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Abstract— We demonstrate a 38.4-Tbps (60 ch. × 640 Gbps) 

wavelength-division multiplexing (WDM) transmission across 5 × 

80-km G.654.E single-mode fibers over 6 THz within L- and 

U-bands. The U-band (1625–1675 nm) is promising as a next 

transmission band for multiband networks because of its low 

transmission loss compared with E- and O-bands, but there are 

few demonstrations of coherent WDM transmission with the 

U-band. One reason is that promising optical components, 

especially for optical transceivers, are underdeveloped for the 

U-band. An optical parametric amplifier (OPA) using a 

periodically poled LiNbO3 (PPLN) waveguide has wide-gain 

bandwidth and wavelength conversion function, which allows the 

use of commercially available optical components for new bands. 

We achieve L- and U-band digital coherent WDM transmission 

within 1597.2–1649.9 nm (181.7–187.7 THz) using PPLN-based 

optical parametric inline amplification and wavelength-band 

conversion. 

 
Index Terms— Optical fiber communication, Wavelength division 

multiplexing, Optical parametric amplification, Optical 

wavelength conversion. 

 

I. INTRODUCTION 

ULTIBAND wavelength-division multiplexing 

(WDM) technologies can drastically increase the 

throughput of optical fiber networks, and the 

combined use of C- and L-bands (total: ~11 THz) supported by 

erbium-doped fiber amplifiers (EDFAs) has been well studied 

[1–3]. In recent years, the use of the S-band with a bandwidth 

of up to ~9 THz (1460–1530 nm) has also been actively 

investigated with a Raman amplifier [4–6], a thulium-doped 

fiber amplifier (TDFA) [7], and a semiconductor amplifier [8]. 

Using these triple S-, C-, and L-bands, a >100-Tbps fiber 

throughput was demonstrated [5–8]. As the next transmission 

band, the use of the E-band (1360–1460 nm), which has a 
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shorter wavelength than the S-band, has been investigated with 

a bismuth-doped fiber amplifier (BDFA) and a Raman 

amplifier [9,10]. However, full utilization of the E-band 

requires low-water-peak fibers as transmission lines, hindering 

fiber compatibility. The BDFA can also support the O-band 

(1260–1360 nm), which is an even shorter wavelength band 

than E-band [9,11]. The O-band is located around the 

zero-dispersion wavelength of standard single-mode fiber 

(SMF) and has been considered for use in short-haul 

transmission systems. However, strong signal distortions 

caused by fiber nonlinearity in the O-band due to small 

chromatic dispersion will present a significant challenge when 

using it for long-haul dense-WDM transmission. The U-band, 

which has a longer wavelength than the L-band, is another 

promising transmission band. It spans over ~5.5 THz (1625–

1675 nm) and has a low transmission loss regardless of fiber 

type. In addition, the U-band signal can obtain optical power 

from shorter-wavelength-band signals via inter-band stimulated 

Raman scattering (ISRS), and thus, the actual transmission loss 

of the U-band signal in multiband WDM transmission can be 

reduced well beyond that of the E- and O-bands [12,13]. 

Because there is a lack of effective rare-earth-doped fiber 

amplifiers for the U-band, Raman amplification is the next 

candidate to achieve the U-band transmission. Recently, with 

forward- and backward-pumped distributed Raman 

amplification, a 285-km single-span transmission of an 

18.4-Gbps BPSK signal up to 1651 nm was reported [14]. 

Moreover, a real-time 80-km transmission of a 200-Gbps 

dual-polarization (DP) QPSK signal allocated in the U-band up 

to 1650 nm was demonstrated with an ISRS gain from a 

co-propagated C+L-band WDM signal [13]. Meanwhile, there 

have been few demonstrations of transmission using U-band 

WDM signal, except for a few reports in the early 2000s. One 

is a 3 × 40-km transmission of a 200-nm wideband WDM signal 
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including a few U-band 10-Gbps non-return-to-zero (NRZ) 

channels up to 1661 nm with distributed Raman amplification 

[14]. A 3 × 75-km WDM transmission of 42.7-Gbps NRZ 

signals up to 1640 nm was also reported [16]. However, digital 

coherent dense-WDM transmission using the U-band with a 

spectral-efficient modulation format has not been demonstrated 

due to a lack of practical optical components supporting the 

U-band. Wavelength-selective switches (WSSs) partly 

supporting longer wavelengths beyond the L-band have become 

commercially available, but most optical components, 

especially for transceivers, are not practical for such a longer 

band in terms of laser linewidth [17] and photodiode sensitivity 

[18]. 

The optical parametric amplifier (OPA) has attracted 

attention for constructing wideband WDM systems because of 

its wide-gain bandwidth [19–21]. In addition, as with the 

Raman amplifier, the gain band can be shifted to various 

telecommunication bands by designing a phase matching for 

media and pump-frequency allocation [22–24]. There are two 

types of OPAs; one utilizes χ(3)-nonlinear media (e.g., highly 

nonlinear fiber) [20,21], and the other utilizes χ(2)-nonlinear 

media. Over-10-THz high-gain bandwidth and wideband 

inline-amplified transmissions using OPAs with periodically 

poled LiNbO3 (PPLN) waveguides as a χ(2)-nonlinear medium 

have been demonstrated [25,26]. Another feature of the OPA is 

a wavelength conversion (spectral inversion) function utilizing 

the idler light generated simultaneously with the signal 

amplification. Inter-band wavelength conversion by OPAs 

enables conventional optical components to be used for 

additional bands as well, and its applications to multiband 

transceivers and optical cross-connects have been investigated 

[27–30]. Therefore, U-band transmission is made possible with 

commercially available transceivers and other components by 

using inter-band wavelength conversion, and the demonstration 

of Ref. [13] was performed using wavelength conversion with 

highly nonlinear fibers. 

This paper describes our recent demonstration of L- and 

U-band inline-amplified transmission of a 60-channel 

100-GHz-spaced WDM signal using a PPLN-based OPA [31]. 

PPLN-based OPAs, which have the advantage of low 

inter-channel cross-talk caused by unwanted nonlinear effects 

between WDM channels with the features of χ(2)-nonlinear 

media, can perform wideband simultaneous wavelength 

conversion while the signal is amplified with a high gain and 

high output power. The modulation format is 96-Gbaud 

probabilistically constellation-shaped (PCS) 36QAM with a net 

data rate of 640 Gbps/ch. A 6-THz dense-WDM signal within 

1597.2–1649.9 nm (181.7–187.7 THz) is inline-amplified by 

PPLN-based OPAs and transmitted over 5 × 80-km G.654.E 

SMFs. The PPLN-based OPAs used as inline amplifiers have a 

190.6-THz center frequency (1572.9 nm) for the gain band and 

can perform simultaneous wavelength conversion from L- and 

U-bands to S- and C-bands (or vice versa) while amplifying the 

WDM signal. Thus, we could perform gain equalization, WDM 

signal generation, and coherent reception without U-band 

optical components. Moreover, by conducting wavelength 

conversion using OPAs with a 194.0-THz center frequency 

(1545.3 nm) on the receiver side, all signals are received in 

either the practical C-band or L-band. In addition, we report the 

signal amplification characteristics of the OPA and the 

transmission characteristics of the U-band signals in detail. In 

Section II, we describe the configuration of our PPLN-based 

OPA and its amplification characteristics. In Section III, the 

L- and U-band inline-amplified transmission experiment is 

described. Section III-A describes the experimental setup, 

which uses a recirculating loop, Section III-B describes an 

optical power design considering the gain saturation effect of 

the OPA and fiber nonlinearities, and Section III-C shows the 

results of the inline-amplified transmission. Finally, Section IV 

concludes this paper.  

II. CHARACTERISTICS OF PPLN-BASED OPA 

This section describes the amplification characteristics of the 

PPLN-based OPA used as an inline amplifier in this work. 

Figure 1 shows the configuration of the PPLN-based OPA. 

Optical nonlinear effects are sensitive to polarization, so a 

polarization-diverse configuration is used in which two 

waveguides are sandwiched by a polarization-beam splitter 

 
Fig. 1. Configuration of PPLN-based optical parametric amplifier. f0 is 
degenerate frequency of PPLN waveguides. 

 

 
Fig. 2. Gain and NF spectra of our PPLN-based OPA with degenerate 

frequency of 190.6 THz (1572.89 nm) across S-, C-, L-, and U-bands. 
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(PBS) and a polarization-beam combiner (PBC) [19,32]. The 

χ(2)-based optical parametric amplification process requires 

second harmonic (SH) pump light at twice the center frequency 

of the phase-matching band (gain band) of the waveguide. To 

obtain a watt-level SH pump, continuous wave (CW) light at 

the center frequency of the phase-matching band (degenerate 

frequency), f0, with a <30-kHz linewidth is used as the pump 

light source, is amplified by the EDFA, and then, converted to 

SH pump at 2f0 by second-harmonic generation (SHG) with a 

PPLN waveguide [33]. The PPLN waveguide and the dichroic 

filters for (de-) combining the signal and SH pump were 

integrated into a module for high-efficient optical parametric 

amplification [34].  

The gain spectrum of the OPA depends on the 

phase-matching condition between signal, idler, and SH pump 

components [35]. In the PPLN waveguide used as a 

χ(2)-medium, the phase-mismatch amount depends on the 

effective refractive index of the fundamental mode in the 

waveguide and the poling period [36]. The refractive index 

spectrum of the material depends on the temperature [37], and 

so does the phase-mismatch amount. Therefore, the gain 

spectrum of the PPLN waveguide depends on the waveguide 

temperature. To demonstrate inline U-band amplification using 

the PPLN-based OPA, we used PPLN waveguides fabricated 

for L-band applications with a degenerate frequency of 

190.6 THz (1572.9 nm) [30]. By detuning the temperature of 

this PPLN waveguide from the optimal temperature for L-band 

use, the gain bandwidth was extended to the U-band.  

Figure 2 shows the gain and noise figure (NF) spectra of the 

polarization-diverse PPLN-based OPA for the inline optical 

amplifier. The power of the SH pump input to each PPLN was 

~2.0 W. We input CW light to the polarization-diverse OPA 

and measured its input and output spectra with an optical 

spectrum analyzer (OSA). The gain and NF were calculated by 

comparing these spectra [38]. The gain was calculated as the 

ratio of the peak powers of the CW-light input and output 

spectra measured at a resolution of 0.1 nm. The NF was 

calculated from the power density of the noise floor generated 

around the CW light in the output spectrum and the gain and 

was expressed as  

ASE1 P
F

G G h  
= +

  
,  (1) 

where G is the gain, PASE is the noise floor obtained by the OSA, 

h is the Plank constant, ν is the center frequency of the CW 

light, and Δν is the resolution of the OSA [38]. Without 

temperature detuning, the phase-matching condition was 

optimal around the degenerate frequency, and a flat-top gain 

spectrum covering the C- and L-bands was obtained. 

Meanwhile, with temperature detuning, the gain around the 

degenerate frequency significantly decreased, while the gain in 

the low and high-frequency bands increased. The maximum 

gain was obtained at ~184.15 THz (~1628 nm), indicating that 

the phase-mismatch amount was near zero around this 

frequency. That is, the optimum phase-matching frequency was 

shifted by ~6.45 THz with temperature detuning. As a result, a 

>15-dB-gain bandwidth over 6 THz within the L- and U-bands 

(181.7–187.7 THz, 1597.2–1649.9 nm) was achieved. In 

addition, an OPA can inter-convert between bands allocated at 

symmetrical frequencies with respect to f0. Therefore, a 

PPLN-based OPA with an f0 of 190.6 THz could inter-convert 

between L- and U-band signals within 181.7–187.7 THz and 

S- and C-band signals within 193.5–199.5 THz 

(1502.7–1549.3 nm) (as shown in Fig. 3(c)) simultaneously 

with amplification. The conversion efficiency almost 

corresponds with the amplification gain in the high gain region 

[19]. The NF was ~5 dB, which is comparable to a C-band 

EDFA. By utilizing the wavelength-band conversion function, 

we configured the recirculating transmission link to 

demonstrate the inline-amplified U-band WDM transmission 

without optical components supporting the U-band, which will 

be described in detail in the next section. 

III. 6-THZ WDM TRANSMISSION OVER L- AND U-BANDS 

THROUGH 5 × 80-KM G.654.E SMF 

This section describes 6-THz WDM transmission over the 

L-and U-bands using optical parametric inline amplification and 

wavelength-band conversion. The optical transmission power 

design, which considers OPA nonlinearity and fiber nonlinearity, 

is also explained. 

A. Experimental Setup 

Figure 3(a) shows the experimental setup for 

inline-amplified transmission of a 100-GHz-spaced 60-channel 

WDM signal using the L- and U-bands. We modulated only one 

channel at a time (channel under test (CUT)) and emulated the 

other WDM channels using amplified spontaneous emission 

(ASE). In this setup, the WDM signal transited over various 

bands by using wavelength conversion with multiple OPAs. 

The S- and C-band WDM signal was generated on the 

transmitter side and converted to the L- and U-band WDM 

signal using the OPA described in Section II in the recirculating 

loop. Figures 3(b)–(d) show spectral transition diagrams for the 

transmitter side, the recirculating loop, and the receiver side. In 

addition, the frequency/wavelength/band allocation is also 

listed in detail in Table 1. The bands in Table 1 are subdivided 

to clarify the spectral transitions at each point in the setup. In 

the following, we describe this setup in detail for the transmitter 

side, the recirculating loop, and the receiver side. 

On the transmitter side, the CUT was generated as a 

96-Gbaud Nyquist-pulse-shaped DP-PCS-36QAM optical 

signal with a roll-off factor of 0.03 using an I/Q modulator and 

polarization-division-multiplexing emulator (PDME) with a 

15-m delay line between orthogonal polarization components. 

The entropy of the DP-PCS-36QAM signal was 8.87 bits per 

4D symbol. The CUT was amplified by an EDFA or a TDFA 

depending on its frequency. Ch. 1–34 at 193.5–196.9 THz (CTx) 

were amplified by a C-band EDFA, and ch. 35–60 at 

196.9–199.5 THz (STx) were amplified by a TDFA. The 

channels were numbered in order of lower frequency (longer 

wavelength) in the S- and C-bands. A 100-GHz-spaced 

60-channel WDM signal was emulated by ASE from EDFAs 

and WSS. Figure 3(b) illustrates the spectral transition on the 
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transmitter side in our setup. To generate an L- and U-band 

WDM signal with spectral inversion using the OPA with an f0 

of 190.6 THz in the recirculating loop (as shown in Fig. 3(c)), 

we generated a broad ASE over 193.5–199.5 THz in the S- and 

C-bands on the transmitter side. The C-band WDM signal was 

generated by shaping the ASE output of the C-band EDFA to 

193.5–196.0 THz (CASE) with the WSS. To obtain a high-power 

S-band ASE, the ASE from an L-band EDFA was amplified and 

converted to the S-band using a PPLN-based OPA whose f0 was 

194.0 THz (1545.3 nm) [25]. This OPA converted the L-band 

ASE shaped at 188.5–192.0 THz (LASE) with the WSS to the 

S-band ASE within 196.0–199.5 THz (SASE) as shown in Fig. 

3(b). The C-band ASE, S-band ASE, and CUT were combined 

by using a WSS and input to a recirculating loop. As it will be 

discussed in the next subsection, gain saturation occurs in the 

OPA as the pump depletes in the high-output power region. To 

efficiently input the optical power to the transmission line with 

the output power limited by gain saturation, it is effective to 

pre-equalize the input light of the OPA with the inverse profile 

of the gain spectrum; this is possible because the gain spectrum 

of the OPA is independent of the spectrum and power of the 

input light (in the unsaturated region). Therefore, in the WSS, 

the WDM signal was pre-equalized with an inverse profile of 

the gain spectrum of the 1st OPA in the recirculating loop.  

The recirculating loop consisted of an 80-km G.654.E SMF, 

two PPLN-based OPAs, a loop-synchronous polarization 

scrambler (LSPS), an optical equalizer (OEQ), an optical 

switch (SW), and a variable optical attenuator (VOA). In the 

loop, the WDM signal was transmitted while repeating 

 
Fig. 3. Experimental setup for 6-THz inline-amplified WDM transmission using L- and U-bands. (a) Detailed schematic illustration. ECL: external cavity laser, 

IQM: I/Q modulator, PDME: polarization-division-multiplexing emulator, BPF: band-pass filter, VOA: variable optical attenuator, WSS: wavelength-selective 
switch, SW: optical switch, LSPS: loop-synchronous polarization scrambler, and OEQ: optical equalizer. (b)–(d) Spectral transition on transmitter (Tx) side, 

recirculating loop, and receiver (Rx) side. 
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Fig. 5. Optical spectra at each point. 
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TABLE I 

FREQUENCY/WAVELENGTH/BAND ALLOCATION OF CUT AND ASE-BASED 

WDM SIGNAL 

 f [THz] λ [nm] Band 

Tx side 

Ch. 1–34 193.5–196.9 1522.6–1549.3 CTx 

Ch. 35–60 196.9–199.5 1502.7–1522.6 STx 

C-band ASE 193.5–196.0 1529.6–1549.3 CASE 
L-band ASE 188.5–192.0 1561.4–1590.4 LASE 

S-band ASE 196.0–199.5 1502.7–1529.6 SASE 

(LASE
*) 

Recirculating loop 

In G.654.E SMF  181.7–187.7 1597.2–1649.9 Ltr+Utr 

(CASE
*+SASE

*) 

In OEQ 193.5–199.5 1502.7–1549.3 CASE+SASE 

Rx side 

Ch. 1–27 193.5–196.2 1528.0–1549.3 CRx 

Ch. 28–60 196.2–199.5 1502.7–1528.0 SRx 

Ch. 28–60 * 188.5–191.8 1563.0–1590.4 LRx  
(SRx

*) 

* denotes spectral inversion. 
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wavelength-band conversion simultaneously with inline 

amplification by the OPA with an f0 of 190.6 THz as shown in 

Fig. 3(c). First, the WDM signal at 193.5–199.5 THz was 

amplified and converted to 181.7–187.7 THz (Ltr + Utr) in the 

L- and U-bands by using the 1st OPA with the f0 of 190.6 THz 

(1572.9 nm). Although the output of the 1st OPA had a signal 

component (193.5–199.5 THz) and idler component 

(181.7–187.7 THz), the idler component was extracted by using 

an L- and U-band-pass filter. Then, the L- and U-band WDM 

signal was propagated with an 80-km transmission line 

consisting of 30-km and 50-km G.654.E fibers wound on 

bobbins with a 20-cm diameter. The ordering of channels after 

the wavelength-band conversion to the L- and U-bands were 

inverted with respect to the original ordering in S- and C-bands 

because the WDM signal was spectrally inverted as shown in 

Fig. 3(c). Figure 4 shows the transmission loss of the 80-km 

G.654.E fiber. The loss was ~14.5 dB up to 188.5 THz in the 

low-loss band following the C-band and increased with longer 

wavelengths thereafter. At 181.7 THz (~1650 nm) as the lowest 

frequency (longest wavelength) of the WDM signal, it was 

~16.8 dB. This large transmission loss of the U-band may be 

greatly reduced by ISRS in multiband transmission where 

C-band signals are co-transmitted [13]. The transmitted WDM 

signal was amplified and re-converted to the S- and C-bands by 

the 2nd OPA. Then, gain equalization was performed by an OEQ 

that supports C- and S-bands. The OEQ shaped the spectrum of 

the WDM signal to the same spectrum as the input to the 

recirculating loop. The gain spectra of the 1st and 2nd OPAs were 

almost the same, and the dual-gain-block structure [26] with 

those two OPAs compensated for the link loss. Figure 5 shows 

the optical spectra at each point in the recirculating loop. As we 

can see, the 1st OPA input spectrum in the S- and C-bands was 

curved with the inverse profile of the gain spectrum of the OPA 

due to the pre-equalization on the transmitter side, and thus, the 

fiber input spectrum in the L- and U-bands was flattened. 

Moreover, we confirmed that the PPLN-based OPAs provide 

sufficient gain for inline amplification of the WDM signal. 

Excessive link gain was suppressed by the VOA. 

On the receiver side, the CUT in the S- or C-bands was 

pre-amplified by different amplification stages depending on its 

frequency. Ch. 1–27 at 193.5–196.2 THz (CRx) were amplified 

with 2-stage C-band EDFAs. Ch. 28–60 at 196.2–199.5 THz 

(SRx) were converted to 188.5–191.8 THz (LRx) with an OPA 

whose f0 was 194.0 THz, and then, amplified with the L-band 

EDFA (as shown in Fig. 3(d)). This was the reverse process of 

that used to generate the S-band ASE on the transmitter side. 

The amplified CUT was extracted by band-pass filters (BPFs) 

and received by a coherent receiver. Thus, all of the CUTs were 

received in the conventional transmission bands (C- or 

L-bands) thanks to wavelength conversion. The received signal 

was demodulated with offline digital signal processing on the 

basis of an 8 × 2 adaptive equalizer (AEQ) [39], and a 

normalized generalized mutual information (NGMI) was 

calculated. The AEQ was updated by a decision-directed least 

mean square (LMS) algorithm and pilot-aided LMS algorithm 

using pilot symbols periodically inserted into the signal. We 

 
Fig. 6. Experimental setup for evaluating effect of gain saturation. 
 

 
Fig. 7. OPA performance for input power. (a) Gain saturation. (b) Signal 
quality at ch. 20 (center frequency of 195.45 THz). 

 

 
Fig. 8. Dependence of NGMI of DP-PCS-36QAM signal on fiber-launched 
power after 5 × 80-km inline-amplified transmission at ch. 40 and 60 (center 

frequencies of 183.75 and 181.75 THz). 
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assumed concatenated code for a low-density parity-check code 

and a BCH code with a code rate of 0.826. The net data rate of 

the signal was 640 Gbps/ch. with a NGMI threshold of 0.857 

also assuming 1.64% pilot insertion [25].  

B. Optical Power Design 

One of the challenges of the OPA is the gain saturation due 

to pump depletion, which causes nonlinear signal distortion 

[40]. Therefore, we evaluated the input power characteristics of 

our PPLN-based OPA before transmission experiments. Figure 

6 shows the experimental setup for evaluating the effect of the 

gain saturation on the signal quality. The transmitter side was 

the same as the setup shown in Fig. 3(a), and the WDM signal 

was pre-equalized as shown in Fig. 5. The CUT was ch. 20 at a 

center frequency of 195.45 THz in the S- and C-band WDM 

signal. The S- and C-bands WDM signal was input to the 

PPLN-based OPA with varying power using the VOA. After 

the amplification, the CUT at 195.45 THz was extracted by the 

BPF, amplified by the EDFA, and received by the coherent 

receiver. To evaluate only the effect of the gain saturation, the 

input power to the EDFA on the receiver side was set to 

−25 dBm regardless of the OPA input power. Figure 7(a) shows 

the gain dependence on the input power of the S- and C-band 

WDM signal. The gain did not depend on the input power in the 

low-power region, but it decreased nonlinearly as the input 

power increased in the high-power region due to pump 

depletion. Due to the fast time response of the OPA, this gain 

nonlinearity occurs symbol-by-symbol. Therefore, higher 

power symbols (the outer symbols on a constellation diagram) 

are subject to greater gain reduction, resulting in nonlinear 

amplitude distortion in the signal [40]. Figure 7(b) shows the 

dependence of the signal-to-noise ratio (SNR) and NGMI on 

the input power to the OPA. At >4 dBm, a slight degradation in 

signal quality was observed. Therefore, the dependence of 

signal quality on fiber-launched power in multi-span 

transmission using inline OPAs is affected not only by fiber 

nonlinearities but also by the nonlinearity of the OPAs.  

Next, we evaluated the fiber-launched power dependence 

with the setup shown in Fig. 3(a). We determined the 

fiber-launched power that gave the best NGMI performance for 

the spectral shapes of the WDM signal shown in Fig. 5. The 

CUTs were set to ch. 40 and 60 at center frequencies of 183.75 

and 181.75 THz, respectively. The fiber-launched power was 

controlled by the VOA at the input of the recirculating loop. 

Therefore, the dependence included not only the fiber 

nonlinearity but also the OPA nonlinearity. Figure 8 shows the 

measurement results after a 5 × 80-km transmission. The 

difference in NGMIs between ch. 40 and 60 was due to the 

pre-equalization. In this setup, the 1st OPA functioned as a 

booster amplifier in the 1st lap and as a post-amplifier in the 

subsequent laps. Therefore, it was necessary to attenuate the 

input power to the 1st OPA to the recirculating loop input power 

at each lap. Thus, the shape of the pre-equalization was the 

dominant factor for determining the optical SNR (OSNR) in 

each channel. Ch. 60, which had less attenuation in 

pre-equalization, had a better signal quality than ch. 40. 

Meanwhile, the optimal fiber-launched power was 3.2 dBm/ch. 

for both channels. The total WDM power was 21 dBm, and the 

input power to the 1st OPA was ~1 dBm, at which the signal 

distortion caused by the OPA was negligible according to the 

pre-measurement shown in Fig. 7. Therefore, the measured 

NGMIs simply depended on the OSNR and fiber nonlinearity.  

C. Transmission Results 

Figure 9 shows the transmission distance dependence of the 

signal quality up to 640 km (8 × 80 km). With a back-to-back 

configuration (0 km), ch. 1 (187.65 THz) and 60 (181.75 THz), 

at which the attenuation in the pre-equalization was small were 

 
Fig. 9. (a) SNR and (b) NGMI as function of transmission distance.  

 

 
Fig. 10. NGMI of all 60 channels before and after 400-km (5 × 80-km) 

inline-amplified transmission.  

 

0.75

0.80

0.85

0.90

0.95

1.00

0 100 200 300 400 500 600 700

9

11

13

15

17

0 100 200 300 400 500 600 700

Ch.   1 (187.65 THz) Ch. 20 (185.75 THz)

Ch. 40 (183.75 THz) Ch. 60 (181.75 THz)

NGMI threshold

Transmission distance [km]

N
G

M
I

(b)
Transmission distance [km]

S
N

R
 [

d
B

]
(a)

0.80

0.84

0.88

0.92

0.96

1.00

181 182 183 184 185 186 187 188

After 5×80-km transmission

Back to back

Frequency [THz]

N
G

M
I

NGMI threshold

Channel number
60 50 140 30 20 10

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2023.3323197

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



7 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

better than ch. 20 (185.75 THz) and 40 (183.75 THz). Ch. 20 

and 40 had the same quality due to almost the same attenuation 

amount in the pre-equalization. As the transmission distance 

increased, the quality of ch. 60 degraded more rapidly than 

ch.  1. The same trend was observed between ch. 20 and 40. 

This is due to the larger transmission loss in the U-band. The 

quality of all measured channels was better than the NGMI 

threshold up to 400 km (5 × 80 km). 

Figure 10 shows the NGMI of all channels after a 5 × 80-km 

transmission. As we can see, the back-to-back characteristic 

depended on the profile of the pre-equalization. The NGMI 

spectrum after the transmission was also characterized along 

the attenuation spectrum of the pre-equalization. Since the 

number of transmission spans was small, the attenuation in 

pre-equalization was the dominant factor for determining the 

OSNR rather than the loss of the transmission fiber. Meanwhile, 

all 60 channels were better than the NGMI threshold of 0.857, 

and 38.4-Tbps (60 ch. × 640 Gbps) transmission was 

successfully demonstrated. 

In this experiment, we equalized the WDM spectrum input to 

the OPA with the inverse profile of its gain spectrum to fully 

utilize the unsaturated output power of the OPA. However, to 

optimize the transmission quality, it may be necessary to 

optimize the shape of the pre-equalization as well as the total 

launched power, taking into account the balance between 

OSNR degradation due to the pre-equalization and the OPA 

nonlinearity. 

IV. CONCLUSION 

We demonstrated 400-km (5 × 80 km) WDM transmission 

over 6 THz within L- and U-bands with 60-channel 96-Gbaud 

DP-PCS-36QAM signals using PPLN-based optical parametric 

amplification and wavelength-band conversion. Our 

PPLN-based OPAs provided an over-15-dB gain within 

181.7–187.7 THz (1597.2–1649.9 nm). A dual-gain-block 

structure using two OPAs enabled inline-amplified 

transmission over an 80-km-span G.654.E SMF link.  

We measured the gain saturation characteristic of our OPA 

and evaluated the dependence of the amplified signal quality on 

the input power to our OPA. We also evaluated the 

fiber-launched power dependence of the transmitted signal 

quality, including the nonlinearity of the OPA. Under the 

experimental condition, there was little effect of OPA 

nonlinearity, and the best fiber-launched power was determined 

to be 3.2 dBm/ch. (total power of 21 dBm) due to the effect of 

fiber nonlinearity. We also evaluated signal quality as a 

function of transmission distance, and it was found that U-band 

channels were degraded more rapidly than L-band channels as 

the number of spans increased due to the transmission loss 

spectrum. This excessive degradation in the U-band channels 

may be suppressed by ISRS in wider bandwidth transmission.  

As a result of the inline-amplified transmission, a total net 

data rate of 38.4 Tbps (60 ch. × 640 Gbps) was achieved after 

400-km transmission. Utilizing the wavelength-band 

conversion function of the OPA, we achieved U-band 

transmission without optical components supporting the 

U-band such as transceivers and a WSS. These results indicate 

the potential for multiband optical networks including the 

U-band with an OPA. 
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