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Abstract—We investigate the performance of deep learning in
recovering the complex-valued field of a weak-carrier-assisted
single side-band signal from two intensity measurements that
are decorrelated by dispersion. The proposed scheme relies on a
supervised learning-based convolutional neural network to map
the intensity measurements to the full-field. Unlike conventional
iterative phase retrieval schemes, the proposed scheme does not
require any iterations, digital upsampling, or pilot symbols, and
can operate both at low carrier-to-signal-power ratio (CSPR) and
at low applied dispersion value. Through numerical simulations
in relevant system settings, we compare the performance of the
proposed scheme with two recently proposed carrier-assisted
iterative phase retrieval schemes: one based on the solution of
a nonlinear optimization problem, and the other based on a
modified Gerchberg–Saxton algorithm. The results show that the
proposed scheme complies with the 7% hard-decision forward
error correction threshold after 24 GBaud 32-QAM transmission
over 100 km of standard single-mode fiber at a CSPR of 0 dB,
with 3.6 times lower applied dispersion value, 30% to 90%
lower complexity, and with less than 2 dB sensitivity penalty
compared to conventional iterative phase retrieval schemes. These
results support the potential of deep learning to realize phase
retrieval-based coherent receivers that are compatible with the
low complexity requirements of short-reach optical networks.

Index Terms—Phase retrieval, coherent receiver, neural network,
Gerchberg-Saxton algorithm, carrier-to-signal-power ratio, direct-
detection, short-reach communications.

I. INTRODUCTION

THE demand for higher data transmission rates in short-
reach optical networks, such as intra- and inter-data center

interconnects, has set increasingly stringent requirements on
the deployed transceivers in terms of spectral efficiency, com-
plexity, power consumption, and form factor [1]. While direct
detection has emerged as the dominant solution for short-reach
transmission [2], [3], it has inherent limitations compared to
coherent detection, which can measure the full complex field of
the optical signal. Coherent detection enables the use of higher-
order modulation formats and the compensation of both linear
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and nonlinear propagation impairments; however, coherent
receivers are considered costly for short-reach applications,
mainly due to the need of a stable local oscillator laser.

To simplify the coherent receiver structure, recent studies
have focused on developing phase retrieval receivers [4]–[6],
which can retain the simplicity of direct detection while
recovering the complex-valued field of the optical signal
through digital signal processing (DSP). In this context, self-
coherent systems have been proposed as a solution to eliminate
the need for a local oscillator laser [7], as they rely on a
continuous-wave (CW) tone generated at the transmitter side
along with the information-bearing signal. This configura-
tion gives rise to various self-coherent detection schemes,
including the Kramers-Kronig (KK) receiver, the Stokes-vector
receiver [8], and carrier-assisted differential detection [9].
The Stokes-vector receiver and carrier-assisted differential
detection require at least three intensity measurements and
an optical hybrid, yielding a complex receiver structure.
Instead, the KK receiver enables full-field recovery after single-
photodiode direct detection, exploiting the KK relations to
cancel (or suppress) signal-to-signal-beat interference (SSBI).
The KK receiver has been shown to offer improved SSBI
cancellation performance compared to other iterative phase
retrieval schemes [10], and has been widely investigated since
its introduction by Mecozzi et al. [11]. Yet, the KK receiver
requires a carrier-to-signal-power ratio (CSPR) higher than 6 dB
to achieve the minimum-phase condition, which enhances the
impact of nonlinear fiber propagation effects, and increases
the requirements of the digital-to-analog converter (DAC) at
the transmitter side [12]. Therefore, there is significant interest
in developing novel phase retrieval schemes that can achieve
phase retrieval with low steup complexity and at low CSPR.

Recently, carrier-less phase retrieval has been achieved by
measuring two (or more) intensity waveforms related by a
known amount of experienced chromatic dispersion [13], [14].
The phase retrieval task is accomplished using a modified
version of the Gerchberg–Saxton (GS) algorithm [15], which
seeks the optimum phase satisfying the constraints set by
the measured intensity waveforms. However, in the simplest
configuration, i.e., where two intensity waveforms are measured
before and after a dispersive element, GS-phase retrieval
requires hundreds of iterations, 5% to 20% pilot symbols, and
high applied dispersion values (ADVs) to prevent stagnation
in local minima and to achieve satisfactory bit error rates
(BERs) [13], [16], [17].

0000–0000/00$00.00 © 2021 IEEE

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2023.3335394

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5526-0358
https://orcid.org/0000-0002-0296-2225
https://orcid.org/0000-0002-6713-6370
https://orcid.org/0000-0001-7187-570X


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

To relax the CSPR requirements of self-coherent systems
and address the complexity and convergence issues of the GS
algorithm, a promising solution is to combine self-coherent
transmission with the use of dispersive elements [18]–[20].
The underlying idea is to utilize a weak CW tone to obtain
a rough estimate of the true phase; although this estimate
is corrupted by SSBI, it can still be used to initialize the
phase retrieval algorithm to facilitate its convergence. Basically,
the CW tone plays a similar role as pilot symbols, but it
helps convergence without reducing the net capacity of the
system. This CW tone-based initialization was first exploited
in Ref. [18], where the output of a KK receiver operating at
low CSPR was used to initialize a nonlinear optimization
algorithm to solve for the phase satisfying two intensity
measurements decorrelated by dispersion; hereinafter we refer
to this scheme as the enhanced KK (EKK) receiver. EKK
achieves similar performance to the KK receiver with a lower
CSPR (5 dB to 6 dB lower); yet the nonlinear optimization
process significantly increases the computational complexity.
Another approach for phase retrieval that exploits a CW
tone-based initialization is the edge-carrier-assisted (ECA)-GS
algorithm proposed in Ref. [19]. The ECA-GS scheme achieves
successful phase retrieval with a few tens of iterations and with
reduced computational requirements compared to the EKK
scheme. It is worth mentioning that, while EKK and ECA-GS
schemes rely on a CW tone generated at the transmitter at the
edge of the information-bearing signal spectrum, recent works
have investigated the performance of central-carrier-assisted
(CCA)-phase retrieval [6], [19], [21], where the CW tone
lies at the center of the information-bearing signal spectrum.
CCA phase retrieval enables relaxed electrical bandwidth
requirements compared to ECA phase retrieval; however, it
requires higher CSPR values, along with the insertion of a
guard-band around 0 Hz to mitigate the impact of chromatic
dispersion-induced power fading [21]. For these reasons, in
this work, we focus on ECA phase retrieval rather than on
CCA phase retrieval.

Both the EKK and ECA-GS algorithms face a challenging
trade-off between increasing the CSPR to obtain more accurate
initial phase estimates and decreasing the CSPR to reduce
the impact of nonlinear impairments caused by the carrier
component. Operating at a low CSPR is the preferred choice,
but it can lead to suboptimal solutions due to the poor
initialization of the phase retrieval algorithm, especially when
the intensity measurements are not sufficiently decorrelated
(i.e., at low ADVs). Consequently, at low CSPR, both EKK
and GSA require high ADVs, typically higher than 1000 ps/nm
to achieve the 7% hard-decision forward error correction (HD-
FEC) threshold with low sensitivity penalties [19]. In order to
achieve high ADVs, one approach is to realize the dispersive
element using several kilometers of optical fiber, but this
leads to bulky fiber modules that do not meet the small form
factor requirements. A more viable option is to realize the
dispersive element on an integrated chip; however, achieving
high dispersion over a wide bandwidth with low losses on-
chip presents a significant challenge [22]. For these reasons,
developing phase retrieval schemes that operate both at low
CSPR and at low ADVs is of great interest. In this context,

deep learning has recently emerged as a promising method to
perform the phase retrieval task in optical fiber communication
systems, showing promising results when operating at low
CSPR [21], [23], [24].

In this work, we propose a deep learning-based phase
retrieval scheme to recover the phase of a weak-carrier assisted
single side-band (SSB) signal from two intensity measurements
that are decorrelated by a dispersive element, expanding
preliminary results reported in [25]. We present a comparative
analysis between the proposed scheme, the EKK scheme, and
the ECA-GS scheme. We show that the NN-based scheme
successfully recovers 32-QAM waveforms at a CSPR of 0 dB
after 5-channel WDM transmission (24 GBaud channels) over
100 km of standard single-mode fiber (SSMF). Notably, these
results are achieved with a dispersion value that is 3.6 times
lower, a complexity reduced by 30% to 90%, and with less
than 2 dB OSNR penalty compared to conventional iterative
phase retrieval schemes.

The paper is organized as follows. Section II presents
the numerical transmission system developed to assess the
performance of edge-carrier-assisted phase retrieval. Section III
begins by reviewing the working principles of EKK and ECA-
GS schemes; it then introduces the proposed NN scheme,
including details about the NN model architecture as well as
the training and test procedures for the NN model. Section IV
reports and compares the performance of EKK, ECA-GS, and
NN-based phase retrieval. Finally, Section V evaluates and
compares the computational complexity of the considered phase
retrieval schemes.

II. SYSTEM DESCRIPTION

To evaluate the performance of edge-carrier-assisted phase
retrieval when using either EKK, ECA-GS or the proposed NN-
based scheme, we simulated the 5-channel WDM transmission
system shown in Fig. 1(a). For each of the five transmitters,
32-QAM Gray-coded symbols are generated from random bits
at a symbol rate of 24 GBaud, which are then upsampled and
shaped with a raised-cosine (RC) fundamental waveform with
a roll-off factor 0.05. The CW tone is added virtually at the
transmitter, exactly at the edge of the information-bearing signal
spectrum [27]. The resulting signal is sent to an ideal DAC
(i.e., without quantization and without bandwidth limitation)
where electrical to optical conversion is performed by an IQ
modulator biased at the null point. The IQ modulator is driven
by a laser source operating at 1550 nm with 1 MHz linewidth
and a relative intensity noise of −139 dBc/Hz, which are
typical values for low-cost distributed-feedback (DFB) laser
diodes [28]. The WDM channels are multiplexed with a channel
spacing of 40 GHz by a WDM-MUX that has the same
channel spectral response of the optical filter employed at
the receiver. The fiber link consists of 100 km of G.652 SSMF
(single span) with an attenuation coefficient of 0.2 dB/km,
a chromatic dispersion coefficient of 17 ps/nm/km, and a
nonlinear parameter of 1.3 W−1km−1. The output of the
fiber link is amplified by an erbium-doped fiber amplifier
(EDFA) with a noise figure of 5 dB operating in transparency
conditions. The optical filter at the receiver has 12 th-order
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Fig. 1. (a) Simulation setup for 5-channel WDM transmission over 100 km of SSMF. DSP chain for (a) A transmitter section, (b) The Enhanced Kramers
Kronig Receiver (EKK) [18], i.e., the KK receiver followed by nonlinear optimization [26], (d) The Edge-carrier-assisted Gerchberg–Saxton (ECA-GS)
algorithm [19], (e) The proposed neural network (NN) scheme. (f) Standard DSP block. The optical filter (OF) selects the central channel. tGT is the transmitted
ground-truth signal, i a (i b) is the photocurrent waveform without (with) applied dispersion at the receiver.

super-Gaussian shape with 3 dB bandwidth of 36 GHz [29],
and selects the central channel. The filtered signal enters into a
two-branch receiver that measure two intensity waveforms: i a,
without passing through a dispersive element, and i b, after
passing through a dispersive element. The PIN photodiodes
have 1 A/W responsivity and a bandwidth of 29 GHz; thermal
and shot noise due to photodetection are included in the
system. The analog-to-digital (ADC) converters have a vertical
resolution of 8 bits and their sampling frequency is set to 2B,
where B is the information-bearing signal bandwidth after RC
shaping. The output of the ADCs is fed to the phase retrieval
schemes shown in Fig. 1, namely, EKK [Fig. 1(c)], ECA-GS
[Fig. 1(b)], and NN [Fig. 1(e)]. For each phase retrieval scheme,
after full-field recovery, standard DSP is applied, consisting
in chromatic dispersion compensation of the fiber link with
frequency domain-based processing, downsampling to one
sample per symbol, and BER evaluation [Fig. 1(f)].

III. PHASE RETRIEVAL RECEIVER SCHEMES

In this section, we first briefly recall the EKK and the ECA-
GS schemes. Next, we describe the proposed NN-based phase
retrieval scheme.

A. Enhanced KK Receiver

In the EKK receiver proposed in Ref. [18], the photocurrent
waveform i a (with a weak carrier) is digitally upsampled by a
factor of RKK = 4 and is fed to the conventional KK receiver;
the upsampling operation allows to accommodate the spectral
broadening introduced by the nonlinear operations entailed
in the KK receiver DSP (i.e., square root, logarithm and
exponential functions) [11]. The upsampling/downsampling
operation and the Hilbert transform in the KK-DSP are
implemented using frequency domain processing. The output

Fig. 2. Iterative phase retrieval schemes that combine the use of a CW tone
(used for initialization) with the use of a dispersive element. (a) Nonlinear
optimization block entailed in the EKK receiver scheme [18]; zh denotes
the estimated symbols at step h. (b) ECA-GS algorithm [19]; D denotes the
dispersion applied at each iteration of the GS algorithm to transition between
projection P1 (on the undispersed plane) and projection P2 (on the dispersed
plane).

of the KK receiver is donwsampled at symbol period, and the
resulting symbols initialize the nonlinear optimization problem
defined by the loss function given by (3) in [18]. Next, the
generalized gradient expression derived in [26], is used in
the Polak-Ribière version of the conjugate gradient method,
which iteratively refines the initial guess provided by the KK
receiver. Figure 2(a) shows a schematic representation of the
steps involved in the nonlinear optimization block.
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Fig. 3. (a) Encoder-decoder temporal CNN for phase retrieval task. rNN
denotes the complex-valued signal predicted by the NN, D/U-block: down-
sampling/upsampling block, Conv 1D: 1D convolutional layer, TConv 1D: 1D
transposed convolutional layer, l is the D-block/U-block index, and d = 4
is the model depth. (b) Equivalent representation of the input/output relation
of the NN model using strided convolutions. The number of filters for each
convolutional layer is nf (see main text). The kernel size is 3 for all the
convolutional layers except for the long skip connections outside the D/U-
blocks where the kernel size is 1. The output convolutional layer has 2 filters,
i.e., Re[rNN] and Im[rNN].

B. Edge-Carrier-Assisted GS

In the ECA-GS algorithm proposed in Ref. [19], a SSB
filtering operation is applied to i a to obtain an estimate of
the sought phase, which is required for initializing the GS
algorithm. To accommodate the spectral broadening generated
by the square root operation entailed in GS processing,
the photocurrent waveforms i a and i b are upsampled by a
factor RECA-GS = 2. The convergence of the GS algorithm
is aided by a low-pass filter of bandwidth B applied during
each iteration, which removes the spectral components outside
the information-bearing signal bandwidth. Figure 2(b) shows
a schematic representation of the steps involved in the GS
algorithm.

C. NN-based Phase Retrieval

Inspired by the successful results achieved by neural net-
works (NNs) for phase retrieval tasks in coherent imaging
techniques and holographic image reconstruction [30], [31],
we propose a supervised learning NN model to recover the in-
phase (I) and quadrature components (Q) components of a weak-
carrier assisted SSB signal from the intensity measurements
i a and i b. Addressing the phase retrieval task with a NN is of
interest for the following reasons.

• After the training process, the NN does not require an
initial estimate of the I/Q components; this is in contrast
to EKK and ECA-GS methods, where the initial estimate
can be strongly compromised at low CSPR.

• The NN can operate at 2B, i.e., without the need to
upsample the photocurrent signals, as there is no spectral
broadening introduced by nonlinear operations, such as
the ones entailed in the KK or GS algorithms.

• During the training procedure the NN learns to extract
relevant features related to the employed modulation
format, which can enhance the robustness of the phase
retrieval task to impairments.

• After training, the NN can achieve phase retrieval in a
single forward-pass of its layers, which typically results in
shorter computation times compared to iterative algorithms.
Additionally, by carefully designing the NN architecture,
it is possible to reduce the computational complexity of
the NN below that of conventional iterative algorithms.

1) NN model: To realize low-complexity phase retrieval
with a NN, we rely on the encoder-decoder temporal con-
volutional neural network (CNN) [32] shown in Fig. 3(a),
which consists of stacked non-causal 1D convolutional layers
alternated with rectified linear unit (ReLU) activation functions.
The NN receives as input the two intensity waveforms i a
and i b and predicts the sought I/Q components; the intensity
waveforms i a and i b are fed to the NN as two channels of a
1D convolutional layer 1. The encoder-decoder structure allows
to increase the memory size of the NN model [33]; the encoder
path is implemented using strided convolutions, whereas
the decoder path is implemented using fractionally strided
convolutions (also known as transposed convolutions). In the
NN architecture, skip connections allow the features extracted
from the downsampling (D)-blocks to be concatenated with the
features extracted from the upsampling (U)-blocks [34]; this
approach has been observed to improve the I/Q reconstruction
performance. Figure 3(b) depicts an equivalent representation
of the NN model, which shows that multiple input samples
are used to predict a single output sample when strided
convolutions are used. The memory size of the NN model
needs to be properly selected to avoid introducing performance
penalties in the phase retrieval task, and can be tuned by
varying the number of stacked strided convolutional layers. We
define the model depth, d, as the number of times the input
signal is reduced in spatial dimensions (i.e., passes through a
1D strided convolutional layer) before being expanded back
in the decoder; this corresponds to the number of D-blocks in
the architecture. The model depth of the NN shown in Fig. 3
is d = 4, which yields a memory size M = 77 symbols,
computed as detailed in Ref. [23]. The chosen value of M ,
will allow the NN to handle the symbol mixing caused by all
the investigated ADVs at the receiver.

2) Training and Test procedure: To ensure that the NN
focuses solely on learning the phase retrieval task, we eliminate
any influence of propagation-related impairments during the
NN training process; to achieve this, we train the NN in back-
to-back (B2B) settings. Following the training, we evaluate
the phase retrieval performance of the neural network in both
B2B and in the presence of a fiber link. In the latter case, the

1In temporal CNNs, the measured waveforms are typically arranged into
different channels of a 1D convolutional layer, analogously to how the color
planes (such as RGB) of an image are arranged in a 2D convolutional layer
when dealing with image processing tasks [32].
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TABLE I
TRAINING SET PARAMETERS AND TEST SETS PARAMETERS.

Training set Test set B2B Test set WDM

Settings B2B1 B2B1 WDM2

CSPR [dB] −1 or −1 −3 to 3 step: 1
{−2,−1, 0, 1}

OSNR [dB] 26 26 12 to 37 step: 2

ADV [ps/nm] −17 to −1870

Number of signals 27, 200 50 50

Signal length
[symbols] 29 211 211

1 B2B: back-to-back transmission, i.e., as depicted in Fig. 1(a), but without the
fiber link.
2 WDM: 5-channel WDM transmission as depicted in Fig. 1(a).

chromatic dispersion of the fiber link is compensated at the
output of the NN with frequency domain processing, as for
EKK and ECA-GS. Note that this training configuration differs
from the typical one used for NN-based equalizers [35]–[37],
where the training data must be affected by the propagation-
related impairments of the channel being considered to learn
the channel equalization task.

To train the NN in B2B settings, we remove the fiber link
in the setup of Fig. 1, then we collect N pairs of signals
denoted by {ih,yh}Nh=1, where, i := [i a , i b] contains the
digitized intensity waveforms and y := [I,Q] contains the
corresponding ground truth I/Q components generated at the
transmitted side. During the training phase we seek for the
NN model parameters that minimize the normalized root mean
squared error (NRMSE) [38], between the I/Q components
predicted by the NN model (̂Ih/Q̂h) and the ground truth
I/Q components (Ih/Qh), over all the N signal pairs (h =
1 , . . . , N ). A different NN model is trained for each of the
considered ADVs. For ADVs in the range 17− 510 ps/nm the
number of filters in the convolutional layer, nf, is set to nf = 28;
for higher ADVs we noticed that a higher number of filters
was required to avoid performance penalty. Therefore, we
set nf = 64 and nf = 74 for ADVs 1360 ps/nm and 1870 ps/nm,
respectively.

For each ADV, the training set consists of N = 27, 200
signal pairs with length 29 symbols. We consider two training
sets that differ based on the CSPR values of the intensity
waveforms that they include. The first training set includes
intensity waveforms at a CSPR of −1 dB only, whereas the
second training set includes intensity waveform with CSPR
values in the set {−2,−1, 0, 1} dB. In the latter case, the
number of intensity waveform for each CSPR value is N/4 =
6800. For both training sets, the intensity waveforms have been
collected at an optical signal-to-noise ratio (OSNR) of 26 dB,
where the OSNR includes both the optical power of the signal
and the CW tone power and refers to a noise bandwidth of
0.1 nm [29]. We found that training the NN at an OSNR
of 26 dB, rather than at a higher OSNR, allows the amplified
spontaneous emission (ASE) noise in the data to act as a
regularizer, thereby enhancing the extrapolation capabilities
of the NN. Adam-based optimization with learning rate 10−3

tunes the NN model parameters for 300 epochs using a batch

size of 256. The trainings take ∼ 15 minutes on an NVIDIA
Quadro RTX 5000 GPU.

To test the NN, the test data are generated in WDM
transmission with a random number generator independent
from the one used for the training phase [36], [39]. Specifically,
the training set is generated using the PCG64 generator [40],
whereas the test set using the Mersenne Twister generator [41],
in both cases using different random seed for each generated
signal pair in the datasets. We transmit 50 sequences of 211

symbols for each estimated BER point, where the choice of
transmitting multiple 211-symbol long sequences rather than
a single long sequence is merely for numerical convenience.
Observe that the training set the sequence length is 29 symbols,
which has been selected to limit the computational requirements
during the training phase, whereas in the test set the sequence
length has been extended to 211; the proposed NN is fully-
convolutional (i.e., without dense layers), so the trained layers
can be applied in a sliding window manner to the longer
sequences in the test set without the need to re-train the NN
model. The NN is tested over the OSNR range from 12 dB
to 37 dB, and CSPR range from −3 dB to 3 dB. Notice
that most of the test set parameters are not included in the
training set data. This allows to evaluate the extrapolation
capabilities of the NN model for parameters outside the training
set. The training set parameters and the test set parameters are
summarized in Table I.

Although in this work we focus on single-polarization phase
retrieval, the EKK, ECA-GS, and NN schemes can in principle
also be extended to polarization multiplexed transmission to
compete with standard coherent detection. Yet, this extension
is not straightforward as the phase retrieval problem requires
additional constraints to reduce phase ambiguity. For example,
in a recent study [42], it was proposed to generate two CW tones
propagating alongside with the information-bearing signal: one
at the left edge and one at the right edge. This approach allows
to mitigate carrier fading induced by the random polarization
state rotation along the fiber link. Therefore, to extend the NN-
based phase retrieval to polarization multiplexed transmission,
it is necessary to determine a new training procedure and
suitable NN model parameters.

IV. RESULTS AND DISCUSSION

In this section, we compare the phase retrieval performance
of EKK, ECA-GS, and the proposed NN scheme. We first
evaluate the performance in B2B settings, then we present the
performance after 5-channel WDM transmission over 100 km
of SSMF.

A. B2B Performance

Figures 4(a)-(c) show the mean absolute phase error between
the transmitted and recovered signals, ⟨|∆θ|⟩ = ⟨| arg{tGT ·
r∗}|⟩, for different ADVs in B2B settings. The OSNR and
the CSPR of the test set are 26 dB and −1 dB, respectively,
which correspond to the parameters used to train the NN when
the training set includes intensity waveforms at the CSPR
value of −1 dB only. Note that for the EKK [Fig. 4(a)] and
the ECA-GSA [Fig. 4(b)], the x-axis represents the iteration
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Fig. 4. Mean absolute phase error, ⟨|∆θ|⟩, between the transmitted and recovered signals versus iteration number for (a) EKK scheme and (b) ECA-GS
scheme. (c) ⟨|∆θ|⟩ versus training epoch for the NN-based scheme. The curves are obtained in B2B settings at an OSNR of 26 dB and at a CSPR of −1 dB
and for the different ADVs in the legend.

number, whereas for the NN the x-axis represents the training
epoch number [Fig. 4(c)]. Both the EKK and the ECA-GS
schemes achieve better performance as the ADV increases;
this can be explained by the fact that interfering more symbols
together reduces the chances for the iterative phase retrieval
algorithms getting trapped in suboptimal solutions. Compared
to ECA-GS, the EKK scheme has a slower convergence rate
and saturates to higher ⟨|∆θ|⟩ values as the ADV increases.
This can be attributed to the different phase initializations
(KK output for EKK versus SSB filtering for ECA-GS) and
to the adverse impact of noise on the nonlinear optimization
algorithm entailed in EKK. Remarkably, the proposed NN-
based scheme [Fig. 4(c)] enables accurate phase retrieval at
low ADVs, for which the EKK and ECA-GS methods cannot
converge to satisfactory ⟨|∆θ|⟩ values. Indeed, for the ADV
in the range 17-374 ps/nm, the NN achieves a ⟨|∆θ|⟩ floor
that is significantly lower than the other schemes. For the high
ADVs 1360 ps/nm and 1870 ps/nm, the ECA-GS and the NN
achieve similar performance, which are limited only by the
noise floor.

As a sanity check, in Fig. 4(c) we plot the performance
of the NN model when employing single-photodiode direct
detection (which corresponds to 0 ps/nm of applied dispersion);
it can be seen that the proposed scheme fails to converge to
satisfactory ⟨|∆θ|⟩ values due to the ill-posed nature of the
phase retrieval problem, i.e., for an ADV of 0 ps/nm and at
the low CSPR of −1 dB there exist many complex signals
carrying the same intensity waveform [11].

The relaxed ADVs requirements of the NN-phase retrieval
can also be seen in Fig. 5, where we plot the constellation
diagrams for selected ADVs. The NN successfully reconstructs
the constellation for ADV as low as 34 ps/nm (for each
constellation diagram, we report the NRMSE on the top left
corner). Observe that, for ADV 1360 ps/nm, the NN achieves a
higher NRMSE value compared to ECA-GS; this is explained
by the higher number of filters in the NN model (from nf = 28
for ADVs up to 510 ps/nm, to nf = 64 for 1360 ps/nm), which
leads to an higher number of parameters, and, therefore, to a
more complex NN model training.

Fig. 5. Constellation diagrams reconstructed by EKK (first row), ECA-GS
(second row) and NN (third row) at different ADVs shown at the top of each
column. The diagrams are obtained in B2B settings at an OSNR of 26 dB and
at a CSPR of −1 dB. The phase retrieval scheme varies across rows, whereas
the ADV varies across columns. The NRMSE, which was used as the loss
function of the NN model, is displayed on the top left corner of each diagram.

B. Transmission Performance

The performance after 5-channel WDM transmission over
100 km are shown in Figs. 6 and 7. When introducing the
chromatic dispersion of the fiber link, the NN (trained in B2B
settings) recovers the full-field up to an constant amplitude
scaling and constant phase offset, which are dependent only
on the total chromatic dispersion introduced by the fiber
link and can be easily compensated for [23], [43]. The
number of iterations for the EKK and the ECA-GS is set
to KECA-GS = 20 and KEKK = 40, respectively, which were
found to be the optimal values for all the considered OSNRs and
ADVs in our simulations. The reason for the higher number
of iterations needed for EKK compared to ECA-GS is the
slower convergence rate of the nonlinear optimization algorithm
entailed in EKK. Figures 6(a)-(d) show the BER performance
as a function of CSPR at a fixed OSNR of 25.3 dB. As the
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Fig. 6. BER versus CSPR for the ADVs in the legend after 5-channel WDM transmission over 100 km of SSMF for a 24 GBaud 32-QAM modulated signal
(central channel performance). (a) EKK performance, (b) ECA-GS performance, (c) NN performance for the NN model trained at a CSPR of −1 dB, and (d)
NN performance for the NN model trained at CSPRs in the set {−2,−1, 0, 1} dB. The test set CSPR corresponds to the x-axis in the figures, namely −3 dB
to 3 dB. The OSNR is set to 25.3 dB. The horizontal black dashed line shows the 7% HD-FEC threshold.

CSPR increases, both the EKK scheme [Fig. 6(a)] and the
ECA-GS scheme [Fig. 6(b)] tend to require lower ADVs to
achieve a target BER; this is because the initial phase estimate
is closer to the true phase for higher CSPRs. It can be seen
that the ECA-GS scheme outperforms the EKK scheme since
it requires lower CSPRs to achieve the 7% HD-FEC threshold.
For high ADVs, namely, 1360 ps/nm and 1870 ps/nm, the BER
initially decreases with increasing CSPR until an optimal value
is reached, after which it starts increasing again; this trend is
observed for both the EKK and the ECA-GS schemes. This
optimal CSPR value exists because increasing the CSPR while
keeping the OSNR fixed reduces the power of the information-
bearing signal, leading to a higher impact of carrier-to-ASE
noise beating.

Figures 6(c) and (d) show the BER versus CSPR performance
for the NN trained at a single CSPR of −1 dB and at multiple
CSPR values in the set {−2,−1, 0, 1} dB, respectively. It
is evident that, by including intensity waveform at different
CSPRs in the training set, the NN generally offers better
performance over the test set CSPR range of −3 dB to 3 dB.
However, an interesting observation arises when the test set
CSPR is 0 dB, which corresponds to the minimum CSPR at
which optimum BER performance is achieved for most of the
considered ADVs. In this case, training the NN across multiple
CSPRs [Fig. 6(d)] does not provide significant performance
improvement compared to training it at CSPR of −1 dB only
[Fig. 6(c)]. Consequently, one might choose to sacrifice the
ability to operate over a broader CSPR range to simplify the
training set generation procedure, including intensity wave-
forms at a CSPR of −1 dB only. Notably, in Figs. 6(c) and (d),
at low ADVs, the NN requires lower CSPRs to achieve
the 7% HD-FEC threshold compared to the EKK and the ECA-
GS schemes. For instance, at a CSPR of 0 dB, the NN achieves
the 7% HD-FEC for an ADV of 255 ps/nm, while the EKK
and ECA-GSA schemes require an ADV of ∼ 1360 ps/nm to
achieve the same threshold. For CSPR values higher than 1 dB,
the BER performance of EKK and ECA-GS benefits from the
improved initial phase estimate, whereas the NN performance
depends on the training configuration. When the NN is trained
at CSPR of −1 dB only, it offers worse BER performance
than the other phase retrieval schemes due to the limited

extrapolation capabilities at CSPR lower than −1 dB and
higher than 1 dB. Instead, remarkably, when the NN is trained
over multiple CSPRs, it outperforms both EKK and ECA-GS
across the entire test set CSPR range and for all the considered
ADV values.

Figure 7(a)-(d) shows the BER vs OSNR curves for different
ADVs at a CSPR of 0 dB; clearly, the NN outperforms both
EKK and ECA-GS, achieving a target BER value with a
significantly lower ADV. It can also be observed that all the
BER curves exhibit an optimum OSNR operation point at which
the minimum BER is achieved. Specifically, at low OSNR
value, ASE noise limits the BER performance, whereas at high
OSNR values, nonlinear impairments dominate the performance
degradation due to the higher signal power (i.e., CW tone plus
information signal powers). The NN outperforms both ECA-GS
and EKK for all the considered ADVs, except for 1870 ps/nm,
where ECA-GS and the NN achieves similar performance.
For ADVs higher than 1870 ps/nm (not shown in the figure),
all the schemes offer negligible sensitivity improvements at
the 7% HD-FEC threshold. Notice that, at a CSPR of 0 dB,
for ADVs in the range 17− 510 ps/nm, the NN trained at a
CSPR of −1 dB offers similar BER versus OSNR performance
to the NN trained over multiple CSPR values. Therefore, in
the following investigation, we consider the simpler training
set configuration with a single CSPR value.

To determine the effect of the NN model memory size
on performance, in Fig. 8 we show the results for varying
model depth, d, in the set {2, 3, 4, 5}; these values corre-
sponds to memory sizes of {17, 37, 77, 157} symbols. The
ADV is 347 ps/nm. It can be seen that the BER performance
improves as the model depth increases from 2 to 4. However,
there is no advantage in increasing the model depth to 5, as
the BER performance does not improve.

V. COMPUTATIONAL COMPLEXITY

In this section, we determine the computational complexity,
C, of the considered phase retrieval schemes defined as the
number of required real multiplications per recovered output
sample. We also investigate the trade-off between performance
and complexity for the proposed NN-based phase retrieval
scheme.
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Fig. 7. BER versus OSNR for the ADVs in the legend after 5-channel WDM transmission over 100 km of SSMF for a 24 GBaud 32-QAM modulated signal
(central channel performance). (a) EKK performance, (b) ECA-GS performance, (c) NN performance for the NN model trained at a CSPR of −1 dB, and (d)
NN performance for the NN model trained at CSPRs in the set {−2,−1, 0, 1} dB. The test set CSPR is set to 0 dB. The black dashed line shows the analytic
expression for the BER of a 32-QAM modulated system impaired by AWGN, whereas the horizontal black dashed line shows the 7% HD-FEC threshold.

Fig. 8. BER versus OSNR performance at varying NN model memory sizes.
The NN model memory is varied by tuning the NN model depth, d, in the
set {2, 3, 4, 5}, which corresponds to the memory sizes {17, 37, 77, 157}
symbols. The ADV is 374 ps/nm and the CSPR is 0 dB. The BER curves
are obtained after 5-channel WDM transmission over 100 km of SSMF for
a 24 GBaud 32-QAM modulated signal (central channel performance). The
black dashed line shows the analytic expression for the BER of a 32-QAM
modulated system impaired by AWGN, whereas the horizontal black dashed
line shows the 7% HD-FEC threshold.

A. Complexity of the EKK scheme

The complexity of the EKK receiver can be written as
CEKK = CKK + CNL, where CKK and CNL denotes the
complexity of the KK receiver and the complexity of the non-
linear optimization algorithm, respectively. For the complexity
expression of the KK receiver we rely on the low-complexity
time-domain implementation of the KK-DSP analyzed in
Ref. [44]. The time-domain implementation of the KK receiver
can achieve performance close to the frequency domain-based
implementation provided that the number of taps of the
employed FIR filters is sufficiently high [45]. The number of
real multiplications per sample required by the KK algorithm
is

CKK = (3Ns + 2 +Nh/2)RKK , (1)

where Ns is the number of taps of the upsam-
pling/downsampling filter and Nh is the number of taps of the
Hilbert transform filter; we set Ns = Nh = 128 [45], and the
upsampling factor to RKK = 4.

The primary contribution to the complexity of the nonlinear
optimization algorithm comes from the gradient evaluations
within the iterations of the nonlinear conjugate gradient method.
Specifically, for each iteration of the conjugate gradient method,
two gradient evaluations are made; the first gradient evalua-
tion determines the steepest descent direction, whereas the
second gradient evaluation is performed after the Polak-Ribière
estimate of the conjugate direction. Each gradient evaluation
involves two convolution operations: one between the estimated
symbols and the fundamental RC pulse waveform, and the other
between the estimated symbols with the same waveform but
including the extra dispersion introduced by the dispersive
element. Therefore, the number of real multiplications per
sample required by the nonlinear optimization algorithm can
be approximated as

CNL = 4 ·KEKK · 2 · (2 ·NRC) , (2)

where the factor 4 converts from complex multiplications to
real multiplications, NRC denotes the number of taps of the RC
fundamental waveform, which is set to NRC = 127, and the
number of iterations is KEKK = 40. The value of NRC needs to
be chosen based on the roll-off factor of the RC shaping filter
to achieve satisfactory pass-band and stop-band performance,
as described in [46].

B. Complexity of the ECA-GS scheme

To determine the complexity of the ECA-GS scheme,
CECA-GS, we refer to implementation described in Ref. [47],
which uses overlap-save processing with a 50% save ratio to
enable block-wise phase retrieval with a block-size of 1024.
The GS iterations are the most computationally intensive part of
the ECA-GS scheme, and, therefore, we neglect the complexity
associated with SSB filtering, upsampling and downsampling
to determine the complexity expression. Each GS iteration
involves three FFT/IFFT pairs, and the application of two
intensity constraints, so that the number of real multiplications
per sample reads:

CECA-GS = 4RECA-GSKECA-GS

[
3 (N log2 N +N)

N −Novlp + 1
+ 2

]
,

(3)
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where the factor 4 is used to convert from complex multiplica-
tions to real multiplications, RECA-GS = 2, i.e., the photocurrent
signals are upsampled by a factor of 2 as described in
Section III-B, the number of iterations is set to KECA-GS = 20,
N = 1024 is the FFT size, and the term N −Novlp + 1, with
Novlp = N/2, denotes the number of output samples produced
by each iteration of the overlap-save algorithm.

C. Complexity of the NN scheme

Consistently with previous works in the literature, e.g.,
Ref. [48], we evaluate the complexity of the NN scheme by
considering only the prediction phase and not accounting for
the training phase. The complexity evaluation involves two
steps. First, we evaluate the complexity of each D-block and
U-block that are shown at the bottom of Fig. 3(a). Then, we
sum the contribution of each D-block and U-block to obtain the
total complexity. The complexity of the D-blocks reads [23],
[49]

Cl
D = 3

(
n2

f k/s
l
)
, l = 1 , . . . , d (4)

where the factor 3 accounts for the number of convolutional
layers inside a D-block, nf denotes the number of filters in each
convolutional layer, k = 3 is the kernel size, s = 2 is the stride
of the convolutional layers, l is the D-block index [see Fig. 3(a)
for the values assumed by l across the NN model], and d is
the total number of D-blocks in the NN model or, equivalently,
the model depth (see Section III-C1). Equation (4) does not
account for the complexity of ReLU activations, which have a
negligible contribution compared to the convolutional layers,
and holds for all the D-blocks, except for the one at the input,
which has a lower complexity since the input channels are two,
i.e., ia and i b, instead of nf. Analogously, the complexity of
the U-blocks is

Cl
U = 2

(
n2

f k/s
l
)
+
(
n2

f k/s
l−1

)
(5)

= (2 + s)
(
n2

f k/s
l
)
, l = 1 , . . . , d ,

where, the first term accounts for the complexity of the
transposed convolutional layers, whereas the second term
accounts for the complexity of the convolutional layer applied
after upsampling. The total complexity for a NN model
prediction, CNN, can be obtained by summing (4) and (5).

It is worth mentioning that the number of filters in each
convolutional layer, nf, has the greatest impact on the NN
complexity; therefore, it is important to properly tune the
parameter nf in order to achieve the target performance with
the lowest possible complexity.

D. Complexity Comparison

Figure 9 compares the complexity of the phase retrieval
schemes considered in this work. As stated, the NN complexity
strongly depends on the ADV, whereas that of EKK and ECA-
GS is much less dependent on ADV (see Fig. 4). For fairness,
the three approaches are compared when providing similar
performances in terms of BER. Therefore, we consider EKK
and ECA-GS with ADV of 1360 ps/nm, and the NN with
ADV of just 374 ps/nm. The NN complexity is varied by
varying the number of filters in the convolutional layers, nf,

Fig. 9. Trade-off between performance and complexity for the NN-based
phase retrieval scheme. The NN complexity is varied by varying, nf, i.e.,
the number of filters in the convolutional layers. The NN operates with an
ADV of 374 ps/nm, whereas both the ECA-KK scheme and the EKK scheme
operate with an ADV of 1360 ps/nm. CNN/CECA-GS and CNN/CEKK denote
the relative complexity between the NN scheme and the ECA-GS scheme and
between the NN scheme and the EKK scheme, respectively. The BER curves
are obtained in 5-channel WDM transmission (central channel performance)
with a CSPR of 0 dB. The black dashed line shows the analytic expression
for the BER of a 32-QAM modulated system impaired by AWGN, whereas
the horizontal black dashed line shows the 7% HD-FEC threshold.

in the set {22, 24, 28, 32}. For the EKK and ECA-GS we
considered 40 and 20 iterations, respectively, as suggested by
Fig. 4. The results in Fig. 9 show that the performance of the
different schemes are comparable. Nevertheless, the complexity
of the NN is substantially smaller than that of the EKK (see
table CNN/CEKK in Fig. 9), and smaller to comparable with
that of ECA-GS (see table CNN/CECA-GS). It can be also be
seen that the NN with ADV 374 ps/nm can achieve similar
sensitivity performance (at the 7% HD-FEC threshold) to that of
EKK and ECA-GS with ADV 1360 ps/nm, i.e., with 3.6 times
lower ADV. Additionally, the NN reduces the computational
complexity by up to 30% compared to ECA-GS and up to 90%
compared to EKK, while incurring in less than 2 dB OSNR
penalty.

VI. CONCLUSION

We investigated the performance of deep learning in re-
covering the complex-valued field of a weak-carrier-assisted
SSB signal from two intensity measurements that are decor-
related by a dispersive element. We presented a comparative
analysis between the proposed NN-based scheme and two
iterative schemes: a nonlinear-optimization-based phase re-
trieval scheme, and a Gerchberg-Saxton-based phase retrieval
scheme. These two iterative schemes require an initial phase
estimate to enable convergence, which can be strongly corrupted
at low CSPR; for this reason, they require ADVs higher
than 1000 ps/nm to achieve the 7% HD-FEC threshold
at low CSPR. In contrast, the NN-based scheme proposed
here does not require an initial phase estimate; instead, it
relies on a supervised training process to find the optimal
map between the intensity waveforms and the ground-truth
I/Q components. Through numerical simulations in relevant
transmission settings, we show that the NN offers a remarkable
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improvement in performance at low ADVs, which can be
attributed to the training procedure being carried out on a
specific class of signals, i.e., 32-QAM RC shaped waveforms.
We considered two training set configurations for the NN
model. One with intensity waveforms at CSPR −1 dB only,
and the other with intensity waveforms at multiple CSPRs
in the set {−2,−1, 0, 1} dB. In the multi-CSPR training
configuration, the NN outperforms conventional iterative phase
retrieval schemes over a broader CSPR range compared to
the single-CSPR training configuration. The proposed scheme
complies with the 7% HD-FEC threshold after 5-channel WDM
transmission over 100 km of SSMF (per-channel symbol rate
of 24 GBaud) with a CSPR of 0 dB, while requiring 3.6 times
lower ADV, 30% to 90% lower complexity, and incurring in
less than 2 dB OSNR penalty compared to the iterative phase
retrieval schemes. We believe that this work paves the way
to design dispersive elements-based phase retrieval schemes
with both low hardware complexity and low computational
complexity.
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