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Abstract—As it propagates in a real single-mode fiber, light
accumulates a phase delay and undergoes variations of its po-
larization state. These two phenomena are partly related to each
other, owing to both well known geometric effects, i.e. the Pan-
charatnam’s phase, and less known dynamic ones. This article
aims at reviewing these concepts, highlighting the polarization-
depended phase of light that propagates in a single-mode fiber.
We present a mathematical treatment using the familiar lan-
guage of Jones and Stokes vectors and report experiments sup-
porting the theory. The presented analysis has a general valid-
ity, and it can describe phase variation with respect to several
parameters, such as distance, frequency and time. Its extension
to multimode and multi-core fibers is also discussed. The re-
sults can be used for a better modelling and understanding of
coherent transmission systems and interferometric fiber optic
sensors.

Index Terms—Polarization, optical fibers, Pancharatnam phase,
geometric phase, dynamic phase.

I. INTRODUCTION

IN 1956, S. Pancharatnam published a seminal paper proving
that when the polarization of a light beam is changed over a

cycle, also the phase of the light beam changes, and the amount
of this phase change is related only to the trajectory that the
polarization of the beam draws on the Poincaré sphere [1].
Pancharatnam’s work, however, didn’t received the due attention
until the second half of the 1980 s, after M.V. Berry discovered
the eponymous geometric phase in quantal systems [2] and
Pancharatnam’s phase was recognized as a special manifestation
of it [3], [4]. Since then, there has been a flourishing research
activity on geometric phase in photonic systems, including
optical fibers [5], [6], [7].

It is worthwhile remarking, for completeness and clarity, that
the scientific literature about geometric phase in optical fibers
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follows two distinct research lines: one focuses on the Pancharat-
nam’s phase, the other (so far the most active one) focuses on the
rotation of polarization of light propagated along a non-coplanar
path, sometimes called Rytov-Vladimirskii-Berry phase [8].
Actually, soon after Berry’s publication, some authors [9], [10]
reported experiments showing how the polarization of light
transmitted across a single-mode fiber, deployed along a helical
path, undergoes a rotation that can be explained as a manifesta-
tion of Berry’s geometric phase. Berry himself argued that the
phenomenon is better described in terms of parallel transport
of light polarization [11], as previously observed by Ross [12]
and subsequently by other authors [6], [13], [14], [15], [16],
[17], [18], [19]. Parallel transport of light is a manifestation
of classical anholonomy, and it has been originally studied in
the framework of ray optics [20]. Despite it shares a similar
theoretical framework with the Pancharatnam’s phase, parallel
transport of polarization is a distinct phenomenon, and we do
not considered it in this article.

Pancharatnam’s phase is related to variations of the light
polarization and it can accumulate also when light propagates
along straight or planar paths. While physically different from
the Rytov-Vladimirskii-Berry phase, also Pancharatnam’s phase
can be interpreted as a parallel transport, but in this case occur-
ring on the Poincaré sphere. Only a few papers have analyzed this
phenomenon in optical fibers, in the framework of both telecom-
munications [21], [22] and sensing [23], [24], [25]. Nonetheless,
to the best of our knowledge a general theoretical model unifying
polarization effects in randomly birefringent single-mode fibers
and the Pancharatnam’s phase has never been reported. Follow-
ing the guidelines of theoretical analyses made about Berry’s
phase in quantum systems, in this article we highlight how the
phase of the light field can be decomposed in two terms: one
is independent of polarization, while the other is dependent on
polarization; we call this term “polarization-dependent phase”
(PDP). As we show later, PDP is given by two terms: one is the
Pancharatnam’s phase, the other is a dynamical phase related to
birefringence.

We remark that this is only a decomposition of the total phase
and, sure enough, any modelling or measurement based on Jones
formalism already implicitly includes the PDP. Nevertheless, we
believe that singling it out can contribute to a better modelling
and understanding of fiber-based coherent transmission systems
and interferometric sensors.

The article is organized as follows. Section II presents the
theoretical framework and the main result of this article, namely
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(12); an example of application to the simple scenario of bire-
fringence waveplates is also discussed. Section III reports ex-
perimental results supporting the theoretical analysis. Finally,
Section IV discusses the extension of the model to multimode
and multicore fibers. In the following, we explicitly refer to
optical fibers, yet the results do apply to any other waveguide. For
the sake of readability, mathematical derivations and technical
details are deferred to the Appendices.

II. THEORETICAL ANALYSIS

Before presenting the polarization-dependent phase, we deem
worthwhile recalling the key aspects of Pancharatnam’s analysis.
Given two scalar waves at the same frequency, it is rather natural
to say whether these are in phase or not. Pancharatnam was the
first to address the same problem for vector waves, proposing
a natural, yet powerful, extension of the scalar concept [1], [4],
[26]. Let a0 be the Jones vector of a reference wave and let a
be that of an arbitrary wave; according to Pancharatnam, the
two waves are said to be in phase when the intensity of their
interference is maximum. Mathematically, this intensity reads

|a0 + a|2 = |a0|2 + |a|2 + 2 |a∗
0a| cos

(
arg(a∗

0a)
)
, (1)

so the two waves are in phase when the argument of a∗
0a is

zero (hereinafter ∗ represents transposition and conjugation).
Equation (1) defines the so called “Pancharatnam’s connection”,
and it allows to define the phase of a with respect to a0 as

ψ = arg(a∗
0a) . (2)

Note, however, that in general this phase is not the Pancharat-
nam’s phase, as clarified later.

Pancharatnam’s connection has two important properties. The
first one is that it is invariant with respect to changes of the
state of polarization (SOP) of a that are represented on the
Poincaré sphere by the geodesic (great circle) passing though
the points ŝ0 and ŝ — i.e. the unit Stokes vectors associated
to a0 and a, respectively [27]. The second property is that the
Pancharatnam’s connection is not transitive [26], which means
that if a is in phase with a0 and also another wave a′ is in phase
with a0, there is no guarantee that a and a′ are in phase. This
non-transitivity has an important consequence. Assume that a
has the same polarization of a0, so they are represented by the
same point ŝ0 on the Poincaré sphere. Assume now that the
polarization of the wave a is varied along a closed trajectory on
the Poincaré sphere; then, it can be proved that the final phase
of a with respect to a0 is varied by a quantity equal to −1/2
times the area encircled by the closed trajectory [4]. This phase
is purely geometric and it is called Pancharatnam’s phase. These
properties of Pancharatnam’s connection have been analyzed in
several papers [26]; for the sake of completeness, we review
them also in Appendix A.

Note that, in general, the Pancharatnam’s phase is just one
contribution to ψ. Actually, we highlight in the following that
the phase difference between the two waves a and a0 can be
decomposed in the sum of three terms:

ψ = arg(a∗
0a) = σ + χ+ γ . (3)

The first one,σ, is the dynamic scalar phase; it is said “dynamic”
because it depends on the effective refractive index seen by the

propagating light (i.e. on its propagation velocity) and “scalar”
because it is independent of polarization. The second term, χ, is
the dynamic polarization-dependent phase; it depends on fiber
birefringence (hence it is still a “dynamic” term) and on light
polarization. To understand this term, we can think about a
polarization maintaining fiber: depending on whether the input
SOP is aligned with the fast or slow axis, the actual phase delay
is smaller or larger; as we will see, χ capture this fact and
generalizes it to arbitrary polarization. Finally, γ is the geometric
Pancharatnam’s phase introduced before; it is said “geometric”
because it depends only on how the polarization of light varies.
In the next section we derive the expressions of these terms.

A. Calculation of the PDP

To evaluate ψ, it is better to analyze how it varies with
respect to a parameter. From a mathematical point of view,
which parameter we choose is immaterial; however, just for
reference, we consider the distance of propagation, z. Therefore,
we now focus on ψ(z) = arg[a∗

0a(z)], which is the phase of the
propagating wave a(z) with respect to the fixed reference a0.
In general we can write [27], [28]

∂a(z) = −jK(z)a(z) , (4)

where ∂ indicates derivative with respect to z,

K(z) = κ0(z)Λ0 + κ̄(z) · Λ̄ , (5)

Λ0 is the identity matrix, Λ̄ is the vector of Pauli matrices, κ0 =
β0 − jα0 (β0 is the propagation constant, α0 the attenuation
coefficient), and κ̄ = (β̄ − jᾱ)/2, with β̄(z) the birefringence
vector and ᾱ(z) the local dichroism vector, both of which are
real and three-dimensional [27], [28]. Following the analysis
performed in Ref. [29] for quantum systems, we introduce the
transformed wave b(z) as (see Appendix B-A)

b(z) = exp

{
j

∫ z

0

ξ(z′)dz′
}
a(z) , (6)

where

ξ =
Re [a∗Ka]

a∗a
= Re [κ0 + κ̄ · ŝ] = β0 +

1

2
β̄ · ŝ , (7)

and ŝ(z) = a∗(z)Λ̄a(z) is the unit Stokes vector associated to
a(z) and b(z) [27], [28]. Note that ξ does not depend on the
local dichroism. Using (6) we have

ψ(z) = arg[a∗
0a(z)] = −

∫ z

0

ξ(z′)dz′ + arg[a∗
0b(z)] ; (8)

we will see that the first term is equal to σ + χ and accounts only
for the dynamic phases (both scalar and polarization-dependent),
while the second term is the Pancharatnam’s phase, γ.

We now proceed to derive a differential equation for the phase
γ(z) of the Pancharatnam’s connection p(z) = a∗

0b(z). Note
that b(z) obeys the equation

∂b = −j(K − ξΛ0)b = −jHb (9)

therefore, ∂p = −ja∗
0Hb. Moreover, ejγ = p/|p| and hence

∂γ = j(p ∂p∗ − p∗∂p)/(2 |p|2) , (10)

which leads to the final expression (see Appendix B-A)

∂γ = − (ŝ0 × ŝ) · ∂ŝ
2(1 + ŝ0 · ŝ) , (11)
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Fig. 1. The Pancharatnam’s phase γ(z) given by (16) is equal to −1/2 the
solid angle subtended by the shaded area. Solid curve: trajectory of the SOP;
dashed curves: geodesics connecting the reference SOP ŝ0 and the edges of the
SOP trajectory.

where ŝ0 is the unit Stokes vector associated to the reference
wave a0. Summarizing, we have found that the variation per
unit length of the phase ψ(z) = arg[a∗

0a(z)] is

∂ψ = −β0 − 1

2
β̄ · ŝ− (ŝ0 × ŝ) · ∂ŝ

2(1 + ŝ0 · ŝ) , (12)

which is the main theoretical results of this paper.
We recognize that

σ(z) = −
∫ z

0

β0(z
′)dz′ (13)

is the dynamic scalar phase; it does not depend on light polar-
ization but only on the effective refractive index of the mode
propagating in the fiber. The second term yields the dynamic
polarization-dependent phase

χ(z) = −1

2

∫ z

0

β̄(z′) · ŝ(z′)dz′ . (14)

Recalling the example of the polarization maintaining fiber for
which β̄ is constant and eigenstates of polarization exist, we see
that when the SOP is parallel or antiparallel to β̄, the quantity
σ + χ correctly represents the scalar phase delay associated to
the propagation along the fast and slow axes of birefringence.
Equation (14) generalizes this concept for arbitrary birefrin-
gence vectors and arbitrary SOPs. Note that it does not depend
explicitly on the local dichroism vector ᾱ; yet, it depends im-
plicitly on ᾱ through the variation of ŝ as a function of z.

Finally, the third term leads to the Pancharatnam’s phase

γ(z) = −1

2

∫ z

0

[ŝ0 × ŝ(z′)] · ∂ŝ(z′)
1 + ŝ0 · ŝ(z′) dz′ , (15)

which can be rearranged as (see Appendix B-B)

γ(z) = −1

2

∫
C(z)

[ŝ0 × ŝ] · ∂ŝ
1 + ŝ0 · ŝ , (16)

where C(z) is the trajectory that, on the Poincaré sphere, goes
from ŝ0 to ŝ(0) along the shortest geodesic, then follows the
trajectory of the SOP up to ŝ(z), and finally goes back to ŝ0
again along the shortest geodesic (see Fig. 1). This quantity
is purely geometric in the sense that it depends only on the
trajectory C(z) and, as known, it is equal to −1/2 times the

area encircled by the path C(z) (see Appendix B-B). The sign
of this area is taken to be positive when the path is traversed in
counterclockwise direction, negative otherwise. Notice that γ is
implicitly dependent on both β̄ and ᾱ.

We define the polarization-dependent phase ψpol(z) as the
sum of the last two phase terms:

ψpol(z) = χ(z) + γ(z) . (17)

The PDP is the only phase term that depends on (and only on) the
polarization-related aspects of wave propagation, while being
independent of the scalar ones. On the contrary, the dynamic
scalar phase σ is the only phase term independent of polarization
aspect. As an example, a temperature variation occurring along
a fiber do have an impact on σ, whereas it does not affect the
PDP, as long as it is not changing the fiber birefringence (or
dichroism). On the contrary, if for instance the SOP launched
into a fiber is changed, we might expect the output phase to vary
because of the PDP term, while σ will remain unchanged.

Examples of application of this decomposition to simple
optical elements as birefringent waveplates and polarizers are
discussed for completeness in Appendix C.

B. PDP With Respect to a Varying Reference Wave

In the previous sections we have focused the attention to the
case in which the reference wave a0 is fixed. Considering for
example a coherent receiver (either homodyne or heterodyne)
this is indeed a common case. Nevertheless, there is an interest
in analyzing also how the phase of the field a2(z) varies with
respect to another non-fixed field a1(z), which is a function of
z too (we recall that the choice of the parameter z is arbitrary).
Basically, we are interested in the phase of the product p2,1(z) =
a1(z)

∗a2(z).
As examples of application of this problem, we may consider

two fields a1(z) and a2(z) propagating along the same fiber,
but launched with different input SOPs and/or with different
frequencies (so to experience different birefringence). Another
case that falls within this model is suggested in the recent
analysis reported in Ref. [25]. In that paper, the authors used
a phase-sensitive OTDR to measure, as a function of time,
the phase of the light backscattered from a point beyond a
polarization scrambler with respect to the phase of the light
backscattered from a point before it. Strictly speaking, this is
still the case in which the reference wave is constant (in this case
with respect to time); nevertheless, if that kind of measurement
have to be put in practice, it is likely that the SOP will vary over
time at different points along the fiber, so that also the reference
wave cannot be considered fixed.

At a first glance one may (erroneously!) think that the phase
of p2,1(z) is equal to the difference between the phases of
a2(z) and a1(z) evaluated with respect to a common fixed
field a0. Actually, the fact that the Pancharatnam’s connection
is not transitive makes the above solution wrong, and the correct
solution less trivial.

Following the guidelines of Section II-A, we highlight the
dynamic phase term of both fields by factorizing them according
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to (6):

an(z) = exp

{
−j

∫ z

0

ξn(z
′)dz′

}
bn(z) , (18)

where ξn = β0,n + β̄n · ŝ/2 and n = 1, 2. It is then straightfor-
ward to express the phase difference as

ψ2,1(z) = arg(p2,1(z))

=

∫ z

0

ξ1(z
′)dz′ −

∫ z

0

ξ2(z
′)dz′ + arg[b∗1(z)b2(z)] ; (19)

this indicates that for what concerns the dynamic phases, the con-
tribution to arg(p2,1(z)) is indeed simply the difference between
the dynamic phases of each field (i.e. the first two integrals);
differently, the geometric phase is given by the argument ofb∗1b2.
Proceeding in a way similar to what done in Section II-A, we
find that the derivative of the phase γ2,1(z) = arg[b∗1(z)b2(z)]
reads

∂γ2,1 = −1

2

{
(ŝ1 × ŝ2) · ∂ŝ2
1 + ŝ1 · ŝ2 − (ŝ1 × ŝ2) · ∂ŝ1

1 + ŝ1 · ŝ2

}
. (20)

Mathematically, both terms of this expression are similar to the
analogous term of (11); yet, the crucial difference is that in (20)
all the vectors depend on z, whereas in (11) ŝ0 is independent
of z.

The geometrical interpretation of (20) is less straightforward.
Nevertheless, resorting to the arguments presented in Ref. [4],
we can conclude that

γ2,1(z) = − 1

2

∫ z

0

(ŝ1 × ŝ2) · ∂ŝ2
1 + ŝ1 · ŝ2 dz′

+
1

2

∫ z

0

(ŝ1 × ŝ2) · ∂ŝ1
1 + ŝ1 · ŝ2 dz′ . (21)

is equal to the area encircled by the closed path that goes from
ŝ1(0) to ŝ2(0) along the shortest geodesic arc, then follows the
trajectory of ŝ2 up to ŝ2(z), goes to ŝ1(z) along the shortest
geodesic arc, and finally back to ŝ1(0) following the trajectory
of ŝ1.

In conclusion, the phase of a2(z) with respect to a1(z) is
equal to the difference between the dynamic phases of a2 and
those of a1 (both the scalar and polarization-dependent terms),
plus the geometric contribution given by (21).

III. EXPERIMENTAL ANALYSIS

Since measuring phase and polarization of light as a function
of the distance of propagation is not viable, to verify the above
theory we setup an experiment to measure phase and polarization
of the light transmitted across a fiber link as a function of the
angular frequency ω. The idea is to measure the complex wave
a(ω), for ω varying in a given range, and to analyze its phase
with respect to a reference frequency ω0; in fact, we want to
measure and analyze the phase

ψ(ω) = arg
(
a∗(ω0)a(ω)

)
. (22)

In this context, the dynamic polarization-dependent phase χ
given by (14) is

χ(ω) = −1

2

∫ ω

ω0

Ω̄(ω′) · ŝ(ω′)dω′ , (23)

Fig. 2. Schematic of the experimental setup. OFDR, optical frequency domain
reflectometer; PC, polarization controller; PMF, polarization maintaing fiber; R,
reflector.

where Ω̄ is the polarization mode dispersion (PMD) vector of the
fiber link. Similarly, according to (16), the Panchratnam phase
is given by

γ(ω) = −1

2

∫
C(ω)

[ŝ0 × ŝ] · ∂ŝ
1 + ŝ0 · ŝ , (24)

where the only differences are that ŝ0 = ŝ(ω0) and the path C(ω)
is now a function of frequency.

Fig. 2 shows the experimental setup, which is built around
a commercial optical frequency domain reflectometer (OFDR;
Luna OBR 4600). The use of a commercial OFDR simplifies the
experiment, because the device guarantees the linearity of the
frequency sweep, includes a polarization diversity receiver that
measures a(ω), and enables performing the measurements on
a relatively short time scale of about two seconds. The OFDR
is connected to an optical circuit made of two circulators and
one polarization controller (PC1), which is needed to change
the SOP of the light launched into the fiber, without affect-
ing that of the backscattered light. This control of the input
SOP is necessary to calculate the PMD vector of the fiber
link [30]. In order to have nontrivial polarization effects, the fiber
link should have non-negligible polarization mode dispersion
(PMD). For this reason, the link is made of a polarization
maintaining fiber (PMF; 5m long for about 6.2 ps of differential
group delay), followed by a second polarization controller (PC2)
and a reflector (R). This reflector (basically, a fiber-coupled
mirror) makes Rayleigh scattering from the fiber negligible.
Moreover, the polarization controllers are made with Lefevre’s
loops [31], and as a consequence, the total PMD of link includes
the effects of the two circulators (estimated in the order of
0.1 ps to 0.2 ps per passage) and of the double passage along the
PMF, making the frequency dependence of the total PMD vector
nontrivial.

Five different input SOPs have been launched in the fiber link
and the corresponding reflected complex light waves a(ω) have
been measured over 4.5THz around 1550 nm. The frequency
was scanned at about 20 nm/s, so the measurements lasted about
1.8 s each. Using these measurements, the transmitted SOPs and
the PMD vector Ω̄(ω) of the link have been calculated according
to the method described in Ref. [30].

The upper graph of Fig. 3 shows the measured differential
group delay (DGD), Δτ = |Ω̄|, whereas Fig. 4(a) shows the
vector Ω̄/Δτ (i.e. the principal state of polarization [27]) drawn
on the Poincaré sphere. Similarly, the lower graph of Fig. 3
shows, as an example, the second component of the transmitted
SOP for the first input SOP; the corresponding complete SOP
trajectory ŝ(ω) is shown in Fig. 4(b) as a function of frequency.
Using these data, the different terms of the PDP have been
calculated, adopting as reference the field transmitted at the
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Fig. 3. DGD of the fiber link (upper graph) and second component of the
transmitted SOP (lower graph) measured as a function of frequency.

Fig. 4. Trajectory on the Poincaré sphere as a function of frequency of (a) the
principal state of polarization of the fiber link and (b) one of the transmitted
SOP (the ŝ2 axis is pointing beyond the spheres in both cases). The black star
indicate the SOP of the field used as a reference for the calculation of the phase
terms.

lowest frequency, whose SOP is indicated by the star in Fig. 4(b).
The blue curve in Fig. 5(a) represents the phase ψ(ω) calculated
according to (22). The quantity is characterized by marked os-
cillations with the same period as the DGD, suggesting that they
are due to polarization effects. In the same figure, the red curve
represents the Pancharatnam’s phase γ(ω) calculated according
to (24); again the quantity shows similar marked oscillations.
Finally, the green curve is the dynamic polarization-dependent
phase χ(ω), calculated using (23); while here the oscillations
are less marked, they still have the same period. According to
(3), the dynamic scalar phase is σ = ψ − χ− γ, and it is shown
in Fig. 5(a) by the black curve. In practice, σ(ω) represents
the scalar phase effect due to the environmental perturbations
acting on the fiber circuit during the measurement, which we
recall lasted about 1.8 s. It is remarkable that, some residual
oscillations apart likely due to environmental noise, σ does
not show oscillations evidently related to polarization effects,
confirming its scalar nature.

Fig. 5. Phases measured for two different input SOP, (a) and (b), respectively,
plotted as a function of the frequencyω/(2π). For both graphs, curves represent
the phase ψ = arg(a∗(ω0)a(ω)), the Pancharatnam’s phase γ, the dynamic
polarization-dependent phase χ, and the dynamic scalar phase σ, as indicated
on the graphs. Graphs share the same units on the vertical axes.

Fig. 5(b) shows a similar analysis performed on another input
SOP. As we see, the above remarks and conclusions are con-
firmed, supporting the proposed decomposition of the phase ψ
in terms of polarization-dependent and polarization-independent
terms.

IV. MULTIMODE AND MULTICORE FIBERS

The above analysis can be extended to multimode propaga-
tion, including the case of multicore fibers, although there is no
simple geometrical interpretation.

The propagation of M modes (counting both spatial and
polarization modes) can be described by the M -dimensional
generalized Jones vector a (also called state vector by some
authors [28]), which represents amplitude and phase of the
modes. It is useful to introduce the coherence matrix associated
to a, defined as A = aa∗. The propagation of the modes along
the fiber is still described by (4), whereK(z) is now theM ×M
complex coupling matrix (as before, we consider without loss
of generality the dependence of a on z; yet the following
analysis holds also for any other dependence). Similarly, also
the transformed vector b(z) defined by (6) can be generalized
to the M -dimensional case in a straightforward way, with ξ
expressed as

ξ =
Re [a∗Ka]

a∗a
=

Re [tr(KA)]

tr(A)
, (25)

where tr(X) is the trace of a matrix X . As discussed in
Refs. [29] and [32], ξ is the dynamic phase variation per unit
length of the wave a. Similarly to the single-mode case, it can
be decomposed in a scalar term and in a mode-dependent term.
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Actually, the coherence matrix A can be decomposed as

A =
1

M
(A0Λ0 + Ā · Λ̄) , (26)

where now Λ0 is the M -dimensional identity matrix, Λ̄ is
the (M2 − 1)-dimensional vector of generalized Pauli matri-
ces [28], [33], A0 = |a|2, and the vector Ā = a∗Λ̄a is the
generalized Stokes vector associated to a [28]. Analogously:

K = κ0Λ0 + κ̄ · Λ̄ , (27)

where κ0 = β0 − jα0, β0 is the scalar phase delay per unit
length, α0 is the scalar attenuation coefficient, and

κ̄ =
1

M
(β̄ − jᾱ) , (28)

where β̄ and ᾱ are theM -dimensional generalized birefringence
and local dichroism vectors, respectively [28]. Using these de-
compositions it can be proved that

ξ = β0 +
β̄ · Ā
MA0

, (29)

where the first term accounts for the dynamic scalar phase σ and
the second one accounts for the dynamic mode-dependent phase
χ, similarly to (13) and (14), respectively.

Owing to the applied transformation, the vector b(z) is par-
allel transported [29], [32]; therefore, the phase γ(z) of b(z)
with respect to a reference a0 is a purely geometric phase, and
can be considered a generalized Pancharatnam’s phase [?], [34].
Following the guidelines of Section II-A, we consider the z
derivative of phase γ(z) of p(z) = a∗

0b(z), which is given by
(10) and can be rearranged as (see Appendix B-A)

∂γ = − tr(AH∗A0) + tr(A0HA)

2 tr(AA0)
, (30)

where A0 is the coherence matrix associated to a0, H is as
before defined asH = K − ξΛ0 and we used the fact thatA =
aa∗ = bb∗. The generalized Stokes vectors do not have most of
the properties of the standard Stokes vectors (note for example
thatA0 is not the modulus of Ā) [28]; as a consequence, it is not
possible to reduce (30) to a simpler expression similar to (11).

While the above considerations make explicit reference to
optical fibers, they can in principle be applied also to any beam
made of a superposition of propagating modes [35], provided
that the optical components traversed by the beam are properly
described in terms of their mode-coupling matrices.

V. CONCLUSION

In this article we have analyzed the phase of a field transmitted
across an optical fiber, highlighting how this phase can be
decomposed into a scalar term and a polarization-dependent
term, which is made itself of two contributions. The first one
is the well known Pancharatnam’s phase, which is geometric
in nature; it depends explicitly only on the trajectory that the
SOP draws on the Poincaré sphere, as given in (16). The second
term is a dynamic phase depending on both the SOP and the
birefringence of the fiber, according (14).

All these phase terms are implicitly taken into account by
any model or experimental analysis based on the formalism of
Jones matrices. Nevertheless, we believe that highlighting them

Fig. 6. Sketch of the trajectories tracked by the electric field for some polar-
ization states. The gray dots indicate the field position at a given time t0; the red
arrows suggest the direction of motion as time flows.

can contribute to a better understanding of coherent and polari-
metric optical systems. For example, in a coherent transmission
system we should expect that random fluctuations of polarization
contribute to phase noise. Another possible use of these results
is in the framework of fiber sensing, specifically regarding the
interferometric sensors and the polarimetric ones. To the best of
our knowledge, almost always the former neglect polarization
and the latter neglect phase; this despite the fact that interfer-
ometers have to cope with polarization and often polarimeters
are based on coherent receivers. It seems reasonable to foresee
that the phase decomposition analyzed here might be used to
improve their accuracy.

The analysis reported in this article is mainly focused on
singlemode fibers and on polarization variation as a function
of either distance of propagation or frequency. Nevertheless, the
theoretical framework has a much wider validity and can be
applied to different scenarios. Here, we extended the analysis to
multimode and multi-core fibers, showing that, while lacking an
easy geometrical interpretation, the decomposition of the phase
in a scalar term and a mode-dependent one is still possible.

APPENDIX A
PANCHARATNAM’S CONNECTION

Consider Fig. 6; comparing graphs (a) and (b) it is reasonable
to state that the fields in (a) are out of phase, whereas those
in (b) are in phase. Similarly, the fields in (c) are out of phase,
while those in (d) are in phase. Pancharatnam’s connectiona∗

1a2

captures this concept; actually, any wave a2 can be decomposed
in a wave parallel to a1 and a wave orthogonal to it. Clearly, the
latter one does not contribute to arg(a∗

1a2), so Pancharatnam
connection measures the phase difference between the compo-
nent of a2 projected on a1 and a1 itself, reducing the problem
of assessing the phase difference between vector waves back
to a problem of phase difference between scalar (co-polarized)
waves, for which we know a familiar answer. A consequence of
the above observation is that as long as the wave a2 is changed
only in the component orthogonal to a1, the phase difference
between the two waves does not change. As an example, consider
Fig. 6(b); if we change the ellipticity of the elliptical polarization
by changing the length of the axis orthogonal to the linear
polarization, the phase difference between the two waves does
not change. On the Poincaré sphere, changing the ellipticity
corresponds to moving along a meridian, which happens to be
a great circle of the sphere. This result has in fact a general
validity: Pancharatnam’s connection is invariant with respect to
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Fig. 7. Example of the non-transitivity of Pancharatnam phase.

changes of the polarization state that occur along great circles
(geodesics) of the Poincaré sphere [29].

Pancharatnam’s connection is not transitive. Regarding scalar
or co-polarized waves it is evident that if a wave A is in phase
with a waveB, andB is in phase withC, thenA is in phase with
C; hence the transitivity. This does not happen for vector waves,
and a simple counter example is given in Fig. 7(a)–(c): waves
A and B are in phase, and so are B and C; yet, waves A and C
are clearly out of phase. It is interesting to follow the variations
among the states of polarization just considered on the Poincaré
sphere (Fig. 7(d)). We can move from A to B by collapsing
the circle along the axis orthogonal to B; this corresponds to
moving along the meridian passing through points A and B on
the sphere; as we have seen, this does not induce variation of the
phase. Moving from B to C corresponds to moving along the
equator of the sphere; again a great circle; again no phase change.
Finally, from C we go back to A along another meridian, again
without phase variation. Nevertheless, as shown in Fig. 7(c),
at the end of the process the waves are out of phase. It has
been proved that this phase shift is equal to −Ω/2, where Ω is
the area encircled by the trajectory (or, equivalently, the solid
angle subtended by that area). This result has been generalized
to arbitrary open trajectories, provided that they are closed by a
geodesic [29]. In conclusion, when the polarization goes through
a series of transformations, at the end of the process the wave
has accrued a phase delay equal to −Ω/2, where Ω is the area
encircled by the trajectory that the transformations draw on
the Poincaré sphere, closed by the geodesic connecting the end
points of the trajectory. This phase is purely geometric and it is
called Pancharatnam’s phase.

APPENDIX B
MATHEMATICAL PROOFS

A. Derivation of (11) and (30)

According to the transformation given by (6) and (7), the
complex vector b(z) obeys (9) and hence the condition

Im
[
b̃
∗
∂b̃

]
= Im [−j (a∗Qa− Re [a∗Qa])] = 0 . (31)

As remarked in Refs. [29], [32], this condition is a parallel
transport law, in the sense that b(z) does not accumulate a
dynamical phase; this leads to conclude that ξ defined in (7)
represents the dynamical phase delay per unit length. Recalling
that p(z) = a∗

0b(z) and ejγ = p/|p|, and using (9) and (10), we
have

p ∂p∗ − p∗∂p = ja∗
0(HA+CA∗)a0 (32)

= j tr(AH∗A0) + j tr(A0HA) , (33)

where A(z) = b(z)b∗(z) = a(z)a∗(z) is the coherence matrix
associated to a(z), b(z), and A0 that associated to a0, and we
used the properties of the trace tr(·) of matrices. Exploiting the
decomposition (3) for the 2-dimensional case, we can write

A(z) =
1

2
P (z)

(
Λ0 + ŝ(z) · Λ̄)

, (34)

with P (z) = |a(z)|2 and ŝ(z) the unit Stokes vector associated
to a(z). Let us set for brevity H = h0Λ0 + κ̄ · Λ̄, with h0 =
κ0 − γ; neglecting the factor P/2 we have:

HA ∝ (h0Λ0 + κ̄ · Λ̄)(Λ0 + ŝ · Λ̄)

= (h0 + κ̄ · ŝ)Λ0 + (h0ŝ+ κ̄+ j κ̄× ŝ) · Λ̄ , (35)

where we used the property of 2-dimensional Pauli matri-
ces [36]. Since AH∗ = (HA)∗ we readily find

HA+AH∗ ∝ 2Re [h0 + κ̄ · ŝ]Λ0

+ 2Re [h0ŝ+ κ̄] · Λ̄− 2(Im [κ̄]× ŝ) · Λ̄ , (36)

and hence

p ∂p∗ − p∗∂p = jP {Re [h0 + κ̄ · ŝ]
+ Re [h0ŝ+ κ̄] · ŝ0 − (Im [κ̄]× ŝ) · ŝ0} ,

(37)

where ŝ0 is the SOP associated to a0 and we assumed without
loss of generality that |a0| = 1. Now notice that h0 = κ0 − ξ =
−jα0 − (β̄ · ŝ)/2; therefore,

Re [h0 + κ̄ · ŝ] = Re

[
−jα0 − j

1

2
ᾱ · ŝ

]
= 0 , (38)

Re [h0ŝ+ κ̄] = −1

2
(β̄ · ŝ)ŝ+ 1

2
β̄ . (39)

Moreover

|p|2 = a∗
0Aa0 = tr(AA0) =

P

2
(1 + ŝ · ŝ0) , (40)

so putting everything back together we reach (30) and find:

∂γ =
[(β̄ · ŝ)ŝ− β̄ − ᾱ× ŝ] · ŝ0

2(1 + ŝ · ŝ0) = (41)

= − [(β̄ × ŝ)− ᾱ] · (ŝ0 × ŝ)

2(1 + ŝ · ŝ0) . (42)

Finally, recalling that1

∂ŝ = β̄ × ŝ+ ŝ× ŝ× ᾱ , (43)

we reach (11).

B. Geometrical Interpretation of (11) and (16)

We now prove that when integrated along the fiber length,
i.e. from z = 0 to L, (11) yields a value equal to −1/2 times
the area on the Poincaré sphere encircled by the trajectory that
goes from ŝ0 to ŝ(0) along the geodesic, then follows ŝ(z)
and finally goes back to ŝ0 along the geodesic that connects
ŝ(L) to ŝ0 (see Fig. 8). Note that, the “area” should be taken
positive if the trajectory is “right handed”, i.e. consistent with a
counterclockwise rotation around ŝ0.

Consider the generic infinitesimal area, dΩ, delimited by the
geodesic from ŝ0 to ŝ(z), the section of SOP trajectory going

1The plus sign in this equation stems from the definition κ̄ = (β̄ − ᾱ)/2
introduced in (5). Note that some authors define ᾱ with the opposite sign.
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Fig. 8. Representation of the infinitesimal surface spanned by an infinitesimal
variation of the SOP.

from ŝ(z) to ŝ(z + dz), and the geodesic from ŝ(z + dz) to ŝ0
(Fig. 8). This area can be decomposed in two parts: the first one,
dΩ1 (darker in the figure), is obtained by rotating ŝ(z) around
ŝ0 until the geodesic passing through ŝ0 and ŝ(z + dz) is meet;
the second part, dΩ2, is simply the rest. Since dΩ1 is obtained
by a rotation around ŝ0, it is actually a wedge of a spherical cap
and its area is

dΩ1 = μ0(1− cos θ) = μ0

(
1− ŝ0 · ŝ(z)

)
, (44)

whereμ0 is the angle at the vertex ŝ0 and θ is the angle subtended
by ŝ0 and ŝ(z). The angle μ0 is the angle subtended by the plane
defined by ŝ0 and ŝ(z) and the plane defined by ŝ0 and ŝ(z + dz);
therefore, it is also the angle subtended by the normals to those
planes. Mathematically, we have

|sinμ0| =
∣∣(ŝ0 × ŝ)× (

ŝ0 × (ŝ+ dŝ)
)∣∣

|ŝ0 × ŝ| |ŝ0 × (ŝ+ dŝ)| ≈ |dŝ · (ŝ0 × ŝ)|
|ŝ0 × ŝ|2 ,

(45)
where we set ŝ(z + dz) ≈ ŝ+ dŝ. Considering that μ0 is in-
finitesimal and that it is positive if dŝ “makes the plane {ŝ0, ŝ}
rotate” counterclockwise around ŝ0, we can write

μ0 ≈ dŝ · (ŝ0 × ŝ)

|ŝ0 × ŝ|2 =
dŝ · (ŝ0 × ŝ)

1− (ŝ0 · ŝ)2 . (46)

Combining this with (44) we get

dΩ1 ≈ dŝ · (ŝ0 × ŝ)

1 + ŝ0 · ŝ . (47)

Regarding the second part of the area, note that as dz tends to 0,
the area collapses in a point, approximating a flat triangle. More
specifically, all the sides of this triangle are proportional to |dŝ|,
therefore the area dΩ2 is an infinitesimal of order 2, whereas
dΩ1 is infinitesimal of order 1. As a consequence, dΩ2 plays no
role in the Riemann sum that leads to the integration, proving
the starting hypothesis.

APPENDIX C
PDP IN SIMPLE WAVEPLATES

We analyze here for completeness the PDP in simple optical
waveguides as birefringent waveplates and ideal polarizers.

Fig. 9. Polarization-dependent phase accumulated by a light beam as it traverse
a birefringence waveplate with different thicknesses: (1) L = LB , full wave-
plate; (2) L = LB/10; (3) L = LB/4, quarter waveplate; (4) L = 2LB/5;
(5) L = LB/2, half waveplate.

A. Birefringent Waveplate

An interesting case of study is that of a birefringent waveplate
with β̄ constant and ᾱ = 0; this is the typical elementary building
block in the numerical representation of birefringent fibers [27].
We are interested in studying how the phase of the output wave
changes with respect to the input one; so we set a0 = a(0)
— and hence ŝ0 = ŝ(0). Then, the transmitted SOP can be
expressed as [27]

ŝ(z) = ŝ0 + (sinβz)(β̂ × ŝ0) + (1− cosβz)(β̂ × β̂ × ŝ0) ,
(48)

where β = |β̄|, and β̂ = β̄/β. The dynamic polarization-
dependent phase reads simply

χ(z) = −1

2
(β cos θ)z (49)

where θ is the (constant) angle subtended by β̄ and ŝ0. Regarding
the geometric term, using (48) and (16), and recalling that ∂ŝ =
β̄ × ŝ, we find

∂γ = −β
2

(1− cosβz) sin2 θ cos θ

2− (1− cosβz) sin2 θ
. (50)

Integrating this expression and summing the result to χ(z) we
finally reach the expression of the PDP of a waveplate:

ψpol = − arctan (cos θ · tan (πL/LB)) , (51)

where L is the length of the waveplate and LB = 2π/β is its
beat length. Fig. 9 shows ψpol as a function of θ, for different
lengths L; there are some interesting features to comment. The
so called full-wave plate (FWP, curve (1) in the figure) has
thickness equal to an integer multiple of LB , hence it does
not vary the polarization; we see here that it doesn’t vary the
PDP neither. Nevertheless, the FWP has a non-zero geometric
phase, which is however exactly compensated by the dynamic
polarization-dependent term [37]. The half-wave plate (HWP,
curve (5)) induces a θ-independent phase shift, which however
abruptly changes sign as soon as the sign of cos θ changes. Dif-
ferently, the PDP of a quarter-wave plate (QWP, curve (3)) varies
smoothly with θ. The extreme values of ψpol are obtained for
either θ = 0 or θ = π, which correspond to the input SOP being
aligned with one of the two optical axes of the waveplate—i.e.
the conditions in which the input SOP is not changed.
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B. Polarizer

A polarizer can be modelled as a device with constant dichro-
ism axes and negligible birefringence, which correspond to
setting ᾱ constant with respect to z and β̄ = 0. In this case,
the propagation across the waveplate corresponds to moving
the SOP on the Poincaré sphere along the great circle passing
through ᾱ and the input SOP, ŝ0; hence the propagation across
an ideal polarizer does not induce Pancharatnam’s phase.

To prove this, notice that if ŝ moves along the great circle
passing through ŝ0 and ᾱ, then ŝ must be always orthogonal to
ŝ0 × ᾱ. Using (43) with β̄ = 0, it is straightforward to show that

∂
[
(ŝ0 × ᾱ) · ŝ] = (ᾱ · ŝ)[(ŝ0 × ᾱ) · ŝ] ; (52)

for z = 0 we have ŝ(0) = ŝ0 and (ŝ0 × ᾱ) · ŝ(0) = 0, hence
∂
[
(ŝ0 × ᾱ) · ŝ(z = 0)

]
= 0, proving that (ŝ0 × ᾱ) · ŝ(z) = 0 is

the solution of (52), and thus that the trajectory is the said great
circle. Further calculation would show that the SOP tends to be
parallel to −ᾱ, which is the SOP with least attenuation.

Incidentally, notice also that this result is (of course) consis-
tent with the fact that moving along a geodesic does not change
the Pancharatnam’s phase. Indeed, for β̄ = 0 and using again
(43), (11) yields

∂γ =
(ŝ0 × ᾱ) · ŝ
1 + ŝ · ŝ0 , (53)

which is 0 if ᾱ is constant, as proved above.
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