #14, #26, and #30 were
selected to form recirculating loops #1 to #5, respectively, while
the remaining 27 cores were loaded with non-recirculating sig-
nals. The same operation is to be performed for characterizing
other cores.

IV. EXPERIMENTAL SETUP

We conducted transmission experiments using the low-
crosstalk single-mode DSDM transmission line, and the partial
recirculating loop system we described in the previous sections.

At the transmitter, the signal under test was generated using a
tunable external-cavity laser (ECL) with ~60-kHz linewidth
and was modulated by an 1Q modulator (IQM). Additional
19 odd and even channels around 1549.1 to 1551.0 nm were
generated using DFB lasers with 2-MHz linewidths and were
wavelength multiplexed, separately modulated by IQMs, and
combined by a 12.5/25 GHz interleave filter. All signals were
digitally generated by the IQMs, each driven at 12 Gbaud and
reshaped by a root-raised-cosine filter with 0.01 roll-off factor.
Different pieces of pseudo-random-binary-sequence (PRBS) of
length 223~! were used for each IQM to generate multi-level
16QAM signals. Signals with a frame length of 31250 symbols
comprised a payload, 1.63% overhead for training sequence, and
20% overhead for forward error correction (FEC). The signal
under test, and the remaining 19 wavelength channels were each
polarization-division multiplexed by a PDM emulator with a 10
ns delay, and were combined with a 2 x 1 optical coupler. This
yielded 12.5-GHz-spaced 20-DWDM 96-Gb/s PDM-16QAM
signals.
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tem consisted of the first and second 32-channel matrix switches,
a 51.4-km spool of the 32-core fiber, 32-channel FI/FO devices,
and five parallel recirculating loops. Signals in the loops were
amplified by five channels of a seven-core erbium-doped fiber
amplifier (EDFA) [31]. The 32-channel matrix switches were
used to select cores and cross-connect the paths of the input and
output ports of the transmission line for each measurement as
described above.

At the receiver, the signal from the core under test was filtered
by a tunable optical filter and input to a planar lightwave circuit
(PLC) type dual polarization optical hybrid (DPOH). It was then
digitized at 40 GS/s using a four-channel digital storage oscil-
loscope and stored in sets of 4M samples. In the receiver-side
offline processing, front-end error correction, chromatic disper-
sion compensation, and frequency-offset cancellation were first
performed. Then, equalization was carried out using 64 T/2-
spaced-taps LMS-based 2 x 2 frequency domain equalization
(FDE) combined with phase recovery. 0.75 M bits were used to
calculate the BERs and Q-factors.

V. EXPERIMENTAL RESULTS
A. Characteristics of the 32-Core Transmission Line

Fig. 6 shows the span loss and worst inter-core crosstalk
of the 32-core DSDM transmission line including the 51.4-km
32-core fiber, 32-channel FI/FO devices, and the 32-channel
matrix switches measured at the center wavelength A;; =
1550.128 nm. The span loss for each spatial channel was de-

4 8 12 16 20 24 28 32
Core number

Fig.6.  Span crosstalk and loss of the DSDM transmission line measured at the
center wavelength, including 51.4-km 32-core fiber, 32-channel FI/FO devices,
and 32-channel matrix switches.

rived from the power difference between signals input to input
port #1 of the input-side 32-channel matrix switch and signals
output from output port #1 of the output-side 32-channel matrix
switch. The inter-core crosstalk was characterized by measuring
the power of light output from output port #1 of the output-side
32-channel matrix switch when light was input only to the core
under measurement relative to when light was input to all cores
other than that of the core under measurement. The switch set-
tings were changed from core #1 to #32 to measure the span
loss and inter-core crosstalk for all 32 spatial channels. The
span loss was around 1-2 dB higher than that of the 32-core
fiber with FI/FO devices. This difference was caused by the in-
sertion loss of the 32-channel matrix switches. The measured
inter-core crosstalk of the transmission line with and without the
32-channel matrix switches was almost the same because of the
low crosstalk of <—50 dB of the 32-channel matrix switches.

B. Q-Factor Measurement Results

Fig. 7(a) shows the measured Q-factors of the 20-DWDM
PDM-16QAM signals after 1644.8 km transmission (= 51.4 km
x 32 loops) as a function of core number. We confirmed that the
Q-factors for all 640 (20-DWDM x 32-DSDM) channels were
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above the Q-limit of 5.7 dB of LDPC convolutional codes us-
ing a layered decoding algorithm with 20% FEC overhead [32].
Fig. 7(b) shows an example constellation of the received signals
for the center core #16, wavelength #11. The net data rate was
78.69 Gb/s, the SE was 6.295 b/s/Hz/core, and the aggregate
SE was 201.46 b/s/Hz. Fig. 8 shows the aggregate SE versus
transmission distance of recent SDM-WDM experiments. The
crosstalk-managed high-core count multi-core transmission line
allowed us to transmit DSDM signals with high order modula-
tion format over a long distance. We have thus successfully
demonstrated a long-haul DSDM transmission over 1600 km
with a high aggregate SE above 200 b/s/Hz.

In the above measurement, polarization scrambler was not
included in the recirculating loop. To verify the effect of po-
larization for this experimental setup, a loop synchronous po-
larization scrambler was inserted in loop #1 after the amplifier
and filter, and Q-factors were measured with and without the
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Fig. 9. Measured Q-penalty after 1644.8 km transmission at the center
wavelength versus core number.
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Fig. 10.  Correlation between Q-penalty and inter-core crosstalk after 32-loops

estimated from the span crosstalk of each core.

polarization scrambler. The measured Q-factors were almost
the same, which confirmed that the measurement error due to
polarization was negligible for our transmission line.

C. Q-Penalty Caused by Inter-Core Crosstalk

To evaluate the effect of inter-core crosstalk on transmission
performance, we investigated the Q-penalty caused by inter-core
crosstalk. Fig. 9 shows the Q-penalty measured after 1644.8 km
transmission at the center wavelength A, versus core number,
where the Q-penalty was obtained by measuring the difference
of the Q-factors when signal was input only to the core under
measurement, and when signals were input to all 32-cores. The
inner cores tend to have higher Q-penalty than the outer cores
because they are subject to higher crosstalk from larger num-
ber of neighboring cores. To observe the effect of inter-core
crosstalk on Q-factor more clearly, Fig. 10 plots the Q-penalty
versus inter-core crosstalk after 32-loops estimated from the
span crosstalk shown in Fig. 6. There is strong correlation be-
tween the Q-factor and inter-core crosstalk, with Q-penalty in-
creasing linearly as a function of inter-core crosstalk. Highest
Q-penalties of 1.2 and 1.0 dB were observed with cores #27 and
#28, respectively. If we are to use the core-averaging scheme,
the crosstalk after the series of 32-cores will add up to —21 dB
and will result in a Q-penalty of 0.55 dB. This estimate is 0.65
dB lower than that of the actually obtained worst Q-penalty of
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1.2 dB in core #27, thus indicating the significance of charac-
terizing the performance of each core.

Fig. 11 shows the measured Q-factor as a function of trans-
mission distance for these two cores #27 and #28 with the largest
Q-penalties. The blank plots are the Q-factor measured when
the signal was input only to the core under measurement and all
other 31 cores contained no signal (measurement without inter-
core crosstalk). The back-to-back performance of the 96 Gb/s
PDM-16QAM was approximately 12 dB. Fig. 12 shows the
system optical signal-to-noise ratio (OSNR) as a function of
transmission distance. 50 GHz-spaced five WDM continuous
wave (CW) light with the launch power equivalent to that of the
transmission signal was input to the recirculating loop system.
The system OSNR was measured at various loops by an op-
tical spectrum analyzer with 0.1 nm resolution, and converted
to the OSNR of the 12.5 GHz-spaced 20-DWDM signals. The
Q-factor degradation with transmission distance in Fig. 11 was
caused by the OSNR degradation as well as nonlinearity and
other impairments of the system.

The filled plots in Fig. 11 are the Q-factor measured when
the signal was input to all 32 cores (measurement with inter-
core crosstalk). The Q-factor difference between the filled and
blank plots at each transmission distance corresponds to the
Q-factor penalty caused by the inter-core crosstalk. The figure
also indicates that the Q-factor performance over long distances
for both cores #27 and #28 were similar, although these two
cores had different refractive index profiles. This result confirms
that the heterogeneous design has no detrimental effect on the

Measured Q-factor as a function of transmission distance for cores #27 and #28 with and without inter-core crosstalk. A 5.7 dB Q-limit of 20% FEC

transmission performance, and is useful for extending reach by
crosstalk reduction.

The dotted line shows the Q-factor limit of 5.7 dB for 20%
FEC overhead [32]. By implementing the latest digital signal
processing, longer distance is possible. Suppose we use 25.5%
FEC overhead [33], the Q-factor limit will relax to 5 dB, and
yield approximately 10% increase of transmission distance with
a slightly reduced aggregate SE of 192.63 b/s/Hz.

D. Recirculating and Non-Recirculating Crosstalk Signals

In standard long distance MCF transmission experiments,
recirculating signals are loaded to all cores, and transmitted to-
gether with the core under measurement to approximate trans-
mission over a long transmission line. This is under the as-
sumption that the transmission performance may differ between
recirculating and non-recirculating crosstalk signals. To approx-
imate a full parallel recirculating loop system, we have loaded
recirculating signals to four adjacent cores in the diagonal posi-
tion relative to the core under measurement which is assumed to
affect the core under measurement the most during transmission
due to inter-core crosstalk.

In this section, we compare the difference of Q-factors when
the neighboring cores are changed from recirculating signals
to non-recirculating signals. The type of signals loaded to
cores was controlled by changing the port connections of the
32-channel matrix switches. Fig. 13 shows the signal loading
pattern including, (a) recirculating signals loaded to four diag-
onal cores, (b) non-recirculating signals loaded to four diago-
nal cores, (c) non-recirculating signals loaded to four nearest
cores, (d) recirculating signals loaded to four nearest cores, (e)
recirculating signals loaded to four diagonal cores and non-
recirculating signals loaded to all other 27 cores (same crosstalk
loading pattern as the Q-factor measurement in Fig. 7), and (f)
non-recirculating signals loaded to all other 31 cores. Recircu-
lating signal for loop #1 was always loaded to the core under
measurement.

Fig. 14(a) and (b) shows the Q-factor difference as a func-
tion of transmission distance for core #27 and #28, respec-
tively, measured at the center wavelength A;;. The OSNR level
of the input signal was 31.5 dB, and that after 32 loops was
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Fig. 14. Difference of measured Q-factors with recirculating and non-

recirculating crosstalk signals for (a) core #27 and (b) core #28. The “diag-

onal cores”, “nearest cores”, and “all cores” show difference of Q-factors be-

tween crosstalk loading patterns in Figs. 13(a) and (b), Figs. 13(c) and (d), and
Figs. 13(e) and (f), respectively.

19.4 dB (Fig. 12). The Q-factor difference designated as “di-
agonal cores” are the difference of the measured Q-factors
when signals were loaded into five cores with the pattern in
Fig. 13(a) between that in Fig. 13(b). Similarly, those des-
ignated as “nearest cores” are the difference of the mea-
sured Q-factors when signals were loaded into five cores
with the pattern in Fig. 13(c) between that in Fig. 13(d).
The difference of the measured Q-factors when signals were
loaded into all the 32 cores with the pattern in Fig. 13(e) be-
tween that in Fig. 13(f) are designated as “all cores”. With
various distances, the Q-factor difference was within mea-
surement error. This result implies that in our experimental
setup, the transmission performance is the same regardless of
the neighboring cores being recirculating or non-recirculating

crosstalk signals. The conditions necessary for such state include
managing the experimental setup to launch all cores with
uniform signal input power, and to maintain similar overall
passband spectrum for the recirculating and non-recirculating
crosstalk signals.

VI. CONCLUSION

We have presented the experimental demonstration of a long-
haul DSDM transmission over a 32-core single-mode transmis-
sion line. We have provided the characteristics of the novel
low-crosstalk heterogeneous 32-core fiber and the configura-
tion of the novel partial recirculating loop system. The low span
crosstalk of —34.5 dB/51.4 km realized by our fiber design and
fabrication technology enabled us to achieve long-haul DSDM
unidirectional transmission over a thousand km with over 30
spatial multiplicity for the first time. The 12.5GHz-spaced
20-DWDM, PDM-16QAM signals over 32-cores yielded a high
aggregate spectral efficiency of 201.46 b/s/Hz. The transmission
distance of 1644.8 km equivalent to 32 loops of the 51.4 km span
is more than three times longer for DSDM transmission with
over 30 spatial multiplicity, and around three times larger spatial
multiplicity per direction for long-haul transmission exceeding
1000 km. In addition, we investigated the effect of crosstalk
on Q-penalty utilizing the partial recirculating loop system, and
showed that the Q-penalty had strong correlation with inter-core
crosstalk, and depended on core allocation. Moreover, we exam-
ined the validity of the measurement using the partial recircu-
lating loop system. As an alternative to conventional multicore
recirculating loop measurement, our proposed partial recircu-
lating loop system is an effective means for characterizing long
distance transmission performance of multicore transmission
lines, in particular, when the number of cores is large and when
inter-core crosstalk depend on core configuration.
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