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Abstract—The dissemination of the digital coherent technology
has enabled the recent growth of information networks, which has
obviated signal processing in the optical domain such as optical
dispersion compensation. However, the further scaling of the dig-
ital coherent technology will eventually suffer from the slowdown
of the Moore’s law and/or the energy crunch as a result of the
longstanding relentless traffic increase. The use of all-optical signal
processing, free from the electronic limitations, will then inevitably
be reevaluated but in a slightly different way from how it was
previously expected. In this paper, we highlight the unique features
of all-optical signal processing that outperforms digital signal
processing, and review the two latest results: one is upgrade-free,
multi-channel wavelength conversion; and the other, all-optical
back propagation for WDM channel nonlinearity compensation.
Both of these functions are exploiting a versatile physical phe-
nomenon of parametric processes in highly nonlinear fiber that
is highly efficient in terms of cost and energy and is as cascadable
as EDFAs. This paper discusses their practical aspects with
emphasis on cascadability. In particular, the promising prospects
for “cascaded phase-conjugating amplifier chains” to compensate
nonlinear signal distortion will be highlighted after discussing the
parameter tolerances for all-channel nonlinearity compensation.

Index Terms—TFiber nonlinearity, highly nonlinear fiber, optical
fiber networks, optical phase conjugation, optical signal processing,
optical wavelength conversion.
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1. INTRODUCTION

HE dramatically increasing information traffic on the In-
T ternet will finally reach the point at which the energy con-
sumption begins to severely limit the capacity of the overall
network [1]. This phenomenon will be observed not only in the
wide area networks but also in mega-datacenters, where the ag-
gregate bandwidth of the leaf-spine switch fabric has exceeded
1 Pb/s [2] and is extrapolated to increase beyond 1 Eb/s circa
2030. It is easily generalized from these cases that the switch
will be the ultimate bottleneck of the network everywhere.

Replacing power-hungry electrical switches, such as routers,
with optical path switches is challenging but is the only means to
substantially resolve the energy crunch of the network [3]. Mi-
gration from the current network to a network based on optical
path switches could only be realized through introducing a new
network framework like software defined networking. In other
words, optical path switching necessitates a centralized control
plane that is separated from data plane. The network compris-
ing optical path nodes controlled by a resource management is
called “Dynamic Optical Path Network (DOPN)” [4]. The scal-
ability of DOPN is primarily limited by the port count of opti-
cal switches. In order to overcome this limitation and achieve
nationwide scalability, hierarchical multi-granular path struc-
ture is introduced [5], where Flex-grid “colorless, directionless
and contentionless” (CDC)-ROADM (viz. CDC(G)-ROADM)
technology [6], as well as fiber matrix switches and optical data
unit cross-connects, plays an important role. On the other hand,
the metro area network based on ROADM rings is growing to
be a greater mesh network by introducing CDC(G)-ROADM
technology [7].

In the process of migrating from conventional ROADM ring
networks to full-mesh DOPN, two major challenges are faced in
the physical layer. One is the limited wavelength resources and
the other is the Shannon-limited reachability of signals with ad-
vanced modulation formats [8]. This paper addresses that both of
these issues could be better resolved by means of multi-channel
cascadable parametric signal processing based on highly non-
linear fiber (HNLF), rather than by electronic means [9].

To mitigate the former problem, efficient tunable wavelength
converters (WCs) will be a key. In a CDC(G)-ROADM based
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mesh network, a single wavelength must be assigned to one
fiber link that spans across many ROADM nodes, and the same
wavelength cannot be assigned to two or more optical paths on a
fiber, which is the cause of spectral fragmentation and lowers the
overall network utilization. To mitigate spectral fragmentations
and improve the network utilization, introducing tunable WCs
has been shown to be attractive and effective [9]-[12]. In this
context, the method of wavelength conversion does not matter.
However, in the following sections, we will discuss the com-
pelling advantages of all optical WCs over the opto-electronic
equivalent.

The latter issue is how we can mitigate nonlinearities in or-
der to overcome the nonlinear Shannon limit. Due to the op-
tically switched paths, signals will tend to stay in the optical
domain longer than in conventional networks. While there have
been extensive research activities on all-optical regeneration and
tunable dispersion compensation for the realization of DOPN
[13], rapid advancement of digital coherent and forward error
correction technologies have obviated many all-optical signal
processing techniques to cure signal impairments. As a con-
sequence, nonlinear distortions have remained as the ultimate
signal impairment. To tackle this, the digital signal processing
(DSP) method of digital back propagation (DBP) was employed
[14]. In fact, the computation power required to fully perform
the DBP of high-capacity WDM transmission is far beyond the
capability of the present DSP technology, and thus a practical
implementation of DBP must be compromised with a coarsely
approximated single-channel treatment [15]. For the future scal-
ing of DSP or computing in general beyond the end of Moore’s
law, extensive research efforts are being made to pursue break-
throughs at a level of more fundamental physics: e.g., replacing
more standard DSP by completely new processes directly ex-
ploiting physical phenomena, such as quantum annealing [16]
and optical Ising machines [17]. All-optical nonlinearity com-
pensation using optical phase conjugation (OPC) may be analo-
gous to such ground-breaking approaches, and has been studied
in this context [9], [18]-[21].

The structure of this paper is as follows: Section II sum-
marizes the key features of parametric signal processing using
the state-of-the-art HNLF, finding wavelength conversion and
OPC based nonlinearity compensation as its compelling appli-
cations. Section III then refers to the utility of all-optical WCs
with respect to their opto-electronic counter-part. Section IV
develops the technology of all-optical nonlinearity compensa-
tion based on multi-channel OPC. Section V further discusses
plausible practical implementations of all-optical nonlinearity
compensation. Section VI concludes the paper.

II. FEATURES OF PARAMETRIC SIGNAL PROCESSING

The key features of four wave mixing (FWM) in HNLF for
enabling WC and OPC functions have been discussed in [13].
In summary, the features are:

1) Low loss and low noise (for cascadability);

2) wide (seamless and gridless) band;

3) full tunability over C- and/or L-band;

4) channel count, modulation format, and bitrate agnostic

operations;
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TABLE I
COMPARISON BETWEEN ALL-OPTICAL AND OPTO-ELECTRONIC WCS

OPTO-ELECTRONIC Optical
Principle O/E and E/O Conversions FWM
Bandwidth Limited by electronics (< 100 GHz) Wide (> 1 THz)
Modulation format, Fixed by electronics Agnostic
Symbol rate
Number of channels Single channel Multiple channels
CAPEX/OPEX High/High Low/Very Low
Cascadability Arbitrary Almost same as EDFA

5) ultrafast response free from transients;

6) low cost and small footprint;

7) high reliability.

The reason for the features 6) and 7) is because the basic
configuration of parametric devices based on HNLF is closely
analogous with EDFAs. In general, they consist of an optical
transmission fiber, pump-signal combiners, isolators, single-
frequency tunable lasers with EDFAs for pumps, tunable fil-
ters, phase modulator if pump dithering is necessary, and so
on. Among these, only the tunable filters may not be off-the-
shelf yet. With these features, plausible applications based on
parametric signal processing, include:

1) Parametric amplification including phase sensitive ampli-

fiers (PSA);

2) tunable WC/translator;

3) tunable dispersion and delay compensator;

4) OPC for nonlinearity and dispersion compensation;

5) all optical sampling;

6) optical regenerator, including phase regenerator by PSA;

7) clock recovery, etc.

For cost and energy savings, applications capable of multi-
channel operations in a single subsystem are generally more
effective than single-channel operations. Considering its impact,
this paper focuses upon multi-channel all-optical WCs and all-
WDM channel nonlinearity compensation.

III. MULTI-CHANNEL ALL-OPTICAL WCs

While opto-electronic (O/E-E/O) wavelength conversion can
be off-the-shelf ready for commercial systems, all-optical wave-
length conversion based on FWM in HNLF still has compelling
advantages when adopting our proposed “two-stage counter-
dithered” degenerate FWM scheme [22]. With this method, we
have succeeded in realizing fully telecom-grade operations of
wavelength conversion because it allows:

1) Guard band less (even overlapping) operations over the

entire operating telecom window such as C-band;

2) not only multiple-wavelength but also modulation-format

and bitrate agnostic operations;

3) cascaded operation, as cascadable as EDFAs.

These features thus bring unique merits in terms of cost, both
CAPEX and OPEX, and flexibility of the network. The compari-
son between all-optical and opto-electronic WCs is summarized
in Table I.

As a primary assumption made in Table I, heterogeneous
multiple signal formats will be used in the same WDM network.
Such an environment should be inevitable sooner or later due to
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Fig. 1. Heterogeneous WDM network based on flex-grid CDC-ROADM with
shared all-optical WCs.

the dissemination of software defined open and disaggregated
transport technology [23]. An example of the CDC(G)-ROADM
equipped with all-optical WCs, along with the network concept,
is shown in Fig. 1. Naturally, CDC(G)-ROADM can allow
heterogeneous signal formats. While various kinds of multiple
opto-electronic WCs will be needed in accordance with the
heterogeneity of the signals, only one kind of all-optical WCs,
and fewer number, will be needed because of its universal and
multi-channel nature. As technology evolves, opto-electronic
WCs will have to be upgraded, whereas all-optical ones can
stay the same. Therefore, in the future network, the CAPEX
and OPEX for all-optical WCs are promisingly low, especially
as the number of channels increases.

For cascadability, opto-electronic WCs outperform all-optical
ones. However, by increasing the conversion efficiency of the
FWM process, we have achieved a noise figure (NF) as low as
6.2 dB, which means that it is almost as cascadable as EDFAs
[22]. Fig. 2 shows experimental results of the cascadability of
all-optical WCs for 96-Gb/s dual polarization (DP)-16 quadra-
ture amplitude modulation (QAM) signals. The experiment em-
ployed a wavelength-translating re-circulating fiber loop scheme
in which the number of WDM channels corresponds to the num-
ber of loop circulations (see Fig. 2(a)). In the figure, we had ten
WDM channels meaning that the input signal went through a
cascade of ten all-optical WCs. The Q-factor was plotted against
the number of loop, which verifies decent cascadability, despite
the relatively poor noise performance of the WC used in the
experiment (see Fig. 2(b)). Constellation diagrams of the sig-
nals after ten cascaded wavelength conversions are plotted in
Fig. 2(c). If all the necessary equipment was used to achieve a
NF of 6.2 dB for the loop experiment, the cascadability could
have exceeded 20. The detailed analyses of the cascadability of
the all-optical WCs are reported in [22].
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Fig. 2. Results of a cascadability experiment for all-optical WCs using a
wavelength-translating loop for 96-Gb/s DP-16QAM signals: (a) Optical spectra
of the signals circulating inside the wavelength-translating loop; (b) Q-factor
versus the number of loops. Diamonds are the experimental results. Dashed and
solid lines are theoretical predictions for the experiment and the case with a NF
of 6.2 dB; (c) constellation diagrams of the signals after ten loops.

IV. ALL-OPTICAL NONLINEARITY COMPENSATION THROUGH
MULTI-CHANNEL OPC

A. Principle

The proposition of the principle of the OPC-based non-
linearity compensation dates back to the 70’s [24], and was
followed by experimental demonstrations for optical fiber
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communications in the 90’s [25]. In all-optical nonlinearity
compensation using FWM based parametric process, the sig-
nals remain in the optical domain, unlike for DSP-DBP, and are
physically phase-conjugated halfway by FWM in HNLF, and
transmitted over the latter half of the fiber span. Namely, the lat-
ter half transmission needs to be designed so as to be the virtual
back propagation of the first half [26]. In this sense, this process
can be regarded as a highly efficient, speed-of-light computation
of massive back propagation.

Let us elucidate these processes by looking at the nonlinear
Schrodinger equations (NLSE). First, the NLSE is written in
general as

0A o i 0*A 1 0%A

0.~ 2t e Tehas
where A is the electric field amplitude as a function of time, ¢,
and propagation distance z, « is the attenuation coefficient of
the fiber, 0 and 33 are the group velocity dispersion (GVD),
and third-order dispersion (TOD), respectively, and -y is the
nonlinear coefficient. Propagation of the optical signals over the
first half span is given by integrating Eq. (1) from the transmitter
to the halfway point while its back propagation is given by its
reverse integration. This can be expressed by changing the sign
of the right hand side of Eq. (1), i.e.,

0A Q@ i 0*A 1 _ A

AR R L e T

Equation (2) corresponds to the time reversal of Eq. (1),
which is unphysical and can only be solved in the digital do-
main. Of course, digital solving of Eq. (2) for long haul massive
dense WDM signals is non-trivial and consumes huge amount
of computation resources that may not be fit in a gold box of
a transceiver. On the other hand, instead of computing the time
reversal, spectral inversion can be done in the optical domain
by parametric processes. After the mid-span phase conjugation,
the phase-conjugated optical signals will obey the following
equation:

0A* a ., i OPA*
5~ 27 Tl

By comparing Eq. (3) with Eq. (2), one can imagine that all
the terms on the right hand side can be identical if o and 3
in Eq. (3) have the same absolute magnitudes with the opposite
sign as those in Eq. (2), respectively. Of course, the physical
propagation occurs from the halfway point to the receiver, the
latter half of the transmission span has to have the physical
properties correspondingly determined by those of the first half
span such that

+iy|APA (1)

—n|APA. ()

1034

a?(2) = —aM (L - 2),

B2 () =3 (L = =), A
A () =~ (L — ), @
7P (2) =W (L - 2)

where superscripts (1) and (2) indicate the first and second
span, respectively, and L is the total distance assuming the OPC
is located at z = L /2. Whereas the nonlinear coefficient can be
regarded as constant in most cases, the dispersion and power
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Fig. 3.  Proposed scheme for complete nonlinearity compensation. (a) The
transmission line, (b) symmetric power excursion profile by means of backward-
pumped distributed Raman amplification, (c) symmetric dispersion profile of
actually developed fiber [28].

excursion profiles have to be designed so as to be mirror sym-
metric with respect to the halfway point (z = L/2) in order to
completely cancel loss, GVD, TOD, and Kerr nonlinearities.
Any failure in meeting these conditions results in un-cancelled
portions of signal distortion.

B. Proof-of-Concept Experiment

In order to realize conditions (4), we employed distributed
Raman amplification and a pair of fibers with opposite TODs,
as previously proposed to be feasible. The details are illus-
trated in Fig. 3 and reported in [26] and [27]. As shown in
Fig. 3(a), OPC is positioned halfway along the transmission
line. Backward-pumped distributed Raman amplifiers (DRA)
are capable of realizing a symmetric profile of the signal power
excursion versus distance with respect to the OPC position as
depicted in Fig. 3(b). A dispersion flattened fiber has been devel-
oped to realize a symmetric dispersion profile [28], at a specific
center wavelength obtained by optimally locating the CW pump
to satisfy all the conditions in Eq. (4), as delineated in Fig. 3(c).
In this scheme, the first half of the transmission is assumed to
be in the C-band while the second half is in the L-band, or vice
versa.

A preliminary experiment with 24-km fiber span produced
a 10-dB improvement in the nonlinear threshold power where
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the maximum Q-factor is reached, as shown in Fig. 4. Numeri-
cal studies also showed ~10 dB improvement in the nonlinear
threshold for 67.25 Gbaud WDM 2000-km transmission [27].
We have also succeeded in achieving about 8 dB improvement
in single-channel 12-Gbaud 16- and 64-QAM signals. Fig. 4(a)
and simulations at 67.25 GBaud corresponded to setting the
pump at an optimum wavelength in the L-band, while the ex-
periment in Fig. 4(b) corresponded to the pump in the C-band,
i.e., one may attribute the difference in nonlinear threshold im-
provement to a residual dispersion asymmetry in the C-band
case. In simulations with standard single mode fiber (SSMF), it
was confirmed that the dispersion imbalance was noticeable at
distances as short as 24 km. In either case, the values are sig-
nificantly better than for any DBP approach that usually obtain
only around 1-2 dB improvement [15].

V. TOWARDS PRACTICAL IMPLEMENTATIONS

In this section, we discuss the parameter tolerances of all-
optical nonlinearity compensation, and the promising prospects
of our proposed “phase-conjugating amplifier chain” for practi-
cal implementation.

A. Parameter Tolerances

To roughly grasp the parameter tolerances of our scheme, we
conducted simulations employing a commercial tool (Optisys-
tem 11). Based on the scheme of Fig. 3, we varied the degree
of symmetry in terms of signal power excursion and GVD. We
also estimated the impact of fiber birefringence from polariza-
tion mode dispersion (PMD).

We considered the transmission of 4 x 269 Gb/s 16QAM
WDM channels (ranging from 1573.301 to 1575.782 nm)
with a 100 GHz spacing and combined by a multiplexer
with a 80.7 GHz third order Gaussian passband. The optical
transmitter was based on the superposition of two QPSK
signals, one of which has a 6dB attenuated output. A total
of 219 symbols per channel were transmitted with 256 sam-
ples/symbol. The transmission line consisted of N x 50 km
spans of NZDSF (Chromatic dispersion D = 3.13 ps-nm ™! -
km~!, dispersion slope S =0.0032ps -nm 2 -km '
loss o = 0.227 dB/km, effective area A, = 41.4 um?). Dist-
ributed Raman amplification was used to compensate for
the losses along the system. A backward propagating, five
wavelength pumping scheme [29] was designed to provide a
net 0 dB flat gain (less than 0.5-dB gain ripple) to the signals
with a highly symmetric power profile, as shown later. At
the receiver, the signals were demultiplexed (with 80.7 GHz
third order Gaussian passband), then preamplified (to constant
power of 0 dBm) and fed into a 90° hybrid connected to four
balanced photodiodes. The I and Q output signals were then
processed by an electrical constellation analyzer to quantify the
Q factor. The photodiodes responsivity and dark current were
set to 0.5 A/W and 5 nA, respectively. Thermal noise and shot
noise were neglected in the simulation. The local oscillator
wavelength coincided with the received channel. Because
we were interested in assessing the improvement offered by
the nonlinearity compensation scheme, the effects of laser
linewidth and PMD were neglected, unless otherwise specified.

The OPC subsystem was based on a 100-m long
HNLF with zero-dispersion wavelength A = 1590.2 nm, non-
linear coefficient v = 14 W' .km™!, o = 1.53 dB/km and
S = 0.0075ps - nm >km~'. A 28 dBm CW pump located
at 1589.989 nm produced a FWM power conversion efficiency
of —3.5 dB, resulting in only a marginal penalty (0.8 dB). It
should be noted that the effect of stimulated Brillouin scattering
(SBS) was ignored throughout the simulation in order to sim-
plify the discussion. Of course, the suppression of SBS is an
important issue for practical implementations of OPC (see, e.g.,
Ref. [30]).

To test the Q factor penalty tolerance to signal power asymme-
try, we fixed the total launched power to the transmission fiber to
7 dBm, which proved to be in the nonlinear transmission regime
for a 4 x 67.25 Gbaud-16QAM WDM signal over 2000 km
[26]. Signal transmission was investigated for links of varied
span length and power profiles, and subsequently, varied path
average powers (P,y.). Each link consisted of spans of length
L each with backward propagating, five wavelength Raman
pumping, designed to provide a 0 dB net flat gain, but exhibiting
different amounts of asymmetry which we characterized as the
percentage <, = (L, Pove) ' [ |p(2) — p(Ls — 2)|dzx 100,
where p(z) is a function describing the power excursion in
the span. These power profiles are shown in Fig. 5(a), where
the associated per span is also indicated. Then, the Q? factor
penalty (reference being a lossless medium) as a function of ¢
was evaluated as in Fig. 5(b). The results represent the upper
limit of the system performance since noise was not included
in the simulation; this also allowed focusing on the asymmetry
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quality alone. We note that less than 9% span asymmetries can
be achieved for long spans (>50 km) with higher order Raman
pumping scheme considered. We refer to [27] for further details
on the signal power asymmetry tolerance assessment.

We then investigated the tolerance to the dispersion imbalance
by varying the dispersion parameter (55 of the second part of
the link, ﬂf)(i.e., after OPC) with respect to the dispersion
parameter in the first part of the link, labeled as ﬂél), while
keeping the TOD parameters under ideal conditions, i.e., ﬁél) =

—ﬁéz) . Fig. 6 shows how severely the tolerance to the dispersion
imbalance was reduced as the transmission reach increased. At
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800 km, the dispersion tolerance for 2-dB Q-factor penalty is
reduced to only a few percent. We note that in principle this
imbalance can be offset by optimizing the OPC position and
input span launch powers.

To roughly estimate the effect of birefringence on the trans-
mission system, we considered a lossless and noiseless 800-km
long transmission link. In the simulation tool, birefringence was
modeled stochastically, in accordance with the ITU-T G.691
PMD model, by representing the fiber as a concatenation of
birefringent trunks of random lengths that follow a Gaussian
distribution with average L,,. and standard deviation o. Fur-
thermore there is a random orientation of the principal axes of
the trunks with respect to each other for which PMD is defined.
Using L,ye = 200 mand o0 = 40 m, we evaluated the Q? factor
of one of the inner channels for four random state of polariza-
tions (SOPs) of the transmitted channels. The averaged results
are shown in Fig. 7 for two launched powers of —3 and 7 dBm,
corresponding to a linear and a nonlinear case, respectively.

It is observed that the transmission reach at 800 km is limited
by PMD values closer to 0.2 ps/+/ km. This estimation should
yet be taken cautiously as the tests were only performed for
four sets of input SOPs, which is perhaps not enough to fully
represent the ensembles. Nevertheless, the following consider-
ation can support this estimate. Fig. 7 suggests that the signals
after 800-km transmission remain correlated for the PMD below
0.05 ps/+/ km. Assuming that de-correlation occurs due to walk
off, then the average differential group delay (DGD) should be
kept much shorter than the symbol length, to within <10% for
small Q-factor degradation, considering its Maxwellian nature.
In the case of Fig. 7, the symbol length is ~15 ps. For a fiber
with a PMD of 0.05 ps/+/ km, the expected DGD for an 800-km
link is:

0.05 ps/vkm x V800 km ~ 1.4 ps. (5)

This value is comparable with 1/10 of the symbol length
(1.5 ps), and therefore is consistent with Fig. 7.

According to ITU-T G.652B/D, a PMD of 0.2 ps/+/ km is
recommended. A PMD of 0.1 ps/ \/H is also discussed therein.
Although the definition of PMD in this simulation may not be
as consistent with that in ITU-T recommendations, it is clear
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Fig. 8. All-optical nonlinearity compensation scheme: Single OPC scheme
(Top); and proposed phase-conjugating amplifier chain scheme (Bottom). Lg is
the amplifier spacing.

that the impact of birefringence is non-negligible especially for
long haul transmissions. In the following we propose a scheme
to suppress the impact of PMD.

B. Phase-Conjugating Amplifier Chain

There are two major drawbacks of the nearly ideal OPC ap-
proach described above: one is that we need to deploy a new
type of fiber (dispersion flattened fiber); and the other is that
we need to prepare the exact symmetry for long haul trans-
mission line including ideally suppressed PMD. Both of these
drawbacks can be resolved by introducing “phase-conjugating
amplifier chain” as shown in the bottom of Fig. 8. This scheme
significantly shortens the span length for which the nonlinearity
is compensated. Typical transmission distances for which non-
linearity must be compensated would be from a few hundred to
a few thousand kilometers. It would be more difficult to main-
tain the exact symmetry for longer transmission distances in
the single OPC scheme. On the other hand, introducing phase-
conjugating amplifiers as shown in the inset of Fig. 8 will make
all the parameters more tolerable, even though a number of cas-
cades of phase conjugation are necessary. As amplifier spans
are typically between 40 and 100 km, the impact of deviations
from the ideal symmetry would be as small. Indeed, shortening
the OPC spans has been pointed out as better for suppressing
non-deterministic impairments, such as nonlinear interactions
with ASE from inline amplifiers [31], signal-ASE (FWM) [32],
and the effect from PMD [20], [33], [34]. Besides, even the
TOD term could be neglected in the case of SSMF, because in
the C-band, the deviation of GVD is only up to 10%. A PMD
of 0.1-0.2 ps/v/km would provide a preferable condition for
NLC, because the NLC length in this case is ten times shorter
than the case of Fig. 7.

To verify the cascade operations of OPCs, we conducted a
wavelength translating loop experiment similar to that in Fig. 2
but with propagation through the dispersion flattened fiber de-
scribed in Fig. 3. Whereas the details have been reported in
[19], let us briefly review the results here. Fig. 9 shows the
block diagram of the wavelength translating loop for testing the
phase-conjugating amplifier chain. Fig. 10 shows the results for
4 x 48 Gb/s DP-QPSK signals after six circulations of the loop,
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Fig. 9. Schematic diagram of wavelength translating loop experiment for
testing the phase-conjugating amplifier chain [19].
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Fig. 10.  Experimental results of cascaded operations of all-optical nonlinear-

ity compensation based on wavelength-translating loop [19]. The output optical
spectrum from the wavelength-translating loop (top) where the red dots cor-
respond to the plots in the Q? factor versus wavelength (bottom). The signal
wavelengths shift from shorter to longer wavelengths, corresponding to the
number of cascades.

meaning 12 cascaded OPCs. It is conjectured that the evolution
of SOPs of all the 24 WDM channels co-propagating in the loop
must be considerably randomized due to the birefringence of
the loop. Nonetheless, a nonlinear threshold improvement of
8 dB was observed and the transmission reach was signifi-
cantly extended [19]. It is also noteworthy that a remarkable
compensation of fiber nonlinearities was also demonstrated us-
ing repeated OPC in a 2.048-Tb/s WDM system with eight
32-Gbaud PDM 16-QAM channels in 900-km SSMF trans-
mission, showing ~ 10 dB improvement in nonlinear thresh-
old [21].
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Fig. 11. CDC(G)-ROADM node in a WDM mesh network equipped with
phase-conjugating amplifier chain for nonlinearity compensation.

Another merit to introduce the phase-conjugating ampli-
fier chain is the compatibility with WDM networks based on
CDC(G)-ROADM. Fig. 11 shows a schematic of CDC(G)-
ROADM node in a WDM mesh network equipped with a
phase-conjugating amplifier chain for nonlinearity compensa-
tion. As can be perceived from the figure, arbitrary exchange
and add/drop of WDM channels at the ROADM node do not
affect the operations of nonlinearity compensation that are com-
pleted within the amplifier spans, while the system has to man-
age the state of phase conjugation for each signal. In fact, the
wavelength-translating loop shown in Fig. 9 can be regarded as
repeated “wavelength add” operations of ROADM. Finally, it
should be noted that the impact of the randomness of amplifier
span lengths has yet to be studied, whereas it may not be as
severe as that for a single OPC scheme because the length for
nonlinearity compensation is much shorter.

VI. CONCLUSION

The two important all-optical functions enabled by multi-
channel cascadable parametric signal processing, compelling
electric approaches, have been highlighted: all-optical multi-
channel tunable wavelength conversion; and all-channel nonlin-
earity compensation using multi-channel OPC. We have shown
that more than 20 cascades of all-optical wavelength conver-
sion are feasible for high order modulation formats such as
DP-16QAM. After brief explanation of the operating princi-
ple, it has been shown that our proposed scheme of all-optical
nonlinearity compensation using OPC is capable of achieving
a nonlinear threshold improvement of 10 dB. Then, through
the numerical studies on its parameter tolerances it was sug-
gested to adopt short and cascaded OPC spans for better and
practical nonlinearity compensation. A wavelength-translating
loop experiment was then conducted to demonstrate the effec-
tiveness of the phase-conjugating amplifier chain thanks to the
cascadability of parametric processes. Realization of all-optical
multi-channel wavelength conversion and all-channel nonlin-
earity compensation based on phase-conjugating amplifier chain
will contribute to long term scalability of networks beyond the
Moore’s law with significant savings of both cost and energy.
Finally, we note that our scheme can be most cost-effective for
fully loaded WDM systems. Phase-conjugating amplifier chains
for fully loaded WDM systems have yet to be experimentally
demonstrated.
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