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Abstract—We investigate in this article the use of nonlinear digi-
tal pre-distorters (DPDs) for improving the performance of optical
transmitters (TX) employing vertical-cavity surface-emitting lasers
(VCSELs), according to the standard transmitter and dispersion
eye closure quaternary (TDECQ) compliance test for short-reach
intra data center interconnects (DCI) using PAM4 over multi-mode
fibers (MMF). We present a convolutional neural network (CNN)
approach for nonlinear DPD optimization, suitable for training the
pre-distorters using either a direct learning architecture (DLA) or
an end-to-end (E2E) learning system. Then, we focus on a novel
E2E architecture based on the reference TDECQ specifications for
MMF optical links at net 100 Gbps per wavelength (λ). We exper-
imentally implement the proposed methodology over a VCSEL-
MMF setup compliant to the TDECQ test requirements. We eval-
uate the TDECQ performance of an optical TX employing a com-
mercial 850 nm VCSEL at 107.2 Gbps driven at several nonlinear
conditions, comparing nonlinear DPDs optimized using both DLA
and TDECQ-based E2E approaches. Experimental results show
that nonlinear DPD significantly enhances TDECQ performance,
enabling compliance with the IEEE P802.3dbTM requirements for
net 100 Gbps/λ even in scenarios in which, without nonlinear DPD,
the TDECQ test would fail due to VCSEL nonlinear distortions. In
particular, nonlinear DPDs trained using the TDECQ-based E2E
approach exhibit a consistent 0.8 dB gain in terms of TDECQ with
respect to using the DLA.

Index Terms—TDECQ, VCSEL, Nonlinear Digital Pre-
Distortion, End-to-end Learning, Multi-Mode Fibers, intra-Data
Center Interconnects.

I. INTRODUCTION

IN RECENT years, the use of internet-related services and
the corresponding volume of data traffic has experienced

exponential growth. This trend is set to persist in the coming
years, with the consolidation of 5G, cloud services, Internet
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of Things (IoT), and the impending arrival of 6G along with
the widespread use of Virtual/Augmented Reality (VR/AR)
and Machine-to-Machine applications. Consequently, modern
data centers, playing a vital role as the backbone of Internet
connectivity, are compelled to continually upgrade their infras-
tructure: specifically, intra-data center interconnects (intra-DCI)
are requested to increase their capacity at reasonable upgrade
costs. Currently, intra-DCI optical links predominantly utilize
Intensity Modulation and Direct Detection (IM-DD) solutions.
In 2023, more than 30% of the optical intra-DCI connectivity
from 40G to 400G still exploits multi-mode fibers (MMF) rather
than single-mode fibers (SMF) [1]. The MMF deployment is
the preferred cost-effective solution for optical links up to about
one hundred meters, and is typically coupled with the utiliza-
tion of Vertical Cavity Surface Emitting Lasers (VCSELs) as
optical sources. VCSELs are well known for their low-cost chip
manufacturing and exceptional power efficiency [2], [3]. Cur-
rently, most of intra-DCI implementations rely on VCSELs [4],
and their market is projected to further grow in the coming
years [5]. Therefore, by exploiting VCSEL-MMF solutions,
next-generation of intra-DCI up to 100 m is expected to pro-
vide net 100 Gb/s/λ rate using quaternary Pulse Amplitude
Modulation (PAM4) format. In line with this objective, MMF
transceiver modules are required to fulfill strict specifications
both at receiver (RX) and transmitter (TX) side, in order to
ensure standardized vendor interoperability [6]. Specifically for
the optical TX, among the several proposed metrics, the TDECQ
(Transmitter and Dispersion Eye Closure Quaternary) has esta-
bilished itself in recent years as one of the main standard tests for
assessing the quality of the TX signal [7], [8]. However, meeting
the TDECQ requirements set by each standard, for instance
IEEE P802.3dbTM for MMF optical links [6], proves to be a
significant challenge at such high data rates using commercial
devices. The limited bandwidth of electro-optical components
and the non-linear distortions caused by VCSELs significantly
degrade the quality of the TX signal. As a consequence, several
digital signal processing (DSP) solutions have been proposed for
PAM4 signal equalization to mitigate for these impairments [9].

In this article, we investigate the use of nonlinear digital
pre-distortion (DPD) to improve the TDECQ performance of
VCSEL-based optical transmitters. We propose and illustrate
an optimized methodology based on convolutional neural net-
works (CNN) for nonlinear DPD, specifically tailored to the
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Fig. 1. TDECQ conformance test block diagram, as specified in [6]. O/E: optical-to-electrical.

considered TX system. Our methodology is suitable for both
the direct learning architecture (DLA) and the end-to-end (E2E)
learning paradigms. Furthermore, we introduce a novel E2E
learning architecture, implementing a communication system
based on the standard TDECQ test for MMF optical links, which
focuses the nonlinear DPD optimization to specifically improve
this metric. We experimentally demonstrate the proposed DPD
optimization on an optical TX setup compliant to the IEEE
requirements for the standard measurement of the TDECQ at
net 100 Gbps/λ [6]. We evaluate nonlinear DPDs trained using
both DLA and the TDECQ-based E2E approaches, providing,
to the best of our knowledge, the first direct comparison between
these two optimization over an experimental VCSEL-MMF link.
We show that our CNN-based nonlinear DPD optimization is
able to remarkably improve the quality of the optical TX signal
across a wide range of VCSEL driving conditions. Specifically,
the optimized nonlinear DPDs, either based on CNN or Volterra
series, experimentally prove to meet the IEEE TDECQ require-
ments [6] even in scenarios where no DPD or even linear DPD
would fail. Moreover, we show that the proposed TDECQ-based
E2E learning optimization is able to improve the TDECQ perfor-
mance by more than 0.8 dB with respect to the DLA approach,
proving the capability of the E2E learning to adapt to improve
such system-oriented optical TX quality metric.

The article is structured as follows: Section II provides an
overview of the TDECQ metric, while Section III explores the
context and motivation behind the deployment of nonlinear DPD
in VCSEL-MMF optical IM-DD links. Detailed explanation of
the proposed DPD optimization methodology is presented in
Section IV. In Section V, we showcase the experimental imple-
mentation of the nonlinear DPD optimization and deployment,
presenting and discussing the results achieved using different
pre-distorters. Finally, Section VI concludes the article with final
comments on the carried work.

II. OVERVIEW OF THE TDECQ PARAMETER

The TDECQ (Transmitter and Dispersion Eye Closure Qua-
ternary) is a compliance test for PAM4 optical transmitters,
which was standardized within the IEEE 802.3bs-2017 [10]
Ethernet standard as a replacement for previously used eye-mask
and transmitter dispersion penalty (TDP) measures [7]. The
TDECQ extends the TDEC metric already deployed for binary
NRZ modulations to the PAM4 modulation format, by natively
taking into account the presence of a linear adaptive equalizer at
the RX side. In particular, the TDECQ evaluates the vertical eye
closure of a PAM4-modulated signal when this is propagated

through a reference optical communication link, whose block
diagram (specified in [6]) is depicted in Fig. 1. The TDECQ
test requires first the transmission of a PAM4 pattern by the
optical TX under test, which is then propagated through a back-
to-back (B2B) setup and acquired from an oscilloscope after
optical-to-electrical (O/E) conversion. The B2B configuration,
implemented by connecting the TX and the RX an using a
short MMF patch cord (up to 2 meters), allows to attribute the
signal distortions exclusively to the optical TX. Then, TDECQ
measurement consists of the digital emulation of the filtering
effects of a worst-case scenario (WCS) fiber channel, cascaded
to the response of a reference RX and a reference adaptive feed-
forward equalizer (FFE). In particular, the TDECQ measures,
for a target SER, the largest white gaussian noise (WGN) that
can be added to the signal at the RX input [10], compared to the
maximum tolerable noise when using an ideal distortion-less
optical link [8]. The TDECQ can be defined as follows [8]:

TDECQ = 10 log10

(
Ceq

σideal

σeq

)
(1)

In (1), σideal represents the RX noise root mean square (RMS)
value in the ideal scenario (i.e. the WGN standard deviation),
and is defined as follows:

σideal =
OMAouter

6Qt
(2)

where OMAouter is the signal’s outer Optical Modulation Am-
plitude (OMA), and Qt represents the Q factor for a target SER.
The term σeq refers instead to the RMS value of the maximum
tolerable noise at the FFE output. Finally, Ceq quantifies the
enhancement induced by the cascade of the RX filter and the
FFE on the noise injected at the RX input, whose RMS value is
given by σG = σeq/Ceq

1 Calculating the σG value for a specific
SER is unfeasible through a closed-form solution. Hence, in
the TDECQ measurement process, the tap coefficients of the
optimal equalizers are iteratively adjusted by maximizing the
σG value until the output worst-case SER matches the target
value [10]. The SER is measured semi-analytically (i.e. com-
puting error probabilities from histogram windows) over two
different sampling instants on the signal eye diagram, spaced by
0.1 in terms of symbol unit interval (UI): the worst-case SER
is the highest among the two obtained. As an example, Fig. 2
illustrates the TDECQ measurement on the eye-diagram of a
107.2 Gbps PAM4 signal acquired on the setup we used in our

1As done in [8], we omit for simplicity the termσS , which in the TDECQ def-
inition [10] should be added to σG in a root-sum-of-square sense for accounting
the actual noise in the RX test equipment. [8].
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Fig. 2. Experimental TDECQ test on a nonlinearly pre-distorted PAM4 signal
at 107.2 Gbps. The eye diagram is obtained after FFE equalization. Vertical
blue dotted lines localize the UI, while horizontal blue dotted lines measure the
OMA. The SER for the TDECQ test is measured over the two 0.1 UI spaced
windows (at 0.459 UI and 0.559 UI, respectively).

experiments (refer to Section V-A). By evaluating the TX signal
quality through a comprehensive worst-case emulation of the
conditions in which the optical TX will be deployed, the TDECQ
test thus provides a performance evaluation from a system-wide
perspective. However, its iterative measurement procedure does
not allows for a closed-form analytical optimization. Neverthe-
less, in this article we show that we can specifically improve the
optical TX signal with respect to the TDECQ, by implementing
nonlinear DPD optimized with a learning architecture modeling
the relevant features of this metric.

III. NONLINEAR DIGITAL PRE-DISTORTION FOR IMPROVING

VCSEL-MMF OPTICAL TRANSMITTERS

The TDECQ has become a key optical TX performance
indicator for net 100 Gbps optical MMF links up to 100 me-
ters, with standard Ethernet requirements specifically set in the
Short-Range (SR) window of 850 nm [6]. However, it is quite
challenging to achieve such high data rate over SR-MMF optical
links using commercial hardware. In the first place, the limited
bandwidth of the opto-electronic devices severely affect the TX
signal. As an example, Fig. 3(a) shows the eye diagram obtained
from an experimental VCSEL-based TX setup (VCSEL bias
current set to 8 mA), transmitting in back-to-back (B2B) a
PAM4 signal at 107.2 Gbps: the PAM4 eye is fully closed in
this scenario. The compensation for such a huge bandwidth
limitations at the RX side, using post-equalization, would induce
a strong enhancement of the RX noise [8]: this strongly penalizes
the signal-to-noise ratio, thus the bit error ratio (BER), and
ultimately the TDECQ performance. To circumvent this issue,
it is preferable to implement pre-compensation, also known
as “pre-emphasis”, at the transmitter (TX) side. This can be
implemented by utilizing a linear Digital Pre-Distorter (DPD),
i.e. a linear equalizer applied through DSP at the TX side.

A linear DPD is able to overcome bandwidth limitations,
significantly improving the performance of band-limited opti-
cal transmitters. However, it cannot compensate for nonlinear
effects caused by the use of a commercial VCSEL: Fig. 3(b)
shows the eye-diagram obtained in the same aforementioned
setup, using a linearly pre-distorted 107.2 Gbps PAM4 signal.
As it can be observed, nonlinear eye-skews (see red-dashed
line in Fig. 3(b)) affect the PAM4 signals when the laser is

directly modulated at such high speed with a bias current within
the typical range for VCSELs (6–8 mA [4]). The resulting
asymmetry in the eye diagram significantly hampers symbol
decision, leading to a degradation in TDECQ performance.
Fig. 3(c) illustrates how the presence of eye skew during the
TDECQ test causes the lower PAM4 eye to appear nearly closed
within the left histogram window, resulting in a severe penalty
on the measurement of worst-case SER. As a consequence,
nonlinear pre-compensation of the VCSEL distortions becomes
crucial in order to improve the optical TX and its relative
TDECQ performance. To this purpose, a nonlinear Digital pre-
distorter can be a suitable DSP solution to jointly compensate
for bandwidth limitations and nonlinear effects. In particular,
nonlinear DPD working at 1 sample-per-symbol ratio provides
significant complexity advantages with respect to nonlinear RX
post-equalization, as it can be efficiently implemented at the TX
side. The pre-distorted TX symbols can be indeed pre-stored at
a factory level within the transmitter (e.g., using Look-Up-Table
based structures) [11], without the need of an actual real-time
deployment of the equalizer implementing the nonlinear DPD.
However, the effective optimization of a nonlinear pre-distorter
poses significant challenges compared to linear DPD. The latter
can be indeed easily achieved by deploying a post-equalizer in
place of the pre-distorter: this procedure is also known as “indi-
rect learning” approach (ILA) [12], [13]. However, the ILA relies
on the commutation law, which is mathematically appliable
only for linear systems [14]. Recent studies have emphasized
the effectiveness of Direct Learning Architectures (DLA) and
end-to-end (E2E) learning systems in optimizing nonlinear DPD
for optical transmission systems [13], [15], [16], [17]. The DLA
is an approach specifically designed for optimizing nonlinear
DPD, which has consistently shown to outperform the ILA in
both wireless and optical communications [12], [13], [17], [18].
E2E learning on the other hand is an approach which envisions
the joint co-optimization of various digital signal processing
(DSP) components at the transmitter and receiver, not only for
nonlinear DPD but also for other modules in VCSEL-based
optical interconnects [19]. In the upcoming Section, we will
provide a detailed comparison of these two methodologies: we
will highlight that E2E learning not only shares the fundamental
principles of DLA for optimizing nonlinear DPDs, but also
expands the optimization scope to encompass a system-wide
perspective.

IV. NONLINEAR DPD OPTIMIZATION METHODOLOGY

In this Section, we illustrate our novel proposed nonlinear
DPD optimization algorithm, which implements a TDECQ-
based E2E learning approach using a 1D Convolutional Neural
Network (CNN) architecture. Our method is based on emulating
the target VCSEL-MMF IM-DD optical TX system using a dif-
ferentiable digital signal processing (DSP) chain, built through
a set of experimental measurements (as described later) and
implemented as a CNN by interpreting the linear and nonlinear
DSP blocks as CNN layers. For the reader who might not be
familiar with the relation between nonlinear digital filters and
convolution neural network layers, Appendix A illustrates in
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Fig. 3. Experimental RX eye-diagram of a 107.2 Gbps PAM4 signal transmitted over a back-to-back VCSEL-MMF optical IM-DD link: (a) without DPD applied;
(b) with linear DPD applied; (c) with linear DPD and RX equalizer applied for TDECQ measurement. VCSEL input bias current is set to 8 mA.

Fig. 4. CNN-based DPD optimization main steps: (a) Forward propagation of the signals; (b) backward propagation of the loss gradients.

detail this strict analogy. We compare the new architecture with
an updated version of the DLA we proposed in [16]. Moreover,
we illustrate the features of the CNN approach adopted in this
work and in [16] compared to the methodology used in our
previous works [15], [20], [21]. In the following, we simplify
the representation of coefficients (such as weights, bias terms,
etc.) that determine the parametric behavior of each illustrated
CNN layer (or nonlinear filter) by employing a vectorial no-
tation. To provide an example, we can consider a nonlinear
filter, denoted as F , which given the input signal x[n] gener-
ates the output y[n] = (a · x[n− 1] + b · x[n− 2] · x[n− 1]) ·
c · x[n]2: we employ the vector θF = [a, b, c] to refer to the
F ’s coefficients. This notation allows for a more concise and
compact representation of the coefficients.

A. CNN-Based Nonlinear DPD Optimization

The proposed nonlinear DPD optimization methodology
leverages a baseline scheme shared by both DLA [13] and
E2E [22] learning approaches, which is suitable for training
any kind of DPD architecture implementable as a differentiable
nonlinear filter. The scheme involves emulating the optical trans-
mission of the pre-distorted signals by exploiting an artificial
neural network (ANN), built as the cascade of two consecutive
layers: one is the nonlinear DPD to be optimized, while the
second is a differentiable surrogate model of the system where
the pre-distorter will be employed.

The ANN is designed and trained as an autoencoder [23]: a
learning architecture specifically designed to reconstruct at its

output the same signal as provided at its input [24]. This opti-
mization approach enables the encoder (in our case, the DPD), to
effectively mitigate the distortions introduced within the ANN
architecture(i.e. by the surrogate system model). Therefore, the
nonlinear DPD is optimized by means of a stochastic gradient
descent (SGD) algorithm.

When implementing the autoencoder DPD optimization us-
ing the convolutional neural network (CNN) approach that we
propose, the training process follows an iterative procedure.
This involves transmitting at each iteration a pre-distorted signal
through the target communication system, and then to update
the DPD parameters according to a given metric in order to
improve the TX output. Each iteration involves two main steps,
as illustrated in Fig. 4.

In the first step, known as forward propagation, the TX signal,
defined as the vectora, gets propagated through the CNN autoen-
coder architecture: first it get pre-distorted by the nonlinear DPD,
having coefficients θDPD , by means of a discrete nonlinear
convolution. The pre-distorted signal, defined by the vector
x = θDPD ∗̂a, is then transmitted over the system model, hav-
ing parameters θSystem. The resulting output signal, defined
by the vector â = θSystem, ∗̂,x, is subsequently compared to
the input signal a. This comparison is carried out using a loss
function, which can be for instance the mean square error (MSE)
between the two signal vectors.

In the second step, known as backward propagation, the
gradients with respect to the previously calculated loss, denoted
as L, are computed in order to perform the SGD update of
the CNN coefficients. The computation is done recursively, by
exploiting the chain rule of calculus [24]. Fig. 4(b) illustrates the
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Fig. 5. System model architectures for nonlinear DPD optimization: (a) system model for the direct learning architecture; (b) end-to-end learning system model
based on TDECQ specifications [6]. Red-dashed lines indicate a sps ratio D greater than 1 when discrete signals are propagated through the system, starting from
the digital twin. FIR filters with a sps ratio K < D are implemented accordingly using dilated Conv1d() layers with dilation factor d = D/K.

back-propagation process: this involves computing and accumu-
lating by means of multiplication the input-to-output gradients
of all the autoencoder layers from the loss to the CNN input
parameters. As a result, the DPD can be updated through SGD
by exploiting the loss gradient with respect to its coefficients
∇θDPD

L, computed as follows:

∇θDPD
L =

(
∂x

∂θDPD

)�
·
(
∂â

∂x

)�
· ∇âL (3)

where ∂â
∂x and ∂x

∂θDPD
are the system’s output-w.r.t.-input and

DPD’s output-w.r.t.-parameters Jacobian matrices, respectively.
The gradient loss with respect to the system model parameters
∇SystemL instead is computed as follows:

∇θSystem
L =

(
∂â

∂θSystem

)�
· ∇âL+∇θSystem

R · dL
dR

(4)
where ∂â

∂θSystem
is the system’s output-w.r.t.-parameters Jaco-

bian matrix, dL
dR is the (scalar) derivative of L with respect to

the regularization term in the loss function (see Fig. 4) and
∇θSystem

R is the regularization term gradient with respect to
the system parameters. In Equation (4), the ∇θSystem

R · dLdR
term is computed in case the loss function regularization term
is depending on the system model coefficients (as for the E2E
loss depicted in Section IV-C).

Once the gradient computation has been completed, the iter-
ation concludes with a SGD update of the DPD coefficients, as
follows:

θDPD ← θDPD − ε · ∇θDPD
L (5)

where ε is the learning rate (or step size). While in the case
of a DLA approach only the DPD coefficients are updated,
keeping fixed the other parameters of the autoencoder, in the E2E
learning approach also some of the system model coefficients
are subject to the SGD update, i.e. those relative to the decoder
(which in our case is a linear RX equalizer, as explained below).

B. DLA and TDECQ-Based E2E Optimization Architectures

Despite the common baseline optimization scheme, the DLA
and the E2E learning approach differ significantly in the way
the system model is conceived.

In the direct learning architecture (DLA), the system model
mainly consists of a digital twin of the optical transmitter, whose

impairments have to be compensated by the DPD [13]. In Sec-
tion V-B, we illustrate the procedure for retrieving a CNN digital
twin (DT) of an experimental VCSEL-based TX from optical
back-to-back (B2B) setup. Additionally, in order to account for
the limitations of the transmitter’s hardware [23], it becomes
necessary to incorporate an initial layer into the DLA system
model, which enforces constraints on the pre-distorted digital
signal. In our specific scenario, we thus introduce a maximum
peak-to-peak (P2P) amplitude constraint at the output of the
DPD, considering both the limited dynamic range of the Digital-
to-Analog Converter (DAC) and the restricted input dynamic
range of the VCSEL [15]. Fig. 5(a) presents the block scheme
of the adopted DLA system model architecture in this article.
It comprises two main components: a digital twin of an optical
B2B setup (which includes the optical TX where to apply DPD)
and a peak-to-peak (P2P) normalization layer. For simplicity,
the introduction of a resample layer at the model’s input is not
depicted, although it has be incorporated in case of sampling
rate discrepancy between the DPD and the DAC (embedded
in the digital twin) [15]. The digital twin is implemented as
a convolutional neural network (see Section V-B for details),
with coefficients defined by the vector θDT . The P2P constraint
instead is implemented by theP2Pnorm() layer function, defined
as follows:

P2Pnorm(x) =
x−min(x)

max(x)−min(x)

(
xmax
new − xmin

new

)
+ xmin

new

(6)
where xmin

new and xmax
new , represented in Fig. 5 by the vector

θP2P = [xmin
new , x

max
new ], define the desired maximum and min-

imum value of the pre-distorted vector signal vector x at the
input of the digital twin. During the DPD optimization, the DLA
parameters θSystem = [θP2P ,θDT ] are not updated: the DPD
is thus trained to to encode the TX signal in order to mitigate the
DT impairments, yet fulfilling the P2P constraints. While the
DLA focused solely on optimizing the transmitter impairments,
the End-to-end (E2E) learning architecture takes a more com-
prehensive approach, by implementing an autoencoder which
encompasses the entire chain of transmitter, channel, and re-
ceiver [22]. Specifically, the E2E learning approach consists of
the joint training of a TX encoder (in our case, the DPD) together
with a RX decoder (in our case, the linear RX post-equalizer),
in order to compensate for the channel distortions [23]. In
the considered scenario, these can incorporate the impairments
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caused by several components along the link, i.e. the optical
transmitter (i.e. the VCSEL), the multi-mode fiber channel and
the noise introduced at the RX side. As a consequence, the E2E
learning appears to be the most suitable approach to optimize
TX metrics such as the TDECQ using nonlinear DPD: in fact, it
is possible to implement an E2E autoencoder compliant to the
TDECQ conformance test (see Fig. 1), by designing a proper
surrogate model of the system. Fig. 5(b) illustrates our proposed
implementation of a TDECQ-based E2E system model. The
architecture extends the system model adopted for the DLA
(see Fig. 5(a)), by incorporating the DSP blocks required for
the TDECQ measurement, according to the IEEE specifications
for net 100 Gbps/λ transmission over MMF [6]: in addition to
the P2P normalization layer and the digital twin, three further
CNN layers are thus introduced:

1) a FIR filter with 31 discrete tap coefficients (also named
taps) at 2-sps ratio, having the equivalent response of a
fourth-order Bessel-Thomson filter with 3-dB bandwidth
equal to 18 GHz [10]. This filter models the effects of a
WCS optical channel: in the considered scenario, the filter
emulates the modal and chromatic dispersion of a MMF
with length up to 100 meters [6].

2) a 31 taps 2-sps FIR filter having the equivalent response of
a fourth-order Bessel-Thomson filter with 3-dB bandwidth
equal to half of the TX Baud Rate [10]. This filter emulates
the response of a reference RX filter for PAM4 signals.

3) a 9 taps 1-sps Feed-forward Equalizer (FFE), which is the
TDECQ reference RX equalizer specified by the IEEE
standard [6].

These three components, designed as FIR filters, are im-
plemented in the E2E system model as three discrete linear
convolution (Conv1d()2) layers, having a dilation factor [25] set
in order to implement the loss function detailed in Section IV-C.
Specifically, the discrete sequence at output of the system model
must have a sps ratio D greater than 1. Consequently, FIR
filters designed with an sps ratio of K < D are implemented
using Conv1d() layers with a dilation factor of d = D/K. For
instance, the 1-sps FFE (refer to Fig. 5(b)) is mapped into a
Conv1d() layer with dilation factor set to D: from a DSP
perspective, this is equivalent to introducing D − 1 zeros be-
tween consecutive samples in the FFE impulse response hFFE.
This allows a faithful simulation of the filtering effects expected
by the TDECQ test, while preserving an high sps ratio on the
propagated TX signal (as required by the loss function detailed
below).

Using the TDECQ-based E2E system model, during the DPD
optimization also the parameters hFFE of the FFE are updated
(i.e. the FIR filter tap coefficients). The parameters of the RX
filter (hRx) and of the WCS optical channel (hCh) are instead
kept fixed, as well as those of the P2P normalization layer
(θP2P ) and of the digital twin (θDT ). We use h in place of θ to
indicate that the coefficients of the introduced linear convolution
layers, since these also represent the discrete impulse response

2We use in this article the notation of the PyTorch library to refer to the
conventional CNN layers.

of the FIR filter. Using the proposed system model, the E2E ar-
chitecture does not directly introduce the impairments of the RX
noise: its effect is rather introduced analytically as an additive
regularization term in the loss function [15], as explained in the
following Subsection.

C. DPD Optimization Loss Function

As illustrated at the beginning of this this Section, using
either a DLA or an E2E learning approach, the nonlinear DPD
is trained by minimizing a given loss function according to a
SGD optimization algorithm. However, as discussed in [15], a
simple mean square error (MSE) is inadequate for optimizing the
pre-distorter effectively. This inadequacy arises due to the intrin-
sic nonlinearities within the considered communication system,
which encompass not only the VCSEL nonlinear distortions but
also the P2P constraint at the system input: this can lead to an
unbalanced compensation of the TX symbols, e.g. penalizing the
outer PAM4 levels with respect to the internal ones [15]. To better
address these challenges, we thus propose an novel loss function,
suitable for both DLA and E2E approaches, which focuses
the DPD optimization on improving the correct RX symbols
detection rather than solely minimizing the MSE between the
autoencoder input and output. The computational scheme of
the proposed loss function is illustrated in Fig. 6(a). The loss
function assumes the utilization of a multi-rate CNN system
model, i.e. given in input the 1-sps pre-distorted sequence, it
musts output a sequence with a sps ratio D > 1. The design
of this loss function draws inspiration from the Error Vector
Magnitude (EVM), a widely-used performance metric in the
assessment of advanced modulation formats [26]. In particular,
it evaluates the normalized MSE between the input (TX) symbol
sequence a and the output (RX) symbol sequence in the CNN-
based DPD optimization architecture, considering the optimal
decimation instant of the D-sps sequence â (refer to Fig. 4). The
computational steps involved by the loss are the following:

1) The sequence â is downsampled to a 1-sps ratio for all pos-
sible D symbol decision instants, resulting in decimated
sequences â1, â2,..., âD.

2) The TX symbol sequence a and the decimated RX se-
quences â1, â2,..., âD are normalized to have zero mean
and unit variance.

3) The MSE is computed between the TX and RX sequences
for all the decimation instants.

4) The final loss L is determined as the optimal value (i.e.
the minimum) among the losses L1, L2,..., LD.

This procedure enables the DPD optimization to specifically
improve the symbols decoding at the optimal decision instant:
the latter indeed needs to be found numerically (i.e. looking for
the best MSE), due to the time-domain eye-skew caused by the
VCSEL (refer to Fig. 3(b)). Additionally, the normalization of
the symbols focuses the DPD to optimize the relative positions
of the PAM4 constellation points rather than tracking specific
absolute values. This prevents excessive amplification of the
TX PAM4 levels by the DPD, which, in combination with the
peak-to-peak (P2P) constraint, could penalize the quality of
the external PAM4 symbols [15]. Furthermore, to analytically
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Fig. 6. (a) Custom Loss function for optimizing nonlinear DPD using the CNN-based approach. The noise regularization term depend whether the system
architecture is (b) adopting the DLA system model (refer to Fig. 5(a)); (c) adopting the TDECQ-based E2E system model (refer to Fig. 5(b)).

account for the presence of RX noise that can impair the TX
signal, a noise regularization term is incorporated into the loss,
similarly to what done in [15]. In this work, the regularization
term represents the equivalent contribution to the loss function
of an additive white Gaussian noise sequence having zero mean
and variance σG

2, combined to the output signal of the digital
twin.

When adopting the DLA system model, the noise regulariza-
tion term RDLA (depicted in Figure 6(b)) is defined as:

RDLA =
σG

2

σ̂2
âargmin(L1,L2,...,LD)

(7)

where σ̂2
âargmin(L1,L2,...,LD)

represents the variance used to nor-
malize the optimal decimated RX sequence, i.e. the one that
yields the minimum MSE (as shown in Fig. 6(a)).

In the case instead of the TDECQ-based E2E system, the noise
regularization termRE2E (depicted in Fig. 6(c)) also models the
propagation of the noise through the reference RX response filter
and the following equalizer, as follows:

RE2E =
σG

2 · ||hRx ∗ hFFE||2
σ̂2
âargmin(L1,L2,...,LD)

(8)

where ||hRx ∗ hFFE|| is the Euclidean norm of the discrete
linear convolution between the impulse response of reference
RX filter hRx and the impulse response of the feed-forward
equalizer hFFE. The use of the noise regularization term pro-
vides several benefits to the nonlinear DPD optimization. In
both the DLA and E2E cases, it induces the maximization
of the σ̂2

âargmin(L1,L2,...,LD)
term, thus stimulating the DPD to

amplify the power of the TX signal as much as possible while
adhering to the P2P constraints. This prevents the DPD from
driving the VCSEL with an excessively low optical modulation
amplitude (OMA), as this parameters must fulfill minimum
requirements [6]. Moreover, in the E2E case, it prevents the
RX noise enhancement induced by the FFE [8], by inducing
the minimization of the ||hRx ∗ hFFE||2 term, which is equiv-
alent to the Ceq term in the TDECQ formula (refer to (1)).
Consequently, the DPD optimization considers the fact that
the RX equalizer can only partially compensate for bandwidth

limitations. Moreover, the proposed E2E regularization term
enables analytical consideration of the WGN noise introduced at
the RX input as specified by the reference TDECQ measurement
scheme [6].

The proposed loss function therefore tackles multiple chal-
lenges in optimizing nonlinear DPDs. Combined with an appro-
priate initialization of the DPD coefficients (refer to Section V),
it has demonstrated significant success in training different
nonlinear DPD architectures in the considered scenario. The
outcomes of employing this approach will be illustrated in
Section V-D.

D. CNN-Based Versus FIRNN-Based Optimization

In this section, we have presented a novel CNN-based ap-
proach for nonlinear DPD optimization, which represents a
significant departure from the methodology proposed in our
previous works [15], [20], [21] based on finite impulse response
neural networks (FIRNN). Despite this paradigm shift, the
underlying system emulation remains unchanged from a DSP
perspective. In fact, he parametric structure of a CNN layer can
be effectively mapped to a FIRNN layer, ensuring equivalent
functionality. In terms of deep learning terminology [24], a
1D convolutional (Conv1d()) layer with a kernel size of k, an
input channel size of chin, and an output channel size of chout

performs the same filtering operation on chin-channel signals as
a FIRNN layer with a FIR memory of k, chin input neurons, and
chout output neurons. However, the major distinction lies in the
approach to forward and backward signal and gradient propa-
gation. FIRNNs implement them simultaneously throughout the
architecture, emulating real-time digital systems with continu-
ous adaptation, such as practical RX post-equalizers [15]. On the
other hand, CNNs perform signal propagation block-by-block
through the layers, similar to an offline DSP chain. As a result,
the derivatives for stochastic gradient descent update (SGD) are
computed only after the entire signal has propagated through the
system.

The transition from the FIRNN approach to the CNN ap-
proach thus unlocks additional features for nonlinear DPD op-
timization. Firstly, the CNN-based DPD learning architecture
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can be implemented using well-established and advanced Deep
Learning software libraries such as TensorFlow and PyTorch.
These frameworks provide sophisticated and optimized imple-
mentations of convolutional layers, supporting their automatic
differentiation [27]. This significantly simplifies code devel-
opment and facilitates future upgrades. In contrast, automatic
differentiation for online optimization algorithms like in FIRNN
is currently not implemented by these libraries: consequently,
FIRNN requires manual software development.

Moreover, the CNN approach offers the advantage of com-
puting differentiable signal statistics by virtue of its block-by-
block processing procedure. By leveraging the vector signals
generated at the output of various DSP blocks within the CNN
autoencoder, it becomes feasible to estimate multiple statistics
of the propagated signal at each stage of the emulated commu-
nication system: these can be mean values or variances, as well
as maximum and minimum values. This capability enables the
use of differentiable signal normalizations, which can facilitate
optimization convergence [28], as demonstrated in the case of
symbol normalization. Signal normalizations also enable the
application of differentiable constraints on signal dynamics,
such as the P2P normalization. Unlike the previously adopted
P2P hard-limiting function [15], [16], [20], [21], this new im-
plementation of the constraint avoids the vanishing gradient
issues caused by the hard-limiter clipping of the DPD output.
Furthermore, signals statistic estimation allows for better tuning
of the optimization loss function during the training, such as
the MSE-based selection optimum decimation instant (refer to
Section IV-C).

Therefore, by adopting the CNN-based approach, both DLA
and E2E approaches benefit from a more comprehensive em-
ulation of the TX system behavior, leading to a refined DPD
optimization. Experimental results have demonstrated its effec-
tiveness in several TX conditions, as it will be illustrated in the
upcoming Sections.

V. EXPERIMENTAL OPTIMIZATION OF NONLINEAR DPD OVER

A VCSEL-MMF OPTICAL LINK

In this Section, we illustrate the experimental implementation
of methodology depicted in the previous Section on a real
VCSEL-MMF optical transmission link. We first describe the
experimental modeling of an optical B2B setup using a CNN
digital twin. We then show the experimental procedure for
deploying the CNN-based nonlinear DPD optimization. Finally,
we compare and discuss the optical TX performance of both
DLA and TDECQ-based E2E approaches.

A. Adopted VCSEL-MMF Experimental Setup

For our experiments, we utilized an optical back-to-back
(B2B) setup that adheres to the specifications provided for
measuring the TDECQ over 100 Gbps/λ SR-MMF links [6].
The experimental setup is depicted in Fig. 7(a), and it comprises
the following components:
� An Arbitrary Waveform Generator (AWG) with a sampling

rate of fDAC = 107.2 GSa/s and a bandwidth of 50 GHz.

Fig. 7. Overall Schematics for the CNN experimental modeling of an optical
TX setup. (a) Experimental setup for the DPD optimization and performance
evaluation; (b) CNN Digital Twin of the experimental setup.

� A Direct Current (DC) generator for providing the VCSEL
bias current.

� An 850 nm VCSEL with a bandwidth of 22 GHz, serving
as the main component of the optical transmitter to be pre-
distorted.

� A Peltier cell attached to the VCSEL to maintain its tem-
perature at 25 ◦C.

� A 2-meter OM4 multi-mode fiber patch cord used to prop-
agate the VCSEL’s collimated optical waveform.

� A MMF Variable Optical Attenuator (VOA) for adjusting
the optical power of the received signal.

� A Keysight DCA-M N1092 A Digital Communication
Analyzer, which consists of a PIN Photo-Diode (PD), an
Electrical Amplifier (EA), and a Digital Sampling Oscil-
loscope (DSO). The device is equipped with the official
software for TDECQ measurement, compliant with the
standards described in [6].

We employed this setup to characterize the digital twin for the
DPD optimization and subsequently evaluate the performance
of the VCSEL-based optical TX using DPD. To ensure in-
strumental compatibility, all experiments were conducted using
PAM4 sequences transmitted at a Symbol Rate of 53.6 GBaud,
which aligns with the sampling rate of the AWG by up-sampling
the 1-sps pre-distorted sequences through rectangular shaping
(i.e. repeating for 2 consecutive times each TX symbol). The
resulting bit rate (Rb = 107.2 Gbps) slightly surpasses the
standard gross rate required for achieving a net 100 Gbps PAM4
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transmission (106.25 Gbps, as stated in [6]). However, this
approach allows for a conservative assessment of the optical TX
performance, being on the safe side since adopting an higher bit
rate than required (as done in [16]).

B. Digital Twin Modeling of the Experimental Setup

The optimization of nonlinear DPDs using either DLA or
E2E approaches necessitates a surrogate model of the optical TX
setup, as we mentioned in Section IV. Specifically, in the context
of a TDECQ-based optimization, the digital twin primarily
needs to model the response of the VCSEL-based optical TX.
This entails the adoption of a B2B setup, aimed at mitigating the
propagation effects stemming from the MMF link. These effects
can be later emulated through DSP using a WCS fiber channel,
consistently with the TDECQ test’s principle (see Section II).
In this work, we implement the digital twin using a CNN whose
structure is depicted in Fig. 7(b). This is composed of multiple
Conv1d(chin, chout, ksize, s, p) layers. Here, chin denotes the
input channel size, chout represents the output channel size,
ksize denotes the kernel size, s is the stride used for correlation
(i.e. the downsampling ratio of the input signal), and p indicates
the padding applied to the input signal. The nonlinearity of
the CNN is implemented by alternating the convolution layers
with ReLU() activation functions. Furthermore, the first layer
is implemented as 1D transposed convolution layer, known
as ConvTranspose1d(chin, chout, ksize, s, p) [29] with stride
s > 1, to up-sample the input signal at the desired output sps
ratio.3 The purpose of the digital twin is to accurately predict
the output, denoted as y, of a given experimental setup when
provided with the corresponding input TX signal, x. To achieve
this, an iterative SGD procedure [24] is employed to optimize
the neural network-based model. To ensure an integer output
samples-per-symbol (sps) ratio suitable for the proposed loss
function (see Section IV-C), the acquired experimental output
y is resampled to a sps rate of D = 10. Additionally, the
experimental signal is normalized to have a zero mean and unit
variance, as illustrated in Fig. 7, in order to facilitate model
convergence. During each training iteration, a random subset4

of x consecutive samples is fed into the CNN. Then, the MSE is
computed by comparing the CNN output signal vector, denoted
as ŷ, with the related subset of the experimental outputy. Finally,
the CNN coefficients are updated through SGD by computing
the MSE loss gradients.

The CNN digital twin is obtained by using two different
experimental acquisitions. The first one is employed as training
dataset to optimize the model. It involves transmitting a linearly
pre-distorted PRBS sequence of 216 symbols (obtained using
ILA, as explained later) over the transmission setup. Utilizing a
pre-emphasized sequence rather than a standard plain PAM4
signal emerges as a favorable choice, as its symbols levels
distribution aligns more effectively with the distribution of the
target nonlinearly pre-distorted sequence. Consequently, the
digital twin trained using a linearly pre-distorted sequence is

3It is equivalent to applying on a given input signal a baseline Conv1d()
layer after the addition of s− 1 zeros between the consecutive input samples.

4This approach mimics the use of conventional mini-batches [24]).

able to accurately model the nonlinear effects of pre-distorted
VCSEL driving conditions. The second acquisition, defined
as test dataset, is instead used to assess the accuracy of the
trained digital twin and is obtained by transmitting a nonlinearly
pre-distorted PAM4 sequence, i.e. the same used to assess also
the nonlinear DPD performance (details in Section V-D). This
allows to validate the reliability of the digital twin in emulating
the optical TX setup at the critical moment when the nonlin-
ear DPD optimization has ended, and the pre-distorter will be
actually deployed in the real scenario.

The CNN model adopted in our experiments involved a
convTranspose1d() layer followed by three ReLU() and
Conv1d() layers. The detailed layer parameters utilized in the
digital twin for these experiments can be found in Fig. 7. Each
hidden convolution layer was configured to have 30 input and
output channels, while the kernel sizes were chosen to ensure a
minimum memory5 equivalent to 15 symbols [25]. The model
was updated through SGD for 700 iterations using minibatches
o 1000 consecutive TX symbols. With the chosen hyperparam-
eters, the CNN digital twin achieved on the test dataset an op-
timal normalized6 Mean Squared Error (MSE) performance of
−24 dB in each VCSEL driving condition. Further improvement
in the MSE performance was not observed by increasing either
the memory (i.e. the CNN layers kernel sizes) or the number of
hidden channels.

C. Experimental Nonlinear DPD Optimization

The effectiveness of the nonlinear DPD optimization method-
ology, discussed in Section IV, was evaluated using the ex-
perimental setup illustrated in Fig. 7(a). To ensure its efficacy
across different DPD structures, two distinct nonlinear DPD
architectures were deployed at a 1 sps ratio: a CNN DPD
implementation (with similar structure to the CNN digital twin)
and a discrete-time Volterra-series nonlinear equalizer (VNLE)
DPD implementation [11], [30]. The VNLE equalization can
be defined as the filtering operation on the input signal x[n] to
produce the output signal y[n], as follows:

y[n] = h0 +
K∑

k=1

Mk∑
t1=0

. . .

Mk∑
tk=0

hk(t1, . . .tk)
k∏

j=1

x

×
[
n− tj − M1 −Mk

2

]
(9)

where hk(t1, . . .tk) represents the k-th order Volterra kernels,
and h0 denotes the bias term. The memory lengths for the linear
(k = 1) and nonlinear terms are denoted as M1 and M2 to Mk,
respectively. The term M1−Mk

2 accounts for the difference in the
memory lengths between the linear kernel terms (corresponding
to the taps of a FIR filter) and the nonlinear kernel terms,
assuming M1 to be the largest memory and �M1/2� to be the
delay in symbols introduced by the VNLE. The schematics of

5The memory is the minimum number of consecutive symbols to give in input
to a nonlinear FIR filter to produce an output sample (see Appendix A).

6The MSE is normalized with respect to the power of the experimental output
y in the test dataset, defined by its variance σ2

y .
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Fig. 8. Nonlinead DPDs deployed in the experiments (a) Volterra-series
nonlinear equalizer; (b) convolutional neural network.

the VNLE and CNN DPDs adopted during the experiments are
depicted in Fig. 8.

The CNN DPD involves 3 Conv1d() layers, alternated by
ReLU() activation functions, with each hidden convolution
layer having 30 input and output channels (similarly to the CNN
digital twin). Each convolution layer was set to have a kernel size
ksize =3, in order to have a total memory of the DPD equal to 7
symbols. The VNLE DPD also adopts a total memory length of 7
symbols, having a linear memory length M1 = 7, and integrates
nonlinear Volterra kernels up to the 5-th order, with M2 = 7,
M3 = 7, M4 = 3 and M5 = 1. Both DPD architectures were
optimized using the CNN-based Direct Learning Architecture
(DLA) and End-to-End (E2E) approaches discussed in this
work. The experimental nonlinear DPD optimization procedure
adopted for each considered VCSEL driving condition involved
the following steps:

1) Initial characterization: A first characterization of the op-
tical transmitter is achieved by transmitting a plain PRBS
PAM4 signal of 216 symbols without applying DPD. The
sequence is averaged through the PRBS period by the
DCA, in order to minimize the noise impairments [15].

2) Linear DPD estimation: The acquired non-pre-distorted
experimental data is exploited to estimate a Linear 1-
sample per symbol (1-sps) FIR DPD using an indirect
learning approach (ILA) [12]: this involves deploying
as linear DPD a 1-sps feed-forward equalizer optimized
using a Least Mean Square (LMS) algorithm. The linear
DPD was set to have the same memory length as for
the nonlinear DPD to be optimized: specifically, the FIR
number of tap coefficients was set to 7 symbols.

3) Training dataset acquisition: To train the digital twin
model, the PRBS PAM4 signal, now pre-distorted by the
linear DPD is again transmitted over the experimental
setup, to be then acquired and denoised as in step 1;

4) CNN digital twin optimization: Using the training dataset,
the CNN digital twin is optimized to model the behavior
of the optical transmitter, as illustrated in Section V-B.

5) Nonlinear DPD initialization: Before optimizing the non-
linear DPD, the latter is pre-initialized using the response
of the linear DPD as a starting point. For the VNLE DPD,
all nonlinear parameters beyond the first order were set
to zero, while the linear Finite Impulse Response (FIR)
coefficients (first-order kernel) were set equal to those of

the linear DPD. In the case of the CNN DPD, we trained the
model to identify the linear DPD response by minimizing
the Mean Squared Error (MSE) between its pre-distorted
output and the output of the linear pre-distorter, using the
Stochastic Gradient Descent (SGD) optimization.7

6) Nonlinear DPD optimization: As final step, the nonlinear
DPD optimization is done by using either the Direct Learn-
ing Architecture (DLA) or the End-to-End (E2E) learning
approaches, adopting the CNN-based system models and
loss functions explained in Section IV.

The nonlinear DPD optimization using both DLA and E2E op-
timization approaches involved utilizing the same set of training
hyperparameters [24]. This choice was made to ensure a fair
comparison between the two techniques, employing a conser-
vative approach to guarantee optimization convergence in both
cases. Specifically, the number of SGD training iterations (refer
to Section IV-A) was set to 2000 times. For each iteration, 3000
randomly PAM4 symbols were generated to form the TX signal
vector a. In both the DLA and E2E DPD optimization architec-
tures, the P2P normalization layer was set as θP2P = [−1, 1],
to align with the AWG P2P normalized bounds8 on the input
discrete sequences. Moreover, a 2-sps rectangular upsampling
was integrated as a resampling layer at the beginning of the
system model. This integration ensured consistent matching of
the DPD and DAC sampling rates with the real TX system (as
explained in Section IV-B). SGD updates were implemented
using an Adam optimizer [24] with a learning rate of 0.001.
Regarding the regularization term, the noise power was set as
σG

2 = 0.001, which was approximately 30 dB lower than the
power of the signal at the digital twin output during the DPD
optimization. To avoid a significant increase in computational
complexity, a numerical σG

2 search emulating the standard
TDECQ measurement [10] was not pursued. However, our tests
showed that usingσG

2 values within the range of [0.0005, 0.005]
yielded similar TDECQ performance results.

D. Experimental Results

We report in this Subsection the experimental performance
of the nonlinear DPDs optimized using the experimental pro-
cedure illustrated above: we compare the performance of both
the CNN and VNLE DPD architectures (see Fig. 8), trained
using either the DLA and TDECQ-based E2E approaches for
1-sps digital pre-distortion of PAM4 symbols at 107.2 Gbps.
We also include in the comparison the results achieved using
linear DPD obtained using the ILA approach (i.e. the linear pre-
distorter obtained during the second step in the nonlinear DPD
optimization procedure). The optimization and validation of the
DPD were carried out by transmitting the signal under various
driving conditions, which allowed to assess the performance
in relation to the intensity of the nonlinear distortions induced

7This step exploits the same SGD-based optimization adopted for training
the CNN digital twin (refer to Section V-B). In this case, the input signal x is
replaced by the plain PRBS PAM4 signal (used in Step 1) and the output signal
y is replaced by the PAM4 sequence after linear DPD.

8The [−1, 1] P2P dynamics is normalized with respect to the AWG P2P
modulation voltage.
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Fig. 9. Left - Experimental performance comparison of different PAM4 DPDs working at 107.2 Gbps, as a function of the VCSEL input bias current: (a) TDECQ
test; (b) TECQ test. Inset pictures in (a, b) zoom in specifically on the nonlinear DPD performances. Right - Experimental 107.2 Gbps PAM4 signal eye-diagram
acquired by the DSO: (c) with linear DPD applied; (d) with VNLE DPD applied; (e) with CNN DPD applied. DPDs are obtained (c1, c2, c3) using ILA; (d1, d2,
e1, e2) using TDECQ-based E2E learning; (d3, e3) using DLA.

by the VCSEL. Specifically, we employed different input bias
currents for the VCSEL and set different peak-to-peak modula-
tion voltage swings on the AWG. The experimental validation
measurements were conducted using a PAM4 signal that differed
from the PRBS16 sequence used in the training dataset. Instead,
the standard PAM4 Short Stress Pattern Random Quaternary
(SSPRQ) was employed, which is the designated sequence for
TDECQ measurements according to IEEE specifications for net
100 Gbps PAM4 transmission [6]. For each considered case,
we evaluate the performance of the pre-distorted VCSEL-based
TX using standard TDECQ and the TECQ test according spec-
ifications for SR-MMF optical TX at net 100 Gbps/λ [6]. The
TECQ (Transmission Eye-Closure for PAM4) is an optical TX
compliance metric alternative to the TDECQ, which assesses
the same performance criteria without considering the effects
of the dispersion introduced by the fiber (i.e. omitting the fiber
emulation filter in Fig. 1) [6]. Both TDECQ and TECQ were
measured using the official Keysight software integrated by the
DCA. Fig. 9 illustrates the experimental results when driving the
VCSEL with the AWG P2P modulation voltage set at 500 mV,
as a function of the VCSEL input bias current. The bias current
was varied within the typical range of 6–8 mA for 850 nm
VCSELs [4]. The average optical power at the input of the
DCA receiver was set to 2 dBm. Fig. 9(a) and (b) depict the
TDECQ and TECQ performance, while Fig. 9(c)–(e) show the
relative experimental eye-diagrams acquired by the the DSO.
Experimental results without applying any DPD are not reported
due to the impossibility in all the situations to met the target
BER = 2.4e-4 value for TDECQ/TECQ standard test [6]: in
this case, the performance is affected not only by the nonlinear
distortions, but also by the RX noise enhancement induced by
the equalizer, in compensation for the bandwidth limitations
previously shown in Fig. 3(a). Furthermore, when using linear
DPD, both TDECQ and TECQ measurements were not feasible

for low VCSEL bias currents. The relative performance (red
lines in Fig. 9(a) and (b)) is only reported for 7.5 mA and 8 mA:
using linear DPD, as the VCSEL bias current decreases, there is
a progressive increase in nonlinear eye-skew (see Fig. 9(c)), with
a consequent shift and closure of the lower part of the PAM4 eye
diagram severely degrading the BER performance. This clearly
demonstrates the necessity for a nonlinear DPD, which is instead
capable of fully compensating for the VCSEL distortions either
optimized using DLA or E2E approaches (refer to Fig. 9(d)
and (e)). Nonlinear DPD significantly improves the optical TX
performance, making possible the TDECQ and TECQ test for
low bias currents, while gaining more than 3.5 dB in terms of
TDECQ (Fig. 9(a)) and 3.0 dB gain in terms of TECQ (Fig.
9(b)) compared to linear DPD at higher bias currents. It must
be noticed that the nonlinear DPDs meet the IEEE requirements
for a maximum TDECQ and TECQ of 4.4 dB [6] in almost all
cases, except for the nonlinear DPDs trained using the DLA
approach when the bias current is set to 6 mA (as depicted in
the inset picture of Fig. 9(a)). By making a close comparison
of the nonlinear DPD performance (see inset pictures in Fig.
9(a) and (b)) clearly shows that the TDECQ-based E2E system
optimization surpasses the DLA-based approach in terms of
TDECQ performance. Notably, the experimental eye-diagrams
acquired by the DCA exhibit poorer (i.e they are more closed) in
the E2E case (Fig. 9(d1, d2, e1, e2)) compared to the DLA (Fig.
9(d3, e3)). However, this behavior is consistent to the differing
optimization objectives of the two approaches. The DLA indeed
focuses on optimizing the DPD specifically to improve the signal
at the output of the optical TX, without necessarily guaranteeing
an optimal performance after propagation through the reference
TDECQ system. The proposed E2E system instead targets the
DPD toward the optimal performance right at the output of the
reference TDECQ DSP scheme (i.e. after the emulated WCS
fiber link, the reference RX and the FFE, see Fig. 1), consistently
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Fig. 10. Performance comparison for different pre-distorters at 107.2 Gbps on the experimental setup (a) TDECQ as function of the AWG P2P modulation
voltage; (b) TECQ as function of the AWG P2P modulation voltage; (c) TDECQ as function of the OMA at the DCA input (d) TECQ as function of the OMA at
the DCA input. Inset pictures show the TDECQ/TECQ performance of the linear DPD in the same scenarios.

to where the metric is evaluated. Consequently, TDECQ-based
E2E optimization consistently achieves a gain of more than
0.8 dB compared to DLA, increasing to 1.0 dB for a bias
current of 6 mA. Conversely, TECQ performance remains nearly
equivalent using both optimization methods. This shows that the
TDECQ-based E2E architecture specifically focuses on optimiz-
ing the DPD for the desired metric, which aligns with the purpose
for which the E2E system was designed. Furthermore, both
CNN and VNLE DPD implementations consistently demon-
strate equivalent performance across all the scenarios evaluated:
this highlights the effectiveness of the proposed methodology in
optimizing different nonlinear DPD architectures, and suggests
that further increasing the complexity of the equalizers may
not yield additional performance improvements. Fig. 10 then
illustrates the experimental results achieved when the VCSEL is
driven with a fixed bias current of 8 mA while varying the AWG
P2P modulation voltage from 400 mV to 800 mV. The average
RX optical power remains set at 2 dBm, as in the previous
analysis (see Fig. 9). Fig. 10(a) and (b) illustrate the TDECQ
and TECQ performance as a function of the AWG modulation
voltage, while Fig. 10(c) and (d) show the same curves as a
function of the optical modulation amplitude (OMA) measured
by the DCA.

Similarly to the observations made for low VCSEL bias
currents, the TDECQ and TECQ performance of the linear DPD
(depicted in the inset pictures of Fig. 10) were not measurable for
modulation voltages exceeding 500 mV. This limitation arises
again from the inability to meet the target maximum BER due
to the increasing nonlinear distortions. In this scenario, the
TDECQ-based E2E approach outperforms the DLA method in
terms of TDECQ (Fig. 10(a) and (c)). Conversely, for increasing
OMAs and modulation amplitudes DLA shows better perfor-
mance in terms of TECQ (Fig. 10(b) and (d)) than E2E learning
(yet fulfilling with margin the IEEE requirements [6]). This trend
underscores the specialized nature of the TDECQ-based E2E

optimization, which proves more adept at enhancing TDECQ
performance (its intended target) rather than other associated
metrics. Additionally, when employing TDECQ-based E2E
learning, the VNLE DPD appears to outperform the CNN DPD.
However, this discrepancy can be attributed to a reduction in the
OMA induced by the VNLE in response to the heightened VC-
SEL nonlinearity caused by the increased modulation voltage.
When comparing the performance in terms of OMA, both CNN
and VNLE exhibit equivalent results. Nonetheless, whether
comparing signals with the same modulation P2P voltage (Fig.
10(a)) or considering them in relation to the OMA (Fig. 10(b)),
the E2E approach consistently demonstrates a gain in TDECQ
of more than 1 dB compared to the DLA. Experimental results
thus indicate the TDECQ-based E2E approach the best DPD
optimization strategy to improve this specific metric.

E. Discussion on the TDECQ-Based Optimization

The analysis of the experimental results suggests that the
TDECQ-based E2E architecture, due to its significant improve-
ment in TDECQ performance, may be the optimal approach
for VCSEL-MMF nonlinear DPD optimization. However, it
must be pointed out that conformance standards for SR-MMF
optical TX not only consider quality metrics like TDECQ and
TECQ but also specify limits on the overshoots and under-
shoots within the output signal of the optical TX. In particular,
according to IEEE requirements [6], the maximum value of
overshoot/undershoot defined as in [31] is specified as 29%
for a hitting ratio equal to 3e-3. Fig. 11 illustrates the relative
amount of undershoots and overshoots measured by the DCA for
each scenario considered in the experiments. It can be observed
that pre-distorted signals always met in the experiments the
undershoot requirements with a margin (see Fig. 11(a) and (c)).
However, nonlinear DPDs optimized using the TDECQ-based
E2E approach exceeded the overshoot limits in nearly every
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Fig. 11. Evolution of overshoots and undershoots with a hitting ratio of 3e-03
using linear and nonlinear DPD, as (a) and (b) function of VCSEL input bias
current and (c) and (d) AWG modulation voltages.

scenario. This can be attributed to the focus of the E2E opti-
mization architecture on compensating for the fiber emulation
filter. The limitations of the relative bandwidth necessitate the
DPD to increase the overshoots/undershoots in the TX signal to
pre-compensate for the optical fiber channel, as post-mitigation
using the FFE would introduce RX noise enhancement. There-
fore, the experimental results indicate the presence of a trade-off
between achieving optimal TDECQ performance and meeting
the constraints imposed by the TX dynamics. In order to address
this trade-off, it may be necessary to develop an optimization
DPD strategy that specifically prioritizes the fulfillment of over-
shoot constraints while simultaneously improving the TDECQ
performance. This can be accomplished by designing a proper
CNN-based optimization architecture in future works, capable
of enhancing the quality metrics of the optical TX while also
adhering to some conformance constraints of the optical TX
signal.

VI. CONCLUSION

In this article, we proposed a novel nonlinear DPD optimiza-
tion methodology focused on enhancing the TDECQ perfor-
mance of VCSEL-based optical transmitters in net 100 Gbps/λ
SR-MMF optical links. We conducted a comprehensive com-
parison between the DLA and E2E learning optimization ap-
proaches, utilizing a specifically designed CNN framework for
training nonlinear DPD tailored to meet the requirements of the
considered transmission scenario. Additionally, we proposed a
novel E2E architecture, based on the TDECQ standard specifi-
cations outlined in [6].

We presented a detailed experimental implementation of the
proposed methodology by employing nonlinear DPD within an
actual optical transmitter setup that conforms to the TDECQ
measurement IEEE standards [6]. We provided comprehensive
experimental results by applying nonlinear DPD to a commer-
cial VCSEL operating under various conditions, encompassing
different levels of nonlinear distortions.

The experimental results demonstrated the effectiveness of the
CNN-based DPD optimization approach for enhancing VCSEL-
based optical transmitters operating at a net 100 Gbps rate
using PAM4 modulation. In almost all the tested cases, both the
DLA and E2E methods successfully met the IEEE requirements
for TDECQ and TECQ, even in conditions where linear DPD
would be insufficient to achieve the target BER for measuring
those metrics. Furthermore, the proposed novel TDECQ-based
E2E architecture, specifically designed to optimize the TDECQ
metric, consistently demonstrated a significant TDECQ gain
of nearly 1.0 dB compared to the DLA-based approach in the
majority of cases. This advancement enables better adherence to
the IEEE TDECQ requirements across a wider range of nonlin-
ear conditions, such as lower bias current or higher modulation
swings.

Additionally, we discussed the implications of using this
TDECQ-based optimization architecture and provided addi-
tional experimental results that suggest the need for further
work in designing a DPD optimization architecture that leads
to VCSEL-based transmitters fully compliant with all IEEE
requirements for net 100 Gbps transmission over SR-MMF
optical links. Future works might address also slow effects with
a potential impact on the TX performance, such as tempera-
ture fluctuations [19] and VCSEL self-heating. In conclusion,
both the proposed methodology and the experimental results
provide valuable insights into the nonlinear DPD optimization
for VCSEL-MMF optical links, indicating system-oriented opti-
mization approaches such as End-to-end learning as a promising
solution for definitively enhancing the performance of VCSEL-
based optical transmitters.

APPENDIX A

NONLINEAR FINITE IMPULSE RESPONSE FILTERS AS

CONVOLUTIONAL NEURAL NETWORKS LAYERS

By considering a generic linear digital filter with impulse
responseh[n], its application over a discrete-time input sequence
x[n] can be mathematically described by the one-dimensional
(1D) discrete linear convolution operation:

y[n] = h[n] ∗ x[n] =
∞∑

m=−∞
h[m] · x[n−m] (10)

where the signal y[n] is the filter output.
In practice, when dealing with Finite Impulse Response (FIR)

filters and finite-length discrete sequences, the convolutional
operation can be represented in the vector form as y = h ∗ x.
Here, h is a T -dimensional vector defining the FIR filter tap
coefficients, while the vectors x and y refer to the input and
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Fig. 12. Computational schematics for (a) Discrete Linear Convolution; (b) Discrete Nonlinear Convolution.

output discrete sequences (with length N and N − T + 1, re-
spectively). Each sample of y is computed by the linear time-
invariant function f(xn) = f(xn;h) depending on parameters
h, as follows :

f : xn ∈ RT → y[n] = h� · xn ∈ R (11)

where xn = [x[n], x[n+ 1], . . . , x[n+ T − 1]]�. A graphical
representation is provided in Fig. 12(a).

The described 1D linear discrete convolutions of linear FIR
filters are differentiable operations, and represent a baseline
type of convolution layers, which are the building blocks of
convolutional neural networks (CNN). In order to generalize
this differentiable transformation to nonlinear time-invariant
filters, in this article we define the discrete nonlinear convolution
operationy = θ ∗̂x : by preserving the above definition ofx and
y, the input-output relation of a nonlinear time-invariant filter
can be modeled as the function g(xn) = g(xn;θ) depending on
parameters θ, as follows:

g : xn ∈ RT → y[n] = g(xn;θ) ∈ R (12)

where the vector θ contains all the parameters (or “coefficients”)
of the nonlinear filter. The operation is represented in Fig. 12(b).
It can be observed that, as in the linear case, each output
samples depends only on T consecutive input samples (where
T represents the memory of the nonlinear filter). Moreover, as
a consequence of the time-invariance, it is straight forward to
see that shifted samples of the output y[n+ i] depend on analog
shifted input sequences xn+i.

Therefore, under the assumption that θ(xn,θ) is differen-
tiable, a nonlinear time-invariant FIR filter can be abstracted as
simple CNN layer, and used with a black box approach as differ-
entiable nonlinear operator to represent the several components
of an E2E communication systems.
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