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Abstract—Optical fibre transmission has enabled greatly in-
creased transmission rates with 10 Gb/s common in local area
networks. End users find wireless access highly convenient for
mobile communication. However, limited spectrum availability at
microwave frequencies results in per-user transmission rates lim-
ited to much lower values, e.g., 500 Mb/s for 5-GHz band IEEE
802.11ac. Extending the high data-rate capacity of optical fiber
transmission to wireless devices requires greatly increased car-
rier frequencies. This paper will describe how photonic techniques
can enable ultrahigh capacity wireless data distribution and trans-
mission using signals at millimeter-wave and TeraHertz (THz)
frequencies.

Index Terms—Broadband communication, microwave photon-
ics, millimeter (mm)-wave generation, optical heterodyne, opti-
cal mixing, optical phase lock loops, photonic integrated circuits,
semiconductor lasers.

I. INTRODUCTION

THERE has been explosive growth in wireless data traffic
over the last few years, due to both increased user adop-

tion of higher bandwidth services, such as interactive computer
gaming and video on demand, and to higher available wireless
transmission rates. Extrapolating this growth into the future, we
can expect that this category of data will soon represent a signif-
icant proportion of total backbone traffic, and that much higher
wireless transmission rates will be required to support more
sophisticated, bandwidth-intensive applications. Transmission
rates in the widely used 2.4 and 5 GHz bands are restricted by
the limited spectrum allocated (typically less than 500 MHz in
total, depending on jurisdiction). To address this, wider spec-
tral bands have been opened up at millimetre-wave (mm-wave)
frequencies for unlicensed (60 GHz) and “lite license” (E-band,
70–95 GHz) use. However, the contiguous bandwidth available
in these bands is 8.6 GHz or less, insufficient to support wireless
data transmission at “wireline” speeds of, say, 100 Gb/s with-
out employing very high spectral efficiency modulation formats
(e.g., 512-QAM) which would reduce link length and which
may be difficult to implement at symbol rates of several Gbaud.
To enable ultra-high capacity wireless data systems, we there-
fore need to look to higher carrier frequencies, in particular at
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Fig. 1. Wireless link loss, showing free-space path loss only (dotted) and with
water absorption (solid). (Water absorption data is for 2.59% H2 0.) [2].

currently unallocated regions of the electromagnetic spectrum
above 275 GHz (USA) or 300 GHz (Europe).

At millimetre-wave frequencies and above, wireless propaga-
tion characteristics require quite different system architectures
to be employed compared to those used for omni-directional
WiFi. Free-space path loss, governed by the Friis transmis-
sion equation, increases as the square of the carrier frequency
and at least the square of the distance between transmit and
receive stations. The increased loss at mm-wave frequencies
compared to low GHz radio frequencies leads to the need for
directional, line-of-sight wireless systems, to avoid the need
for excessive power at the transmitter. This architecture is al-
ready deployed in the 60 GHz band, using high-gain, steerable,
phased-array antennas.

At terahertz frequencies (>100 GHz), not only is the free-
space path loss higher still, but absorption due to water vapour
becomes an increasing problem [1]. However, as shown in Fig. 1,
there are several spectral windows in the frequency range 200
to 450 GHz where the additional loss due to water absorption
is low, at least for short transmission distances (100 m or less).
Each of these windows has a bandwidth of several tens of GHz,
making them suitable for ultra-high capacity wireless links.

Optical wireless communication (OWC) in the near infrared
(IR) region is the other competitive wireless solution to THz
communication systems for multi-Gbps data transmission. A
100 Gbit/s OWC system has previously been reported, employ-
ing higher order modulation formats and polarization multiplex-
ing [3]. 1 Tbit/s was recently achieved in a free space system
by multiplexing four beams with different values of orbital an-
gular momentum [4]. However, OWC links are very susceptible
to atmospheric environment conditions such as air turbulence
and humidity fluctuation (the scintillation effect), fog, smoke,
and rain [5]. Air turbulence and humidity fluctuations cause

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/



580 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 33, NO. 3, FEBRUARY 1, 2015

Fig. 2. Comparison of THz with optical wireless transmission [6].

refractive index changes, and in consequence distort the wave’s
phase front. Fog and smoke cause attenuation in the IR com-
munication path more than two orders of magnitude higher than
in a THz communication link at 300 GHz (see Fig. 2). On the
other hand, THz waves are mainly attenuated by atmospheric
water vapor, and oxygen absorption, while the smoke and dust
particles have minor effects on the THz waves. This is due to
their relative small size compared to the THz wavelengths. Other
advantages of THz over OWC are that the sensitivity of THz
detectors can be much greater than that of IR photodetectors,
and that THz links are not affected by ambient light. In addi-
tion, precautions are required with OWC to ensure that the IR
transmitted power is below eye-safe power levels.

II. THZ OVER FIBRE SYSTEM

Assuming a wireless transmission rate of several tens of gi-
gabits per second, we can estimate the required power at the
receiver input to be of the order of –50 dBm, while, as discussed
in Section V, the emitted power from a photonics technology
THz source at a frequency of approximately 300 GHz is unlikely
to exceed 0 dBm. Yet Fig. 1 shows that the transmission loss at
this frequency exceeds 100 dB, even for a 10 m link. Thus, even
from an order-of-magnitude calculation, we can conclude that
very high gain antennas (>25 dBi) will be required to construct
an operational wireless system, and then only over short range.
A more detailed representative link budget calculation is given
in Table I, confirming these basic conclusions.

Given the limited range expected from such THz commu-
nication systems, and their directional nature, we propose the
THz-over-fibre systems concept illustrated in Fig. 3. Optical
fibres are used to connect to distributed THz wireless anten-
nas, which give high-bandwidth capacity to fixed or mobile
devices. The limited propagation distance at THz carrier fre-
quencies allows well-defined microcells and frequency re-use.
The architecture illustrated has already been used successfully
for lower frequency wireless-over-fibre systems [7]–[10]. Pos-
sible applications include high-resolution multimedia services

TABLE I
REPRESENTATIVE LINK BUDGET CALCULATION

Data rate 20 Gb/s
Source power 0 dBm
Tx antenna gain 30 dBi
Transmission
loss

103 dB At 340 GHz; link length
= 10 m; absorption

negligible
Rx antenna gain 30 dBi
Received power −43 dBm
IF power −53 dBm 10 dB down-conversion

loss
IF input
equivalent noise

−170 dBm/Hz

Eb /N0 14 dB
System margin 7 dB c.f. BPSK or QPSK at

BER = 10−3

(Eb /N0 = 6.8 dB)

Fig. 3. THz-over-fibre systems concept.

to mobile devices, wireless video distribution, and very high-
speed wireless LANs. Clearly, this scenario calls for the remote
THz antenna units (AUs) to be low cost, since large numbers
will be required. Transmitting baseband data to the AUs requires
complex frequency generation and modulation technology to be
placed in the hostile outdoor environment with severe cost im-
plications. The alternative approach of centralised THz wireless
signal generation reduces AU functionality to photo-detection
and amplification, with the lower data rate uplink requirements
met by simple modulation schemes [7], [9], [10]. This approach
will now be described in more detail.

III. HETERODYNE SIGNAL GENERATION

Currently, the most widespread commercial systems for
broadband THz generation are based on femtosecond (fs)
pulse sources using mode-locked lasers and photoconductive
switches. The application for these systems is mainly high-
resolution 3-D imaging based on the time and depth resolution
enabled by the short pulses. However, these systems have large
power consumption (in the kilowatt range), and their spectral
purity in the THz band is limited by laser jitter. In addition, the
cost and the size of most short-pulse systems are also consid-
ered a drawback. Wireless communications and related appli-
cations require compact, low-power consumption sources, and
high spectral purity. Nevertheless, recent progress in photonic
technologies for optical communication systems can enable the
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Fig. 4. Microscope view of the dual DFB dual wavelength source [13].

generation of compact and power-efficient coherent THz sys-
tems with high spectral purity. The most promising photonic
technique for optical signal generation is the heterodyning of
two optical sources with different wavelengths that are mixed
in a photodiode (PD) or photomixer. The generated signal is an
electrical signal at a frequency equal to the frequency differ-
ence between the two optical sources, and exhibits phase noise
fluctuations resulting from linewidth and relative frequency fluc-
tuation of the two laser sources.

Photonic integration of a monolithic dual-wavelength source
for mm- and THz-wave generation is attractive as it results in
more compact sources and can give improved spectral purity.
One approach is based on the monolithic integration of dis-
tributed feedback (DFB) lasers, where two DFB lasers were
grown side by side and the wavelengths combined using a
Y-junction [11]. This approach is compact and both lasers
encounter the same environmental fluctuations, thus reducing
noise in the heterodyne signal. Fig. 4 shows a fully monolithi-
cally integrated mm-wave transmitter, where two DFB lasers
and optical combiners for the dual wavelength generation,
electro-optic modulators (EOM) for data modulation, and in-
tegrated high-speed photodiodes for millimetre-wave genera-
tion are all integrated on the same chip [12]. In addition to
these components, semiconductor optical amplifiers (SOAs) are
also implemented to compensate for the optical losses. A major
advantage of this design is that it provides continuous tuning
of wavelength spacing between the two monolithically inte-
grated DFB lasers, with tuning of the mm-wave signal over the
frequency range from 5 to 110 GHz demonstrated. However,
its drawback is the relatively broad line-width of the optical
modes (>300 kHz) [13].

Another approach to photonic integration of dual wavelength
sources is based on an arrayed waveguide grating (AWG) laser
using multimode interference reflectors (MIR). The AWG was
initially used as the wavelength selector with a fixed frequency
spacing in a wavelength division multiplexing (WDM) system.
Fig. 5 presents one realization of this AWG laser approach,
produced using an InP technology multi-project wafer run [12],
[14], [15]. The structure shows four AWG channels with 1 mm
long SOAs in each channel, providing the laser gain medium.
The AWG central wavelength is 1550 nm, the channel spacing
is 0.96 nm (120 GHz), and the free spectral range is ∼6 nm
(700 GHz). The two bottom channels are combined with an
electro-optic phase shifter (PHS) to allow wavelength tuning.
All the channels are terminated with MIRs, allowing the cavity
length to be defined independently of the chip dimensions, and

Fig. 5. Microscope view of the fabricated AWG laser dual wavelength
source [12].

reducing optical losses in the channels. Although the emission
of the wavelengths is fixed by the channel pass-bands of the
AWG, this structure shows very narrow optical mode linewidths
(<200 kHz) without the need for any additional phase noise
reduction scheme. This structure was demonstrated to generate
a RF carrier at 95 GHz with a 250 kHz linewidth, which is the
narrowest RF linewidth from a free-running, dual-wavelength
semiconductor laser [14], [15].

IV. UNI-TRAVELLING CARRIER PHOTODIODE

One of the key enabling technologies for the development
of photonics enabled THz communications has been the uni-
travelling carrier (UTC) PD [16]. Its importance can be assessed
through the key technical requirements for THz photonic sys-
tems: high saturation power, high responsivity and high 3 dB
bandwidth. Indeed it has been shown that moving the absorber
into the highly p-doped region where holes are the majority car-
rier offers the advantage that only electrons will drift through the
depletion region with their much higher velocity than holes and
as a consequence the space charge effect will not be as strong.
Therefore UTC devices inherently offer higher bandwidth and
higher saturation power.

The next key element is responsivity, as to offer the required
enhanced bandwidth, UTC devices require a thin absorber,
which limits responsivity in vertically illuminated designs. The
obvious solution to the problem is to use edge-coupled wave-
guide devices that offer several advantages in addition to en-
hanced responsivity, including distributed power dissipation,
giving higher saturation powers, and the possibility of using
travelling wave (TW) design to enhance frequency response.
Several solutions have been described in the literature with the
object of optimizing different aspects of the design. Here, we
summarise their performance and assess them comparatively us-
ing a figure of merit ηTHz = PTHz/P2

opt , that combines output
power and responsivity in one useful parameter.

First one should look at commercially available detectors for
the mm-wave and THz range, where only two manufacturers
are offering devices. One set of devices based on waveguide-
based PIN phtodetectors can operate up to 100 GHz with re-
sponsivities up to 0.5 A/W and output powers of up to 1 mW.
The other device is a vertically illuminated UTC-PD that can
emit good levels of power up to 2.5 THz but with a relatively
low responsivity compared to waveguide devices. Recent work
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Fig. 6. Summary of best output power from selected published emitters
[17]–[20]. (PD: photodiode, TTR: triple transit region, UTC: uni-travelling
carrier, UCL TW-UTC-PD: travelling wave UTC-PD designed in University
College London (UCL)).

integrated two UTC devices on the same chip and their combined
power output showed record high power of 1 mW at 300 GHz
[17]. To date, the best results in waveguide based devices have
been obtained in work when the standard UTC structure was
used in combination with an optimized pseudo TW design [18],
[19]. The devices were not full travelling wave structures as
this can only be achieved in periodic structures. However the
quasi match of optical and electrical velocities in the device
still enabled an improvement in the frequency response roll-off
from 40 to 30 dB/decade. These devices were demonstrated
both with coplanar contacts for integration into 50 Ω systems
and with integrated antennas. They have demonstrated record
output power up to 1 THz. Finally, recent work has resulted in
further optimization of the carrier transport within the photode-
tector to enable higher non-linearity and higher bandwidth. The
work looked into clamping the field in the absorber to help accel-
erate the electron towards the depletion region thus enhancing
the overall response of the photodetector [20]. Interestingly, this
work demonstrated a 3 dB bandwidth higher than 110 GHz and
output power up to 1 mW with no sign of saturation.

In Fig. 6, the performance of different selected devices (rep-
resenting the best results published to date) are shown in terms
of output power. It is clear from this that the combination of
TW design and UTC structures offer an advantage compared to
UTC-only structures or PIN waveguide structures. One should
also note that for triple-transit region (TTR) PDs these are the
first published results and the power is not saturated so higher
power should be achievable from such devices. The TTR-PD
has been designed to ensure the carriers drift at saturation
velocity or faster which maximizes the output power and in-
creases the bandwidth limitation. However, as mentioned above,
from the system point of view it is important ultimately to as-
sess the efficiency of the device and look at the figure of merit
(see Fig. 7). From that figure it is clear that waveguide devices
have a further advantage in terms of efficiency particularly at
frequencies above 200 GHz. One can also note that at 100 GHz
the use of UTC structure or PIN structure does not affect the
figure of merit and only the waveguide design is the cause of
the increased efficiency.

Fig. 7. Figure of Merit of selected published PD emitters [17]–[20]. (PD:
photodiode, TTR: triple transit region, UTC: uni-travelling carrier, UCL TW-
UTC-PD: travelling wave UTC-PD designed in University College London
(UCL)).

Fig. 8. Sub-THz wireless transmission at 300 GHz using Schottky barrier
diode [28].

From this set of results it is clear that structures with fast car-
rier transport (such as UTC or TTR) combined with travelling-
wave design offer the best performance overall as THz emitters
that could be used in communication systems.

V. HETERODYNE SYSTEM DEMONSTRATION

Over the past few years, high-speed sub-THz communication
links have developed quickly due to the availability of the nec-
essary hardware components. Modulation of the optical sources
using modulators developed for optical-fibre communication
systems allows high symbol rate complex modulation formats
to be easily generated at mm-wave and sub-THz frequencies. At
the receiver, Schottky barrier diodes (SBDs) are available that
can be used for either direct or heterodyne detection. In the di-
rect detection scheme, SBD detectors are used as square-law de-
tectors for amplitude-modulated signals. Many research works
have demonstrated using OOK modulation at W-band and over
100 GHz [21]–[29]. Recently, real-time error-free data transmis-
sion was demonstrated for a 40 Gbps channel at 300 GHz and
less than 1 m wireless transmission by heterodyning two tune-
able optical light sources as shown in Fig. 8 [28]. Polarization
multiplexing was also used to double the bitrate in a multiple
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Fig. 9. 146 GHz THz wireless link using offline digital coherent
detection [42].

input multiple output (MIMO) system for 48 Gbps dual chan-
nel at 300 GHz [28]. However, these polarization-multiplexed
systems suffer from a significant cross interference between
the wireless channels, which in turn reduces the transmission
quality of the system.

The direct detection scheme is very popular for THz wireless
communication due to its simple and cost-effective configura-
tion, but has lower sensitivity and needs the use of mm-wave
amplifiers to extend the transmission range. Heterodyne detec-
tion, on the other hand, improves the receiver sensitivity and
allows the use of vector modulation schemes. Thus, the trans-
mitted data rate increases, and the system impairments can be
removed through digital processing functions. In many recent
experiments, the received THz is first down-converted to an in-
termediate frequency (IF), typically using an harmonic mixer.
Then, the IF signal is recorded and processed offline. Several
research groups have reported systems based on digital signal
processing and off-line demodulation [30]–[52]. Using an inte-
grated dual-wavelength laser similar to those discussed in Sec-
tion IV, a transmission system using heterodyne detection of a
1 Gbps OOK at 146 GHz was reported, as shown in Fig. 9 [42].
Both wavelengths were modulated externally, and converted
into mm-waves using UTC-PD packaged with a 6 mm diameter
Si-lens. Data rates up to 100 Gbps (QPSK or 16 QAM) were
demonstrated at 237.5 GHz using a microwave monolithic inte-
grated circuit (MMIC) receiver at the receiver [46]. At 240 GHz,
a successful transmission of 30 Gbit/s using 8 PSK modulation
was achieved, and recently a THz wireless communication sys-
tem for higher carrier frequency at 400 GHz was developed
operating at up to 46 Gbps OOK by using a THz photo-mixer
integrated with a broadband antenna [48], [53]. However, these
systems suffer from the phase noise on the generated THz waves
due to the uncorrelated phase noise of the two optical sources.

VI. COHERENT SIGNAL GENERATION

The spectral purity of the generated THz signal is limited by
the linewidths and the frequency precision of the heterodyned
lasers. It is desirable to have a THz source with high spectral
purity for high-resolution spectroscopy and communication sys-
tems. If two free-running lasers are used, the linewidth of the
THz signal will be determined by the sum of the linewidths
of the two lasers [54]. For tunable semiconductor lasers, the

Fig. 10. Microscope picture of the PIC of the OPLL [63].

full width at half maximum (FWHM) linewidth ranges from a
few MHz to perhaps a few tens of MHz. Widely tunable exter-
nal cavity lasers with FWHM linewidths of about 100 kHz are
readily available, allowing a considerable improvement in the
linewidth of the THz signal, but they are significantly larger and
more expensive, and are best suited to laboratory use. To give
the desired ‘synthesiser’ performance, the difference between
the frequencies of the heterodyned lasers needs to be precisely
set, while large improvements in the phase noise (linewidth)
of the THz source can be achieved if the two lasers are
phase locked.

An optical frequency comb generator (OFCG) provides an at-
tractive solution for generating a number of phase-correlated op-
tical signals, the spacing between the comb lines being set with
high precision by a microwave synthesizer. Several techniques
have been developed over recent years and compact sources are
now available, either fiber or semiconductor based [55]–[57]. A
simple approach is to use a phase modulated laser. This can be
combined with a resonator to extend the span to over 4 THz in
a compact package.

The comb lines required for heterodyning can be selected us-
ing conventional optical filters, but more effective filtering can
be achieved by using optical phase locking techniques such as
optical injection locking (OIL) [58] or optical phase lock loops
(OPLLs) [59]–[61]. OIL is a simple technique achieved by in-
jecting coherent photons into a slave laser cavity. Above a cer-
tain threshold, dependent on the detuning between the lasers, the
slave source will be fully phase locked to the master through the
stimulated emission process. A drawback of OIL is its narrow
and asymmetric stable locking bandwidth, but the tracking range
can be improved by use of the optical injection phase lock loop
(OIPLL) technique [62]. However, locking with a frequency off-
set between the slave and the master laser, required to produce
a heterodyne signal that is not a multiple of the comb spacing,
is not possible. Where this is required, an OPLL can be used,
comparing the phase of the beat signal between the master and
slave lasers against an external RF reference to derive a feedback
signal to lock the slave to the master with a tunable offset de-
fined by the reference signal. Delay around the loop is critical to
achieving suppression of heterodyne phase noise, and photonic
integration can help here. The OPLL photonic integrated circuit
(PIC) shown in Fig. 10 reduces the optical delay to a few tens of
picoseconds, although a carefully designed low-delay external
electronic feedback circuit is also required to close the loop to
achieve phase locking. The InP-based monolithic PIC contains
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Fig. 11. Schematic diagram for photonic multichannel system.

a broadly tuneable (∼8 nm), buried distributed Bragg reflection
(DBR) laser, a PIN photodiode, passive optical waveguides and
Y-junction couplers and splitters used as interconnections [63].

VII. COHERENT SYSTEM DEMONSTRATION

A coherent communications system using advanced modu-
lation formats was first demonstrated in a compact broadband
photonic wireless 60 GHz transmission system based on a cas-
caded RF and data modulation approach [64]. When two op-
tical tones from a comb source are separated through optical
filters, then modulated and recombined, their relative phase can
change due to temperature and vibration induced refractive in-
dex changes in the optical path length and due to phase noise
generated by optical amplifiers. This causes phase instability
and degrades the system performance. To counter this, phase
correlation between the two optical carriers can be improved
by using the piezo phase shifters with closed loop control at the
transmitter [28]. In order to use all the effective bandwidth, all of
these systems require high bandwidth electro-optic components
to use the large available THz bandwidth.

Other researchers have shown interest in increasing the data
rate by using multiple channels at sub-THz frequencies. These
have been demonstrated for long-haul WDM systems to in-
crease the spectral efficiency, where two or more optical car-
riers are modulated and spaced by the baud rate, referred to
as coherent optical orthogonal frequency division multiplexing
(CoOFDM) [65], [66]. Fig. 11 shows the block diagram of the
concept of a generic multichannel THz wireless on fibre sys-
tem. At the central station, the optical carriers are generated
using OFCG techniques. These optical carriers are then sepa-
rated and individually modulated. An unmodulated line is used
as a remote local oscillator (LO) at the remote antenna unit
(RAU) for heterodyne detection. The modulated carriers and
the LO are photomixed at the RAU and produce a multichan-
nel modulated wireless signal at sub-THz frequencies. Then,
these sub-THz channels are received by a mobile unit (MU),
down-converted to the baseband, and demodulated. Using such
a multichannel scheme increases the speed of the data link and
reduces the bandwidth requirement for each sub-channel com-
pared with that required for the same aggregate data if only
one carrier is used. This has been first realized in the 60 and
75–110 GHz wireless band showing bitrates up to 24 Gbps
using three subcarriers modulated with 5 Gbaud QPSK [31].
This approach was also applied at 237.5 GHz to transmit single
input and single output (SISO) wireless communication for a bit

Fig. 12. Schematic diagram for multichannel THz signal experiment.

rate of 100 Gbps using three subcarriers modulated with differ-
ent modulation formats (QPSK and QAM) [47]. MIMO trans-
mission was also demonstrated using these multichannel system
combined with polarization multiplexing at 92 GHz to achieve
120 Gbit/s. In such systems, the use of multiple channels can
significantly enhance the transmission capacity to multi-gigabit
or even terabit wireless transmission and relax the requirement
for the optoelectronic component bandwidth. Nagatsuma et al.
have explored the use of extremely large available bandwidth
from 450–720 GHz using 1.6 Gbps modulated with OOK [28].

Recently, we have experimentally demonstrated the gener-
ation and detection of a multichannel THz wireless system at
200 GHz using baseband photonic technology and digital coher-
ent detection at the receiver [67]. Fig. 12 shows the experimental
system for the multichannel THz signal generation, modulation
and detection. The system was evaluated for three subcarriers
modulated with 5 Gbaud QPSK, or two subcarriers modulated
with 10 Gbaud QPSK, giving total bit rate of 30 and 40 Gbps,
respectively. Optical subcarriers were generated by modulating
a single light source using an external intensity Mach–Zehnder
modulator (MZM) with an electrical RF source. The spacing
between the subcarriers was controlled by the driving RF fre-
quency and the modulator DC bias. The optical signal was then
amplified and fed into an external IQ MZM modulator for data
modulation with 5 or 10 Gbaud QPSK modulation per subcar-
rier. The THz signal was generated by optically heterodyning
the modulated optical signal with a tuneable LO source spaced
by the desired THz frequency. The combined signal was then
amplified using an erbium doped fibre amplifier (EDFA) and
filtered using a 3 nm optical bandpass filter to remove out-of-
band amplified spontaneous noise. At the RAU (no fibre trans-
mission), the optical LO source mixes with the multichannel
optical signal and generates the THz modulated multichannel
signal. The radiated THz signal was transmitted over a 2 cm
free space link. The distance was limited due to the low output
power of the transmitter. The received THz signal was initially
down-converted to a microwave IF by using a sub-harmonic
mixer, operated with an electrical LO, and then was amplified
and captured by the real-time scope whose sampling rate and
bandwidth were 80 GSample/s and 36 GHz, respectively. The
digitized signal was then processed offline using DSP in Matlab.
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Fig. 13. BER versus photocurrent for (a) 3 subcarriers × 5 Gbaud, and
(b) 2 subcarriers ×10 Gbaud QPSK.

The performance of the system was measured using BER
versus photocurrent compared with the single channel as shown
in Fig. 13 for both cases and the constellation diagrams are
displayed as insets for the lowest BER values. The transmit-
ted electrical power is proportional to the photocurrent squared.
Based on measurements on similar UTC-PDs, we expect the
power emitted from the UTC-PD at 200 GHz and 1 mA pho-
tocurrent to be ∼1–2 microwatts [68]. The measured BER was
obtained below the forward error correction limit of 10−3 at
0.6 mA photocurrent for the single THz carrier, with a small
penalty for the subcarriers in a multicarrier system. The first
subcarrier has the worst performance due to the non-uniform
response of the UTC-PD and the receiver responses [67].

VIII. CONCLUSION

The use of the THz spectral region for wireless commu-
nications offers the possibility to achieve transmission rates
comparable to those achieved in wired local area networks.
However, the properties of the free space channel require dif-
ferent approaches to those adopted for lower frequency lower
capacity systems. In particular, THz wireless systems will have
shorter free space ranges and will require beam steered rather

than omni-directional antennas. Optical fiber transmission pro-
vides a convenient method for extending the overall reach of a
THz wireless system and builds on extensive commercial use
of wireless over fibre systems at microwave frequencies. THz
wireless signal generation can leverage technologies used for co-
herent optical fiber transmission, with consequent off-the-shelf
component cost savings. Photonic integration technology can
play a key role in improving the phase noise performance and
reducing the size and cost of THz wireless over fiber systems.

A key component of THz wireless over fiber systems is the
photomixer. Quasi-travelling wave UTC-PDs offer the highly
desirable combination of high optical responsivity, large band-
width and high THz output power.

Future work will be needed on the development of low cost
electronic technologies for mobile units and on the development
of active antenna array technology to give the required antenna
gain and beam-steering capabilities for THz wireless over fiber
systems. MIMO systems based on wavelength division multi-
plex are a further possible area for investigation although path
and scattering loss considerations are likely to constrain the
application of MIMO techniques at THz frequencies.
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