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Abstract—Obtaining telemetry data from the optical signal with-
out demodulation at intermediate nodes of optical networks can be
achieved using optical spectrum analyzers. The information gained
from the spectrum analysis can be further used for different appli-
cations, which include quality of transmission estimation (QoT).
Accurate QoT estimation allows to maximize network capacity
and minimize margins either through reconfiguration or during
the deployment. Analytical solutions for QoT estimation require
exact knowledge of the parameters (e.g. fiber lengths, attenuation,
non-linearity coefficients), which are not always exactly known in
practice especially in multi-vendor networks. Machine learning has
shown to be able to handle such parameter-agnostic scenarios. In
this paper, we experimentally compare different machine learning
based QoT estimators to our developed spectral data driven estima-
tors as well as comparing it to a new approach of using automated
feature extraction from the spectrum by a variational autoencoder
(VAE). The VAE-based estimation approach is experimentally val-
idated and the required optical spectrum analyzer (OSA) resolu-
tions are investigated. The spectral data driven estimators show
to be superior regarding both R2-score and mean absolute error.
Furthermore, the automated feature extraction using the VAE is
shown to be a suitable option for accurate optical performance
monitoring without demodulation and QoT estimation.

Index Terms—Agnostic networks, optical performance
monitoring, quality of transmission estimation, recurrent neural
networks, variational autoencoder.

I. INTRODUCTION

O PTICAL networks have changed enormously to address
the issue of the growing bandwidth demand. In this re-

gard, new flexible add-drop multiplexers enable more versatile
network operation as well as the implementation of flexible
frequency grids. This leads to more sophisticated, configurable,
and adaptable networks. Due to the increase in network com-
plexity, monitoring and optimizing performance is of increasing
importance. Today’s optical networks ensure the guarantee of
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service level agreements and promised capacity by including
large operating margins which include unallocated system and
design margins [1]. However, the disadvantage of such a con-
servative approach is that large margins lead to wasted capacity.
In this context, accurate quality of transmission (QoT) esti-
mation allows to maximize the capacity and may enable full
self-management of the networks in the future by ensuring low-
margin optical networking [2]. Multi-vendor optical networks
make accurate QoT estimation a nontrivial task since exact
equipment parameters are considered confidential or are in gen-
eral not exactly known. Due to this, such a multi-vendor network
can be considered a so-called exact component parameter agnos-
tic network scenario. On top of the not exactly known component
parameters, the parameter uncertainties and fiber nonlinearities
increase the complexity of the QoT estimation task [3]. The
signal quality, represented by the signal-to-noise-ratio (SNR),
depends not only on the linear amplified spontaneous emission
(ASE) noise from the Erbium-doped fiber amplifiers (EDFAs)
in the network but also on the signal power, the power of the
individual channels and the channel spacing. These influence
the nonlinearities that distort the channel and lead to intersymbol
and interchannel interference.

Different approaches for QoT estimation have been proposed
over the past decade. The main goal has been to estimate the
influence of the nonlinear impairments in a link. When using
these estimation techniques, there is always a trade-off between
accuracy and speed. The most accurate way of estimating the
QoT is a full-fiber propagation simulation using the split-step
Fourier method (SSFM) [4]. However, the SSFM involves high
computational complexity and thus requires a high computation
time, which renders this technique inapplicable for a real-time
implementation.

Analytical QoT estimation tools, such as the Gaussian noise
(GN) model [5], offer a low computation time and generally ac-
ceptable accuracy, although not being as accurate as the SSFM.
The numerical integration to obtain the nonlinear interference
has been most commonly used. It typically requires a computa-
tion time of a few minutes per wavelength division multiplexed
(WDM) channel [3], accumulating to a few hours for full WDM
systems consisting of several hundred channels. Extensions of
the GN model like the incoherent GN (IGN) model or close-form
approaches use approximations to reduce the computational
effort with a reasonable accuracy penalty. The major downside
of both simulative and analytical approaches is, however, that all
link parameters have to be exactly known [6], [7], e.g. the span
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lengths, fiber attenuation, chromatic dispersion, nonlinear coef-
ficients, EDFA noise figures and non-ideal transmitter and the
receiver characteristics. These parameter uncertainties generally
lead to a less accurate QoT estimation [8].

A combination of both high accuracy and fast computation
time is promised by the use of machine learning (ML) for
QoT estimation purposes. An ML-based estimator is trained
on certain input features which are correlated to the desired
estimation target. This training dataset can be obtained either
through full-fiber propagation simulations, i.e. SSFM, analyti-
cal models, e.g. GN-models, or experiments and field studies.
However, it has to be noted that the ML-based estimator can
not be more accurate than the underlying simulation, since the
ML-algorithm approximates the target metric from the input
features. The training of such an ML-algorithm can take between
minutes up to several days depending on the training dataset
size, the chosen ML-algorithm, and its dimensions. Once the
algorithm is trained, however, an estimation takes only a fraction
of a second making it applicable to a real-time environment.

Recently, different approaches were investigated including
analytical [5], machine learning-based techniques [9], [10], and
hybrid approaches [11], [12] to evaluate the performance of a
certain lightpath in a system, based on different metrics. The
choice of the estimator output, i.e. the performance metric,
is the key enabler for responding proactively to performance
degradations or potential failures in optical networks. The main
QoT metric of interest to the network designer is the lightpath
bit error rate (BER), which determines if the path is acceptable
performance-wise or not [2]. Since forward error correction
(FEC) is used in modern transmission systems the BER is usually
expressed as the pre-FEC BER. However, the BER can only
be obtained after the reception of the signal, which involves
optical-electrical conversion and application of digital signal
processing (DSP). By deploying optical spectrum analyzers
(OSAs), it is possible to monitor the health of the optical system
without demodulation permitting proactive maintenance and
optimization of margins [13]. Measuring the optical signal-to-
noise-ratio (OSNR) with the help of an OSA, however, enables
network operators to validate the expected performance from
the network planning stage without demodulation since the BER
or Q-factor are closely connected to the OSNR. Nevertheless,
measuring the OSNR of a WDM channel without interrupting
the service would require dedicated hardware and algorithms.
In addition to the nonlinearities from the optical link, the OSNR
also includes impairments from the transceiver since the differ-
ent parts of the noise term of the OSNR cannot be distinguished.
This limitation leads to the definition of the generalized-OSNR
(GOSNR) which is defined as the OSNR value at which the
same BER is reached in the back-to-back transmission (back-
trace method) [14]. Thus, the GOSNR captures only the optical
impairments induced by the optical link including noise and
nonlinear interference. Furthermore, the GOSNR is estimated
for the destination node only due to the limitations of obtaining
the OSNR within a dense WDM signal. In [15], we showed
that including spectral features into an ML-based QoT estimator
is beneficial for the estimation accuracy in exact component
parameter agnostic networking scenarios. Furthermore, in [16]
the estimator is shown to be generalizable towards feature

changes due to the heuristically distributed training features as
well as being capable of properly reacting to (previously unseen)
experimental data.

In this paper, we extend our work from [15] and [16] by
comparing the robust ML-based QoT estimator to other ML
algorithms, i.e. a traditional neural network, a support vector
regressor (SVR) [17] with a radial bias function kernel, a deci-
sion tree regressor (CLF) [18], a XGradientBoost (XGB) regres-
sor [19], and a one-dimensional convolutional neural network
(CNN) [20]. On top of that, we set the topic into context and
provide more information on the underlying ML algorithms
as well as comparing the approaches with the new approach
of using automated feature extraction from the spectrum by a
variational autoencoder (VAE). We use extensive simulations
based on the SSFM with heuristically varying input parameters
based on realistic assumptions and margins to obtain a compre-
hensive data set for the training of the designed ML-algorithm.
The experimental comparison of the ML-algorithms shows the
superiority of spectral based estimators over to non-spectral
estimators. Furthermore, the VAE shows a slightly better esti-
mation performance than the long-short term memory (LSTM)
neural network (NN) hybrid using manually selected features.
The automated feature extraction and spectrum interpretation
could pave the way towards fully automated optical networks
and network management. In the experiments, we show that the
VAE reaches a good estimation performance even on an OSA
resolution of only 50 pm making it a good and cost-efficient
solution for performance monitoring without demodulation of
the channels.

The remainder of this paper is organized as follows: First, a
brief overview of the theory of the variational autoencoder with
respect to the proposed approach is given in Section II. Sec-
tion III contains the description of the proposed QoT estimation
approach including the simulation model and the design of the
ML-based estimator. Furthermore, the estimator is compared
to other frequently used ML-algorithms for QoT estimation in
Section IV, and we validate the estimator trained entirely on
simulation data by testing it on data obtained from experiments
as well as investigating its performance depending on the reso-
lution obtained from the OSAs. A conclusion will be drawn in
Section V.

II. BACKGROUND

Traditional feed-forward neural networks (FF-NN) are only
connected, as the name suggests, in the forward direction, from
the input layer through each hidden layer to the output without
cyclic connections. The absence of circles enables efficient
learning with the backpropagation algorithm, but the fixed size
of the layers is not well suited to processing data that is se-
quential in nature and variable in length. Sequential data can be
processed with recurrent neural networks (RNNs) by inputting
each symbol of the sequence individually and storing internal
states between steps [21]. These networks can be trained with the
backpropagation through time (BPTT) algorithm by unfolding
the network, also allowing for recurrent/cyclic connections.
However, this method often suffers from either vanishing or
exploding gradients for long-term dependencies within the data.
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Fig. 1. Basic structure of an LSTM cell; xt: input at time t, ht−1: output of
LSTM unit (last hidden state) at time t− 1, ct−1: cell state at time t− 1, ct:
updated cell state, ht: output (new hidden state). Each gate has a certain bias
value b.

In this section, the theoretical concepts of the RNNs used for
the QoT estimation are briefly explained. The models explained
in this section both aim to overcome the vanishing gradient
problem.

Feature engineering is an essential part of the preprocessing
of data for the use in ML-algorithms. Especially the decision on,
which features to use and the dimension reduction of the input
data is of high interest. Both of these tasks can be solved using
an autoencoder, which is briefly introduced in this section.

A. Long-Short Term Memory (LSTM)

Long-short term memory (LSTM) networks were first pro-
posed by Hochreiter and Schmidhuber [22]. Since then, LSTMs
are under the most popular and efficient methods for artificially
understanding sequential dependencies of input features. The
basic structure is depicted in Fig. 1. In an LSTM - compared
to a traditional RNN - the structure of each layer is expanded
to memory cells whose inputs and outputs are controlled by
gates. These gates control the flow of information and preserve
information from previous time steps [22]. An LSTM cell con-
sists of input, forget, and output gates and a cell activation
component [21]. The gates control the flow of information
between the memory cells depending on previous inputs into
the network. The different gates and their weights at the time
step t are defined as [22]:

it = σ(Wi
Ixt +Wi

Hht−1 +Wi
Act−1 + bi), (1)

ft = σ(Wf
Ixt +Wf

Hht−1 +Wf
Act−1 + bf ), (2)

ot = σ(Wo
Ixt +Wo

Hht−1 +Wf
Act−1 + bo), (3)

c̃t = tanh(Wc
Ixt +Wc

Hht−1 + bc), (4)

ct = itc̃t + ftct−1, (5)

ht = ottanh(ct), (6)

where WI is the weight matrix from the input layer to the
corresponding gate (i: input layer, f : forget gate, c: cell gate, o:
output gate),WH denotes the weight matrix from hidden state to
the corresponding gate, WA represents the weight matrix from
cell activation to the corresponding gate, x is the input vector,

Fig. 2. Basic structure of a GRU cell; xt: input at time t, ht−1: output of
GRU unit (last hidden state) at time t− 1, ht: output (new hidden state) at time
t. Each gate has a certain bias value b.

h denotes the output vector, c̃ represents the candidate hidden
state and b is the bias of the corresponding gate. σ(·) is the
activation function of the gate and tanh(·) is the output activation
function.

B. Gated Recurrent Unit (GRU)

While LSTMs takle the problem of vanishing or exploding
gradients, they require a high amount of memory due to multiple
memory cells in the architecture. Similar to the LSTM unit, the
GRU, which was first introduced by Cho et al. in 2014 [23],
has gating units that modulate the flow of information within
the unit, but without having separate memory cells. The basic
structure of a GRU cell is depicted in Fig. 2. Unlike the LSTM,
the GRU exposes the entire state at each time step by forming a
linear sum between the existing state and the newly calculated
state [21], [24]. In a similar manner to the LSTM gates equations,
the updated GRU cells at each time step t are given as [24]:

zt = σ(Wzxt +Wzht−1 + bz), (7)

rt = σ(Wrxt +Wrht−1 + br), (8)

h̃t = tanh(Whxt +Wh(rt � ht−1) + bh), (9)

ht = zt � ht−1 + (1− zt)� h̃t, (10)

where z is the the update gate, r denotes the reset gate, x
represents the input vector, h is the output vector and W and b
represent the weight matrix of the corresponding gate and the
bias vector of the corresponding gate, respectively. As for the
LSTM, σ(·) represents the activation function of the gate and
tanh(·) is the output activation function. In addition, the ‘�’
denotes a element-wise product operation.

In [25], the performance of LSTMs and GRUs are compared.
Several similarities and differences are presented, concluding
that none of the models is inherently better than the other. Both
models perform better than the other only on certain tasks.
However, the GRU requires less memory than the LSTM in
general.

C. Variational Autoencoder

Autoencoders (AEs) are an artificial neural network archi-
tecture consisting of an encoder E : X → Z and a decoder
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Fig. 3. Basic structure of a VAE; x: input vector, z: multivariate latent vector,
x̂: reconstructed input vector; ε: sample of distribution.

networkD : Z → X withZ ∈ Rn jointly trained to reconstruct
unlabeled data X ∈ Rm distributed with an unknown probabil-
ity distribution P (X ). By choosing a lower dimension n < m
with n,m ∈ N+ for the multivariate latent vector z = E(x),
x ∈ X , the encoder E is incentivised to learn an encoding of
the input data X that enables reconstruction of the data with the
decoder x̂ = D(z), z ∈ Z . This concept enables applications
such as dimensionality reduction of data by using z instead of
x, denoising by using x̂ and anomaly detection by measuring
the difference between x and x̂.

Kingma and Welling [26] introduced Variational Autoen-
coders (VAEs) with a similar architecture to AEs, but with the
important difference that the objective is to approximate the
unknown distribution P of the data with a prior distribution pθ
parametrized with θ. In practice, the latent vector z is assumed
to be a multivariate Gaussian distribution, which, in addition
to the applications of conventional AEs, allows the generation
of new data by decoding samples from this distribution with
the probabilistic decoder. Also, due to this, the VAE appears
to be more generalizable than conventional AEs. Since the true
posterior pθ(z|x) is often intractable, it is approximated with
a function qφ(z|x) ≈ pθ(z|x) parametrized by the probabilistic
encoder Eφ(x). The multivariate latent vector is calculated by

z = μ+ σ2 � ε, (11)

where μ is the mean value, σ2 is the standard deviation and
ε is the sample of the distribution. The basic structure of an
VAE can be seen in Fig. 3. The target during training is to find
the optimal parameters θ and φ to reduce the reconstruction
error at the decoder output while also maintaining the latent
space probability distribution. By using the encoder of a well-
trained autoencoder, the input dimensionm is reduced ton (n <
m) without losing much information. The latent space is thus a
selection of reasonable features to describe the input. This can
significantly reduce the effort of manual feature selection for the
input of other ML-algorithms.

III. SPECTRAL DATA DRIVEN QOT ESTIMATOR

As explained in the introduction, exact component parameter
agnostic network scenarios, as in a multi-vendor network, are
challenging in the case of QoT estimation. This is because
analytical estimators require accurate data on, for example,
fiber lengths, attenuation, dispersion coefficients or EDFA noise
values, etc. However, in a scenario where these or some of

Fig. 4. Simulation setup with a central database (DB) containing the obtained
feature vectors: Transmission-related feature vectors �T : transmission parameters
(modulation format, launch power, channel spacing, baudrate) and �L: length
vector (total link length, lengths between start, intermediate and end node).
Spectrum-related feature vectors �A: Area under spectrum obtained by the OSA
(i.e. total signal power) and �H: Heights of channels in spectrum (i.e. channel
powers); Tx: Transmitter, EDFA: Erbium-doped fiber amplifier, SSMF: Standard
single-mode fiber, OSA: Optical spectrum analyzer, Rx: Receiver, GOSNR:
Generalized optical signal-to-noise ratio, BER: Bit error ratio.

these parameters are not precisely known, an analytical solution
is more difficult [6]. The challenge arises from the variations
in the assumed component parameters as well as the sparse
monitoring data available at the intermediate nodes of a complex
meshed network, where complete demodulation of the signals
to obtain accurate telemetry data is not possible. For obtaining
the optical spectrum with an optical spectrum analyzer (OSA),
demodulation of the signal is not needed. Due to this, we
focus on the usage of spectral data from the optical spectrum
for the QoT estimation. Furthermore, the uncertainties of the
component parameters are handled by machine learning because
ML algorithms have shown to be very good at interpolation even
of unseen data.

A. Simulation Setup

Data generation for neural network training is done using a
simulation setup built in our Matlab based simulation tool as
shown in Fig. 4. The simulation environment consists of the
transmission link and a central database, where the recorded
feature vectors and the obtained spectrum are stored. Up to 9
channels (c1 to c9) are transmitted over a coherent dual polar-
ization (DP) WDM link with fixed channel spacing and equal
launch powers per channel. The different links with up to 15
spans are analyzed for different configurations. The simulation
parameters are summarized in Table I. Each span consists a
standard single-mode fiber (SSMF), an EDFA, and an OSA.
In an agnostic network, the exact component parameters are
not precisely known, so for the simulations, the transmission
parameters are calculated using a heuristic approach with a cer-
tain mean and standard deviation based on realistic assumptions
and margins. Uncertainties are for example considered in the
span lengths (LS) by randomly choosing a length with a mean
of 80 km and a standard deviation σ of 5 km. The varied,
uncertain parameters are summarized in Table II. Therefore,
the parameters are different for every span according to the
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TABLE I
SIMULATION PARAMETERS

TABLE II
VARIED UNCERTAIN SIMULATION PARAMETERS

random distribution. The nonlinearities for the propagation of
the signal through the fiber are calculated using the split-step
Fourier method (SSFM) with a randomly chosen number of
waveplates ranging between 50 and 200 per span and a PMD
coefficient of 0.03 ps/km1/2. The maximum nonlinear rotation
angle in the nonlinear step isϕrot,max = 0.05◦ and the step-size
of the SSFM is chosen accordingly. The usage of the SSFM
ensures exact modeling of the transmission and gives the oppor-
tunity to extract the spectrum which would not be possible with
other (faster) simulation methods. To simulate more complex
transmission scenarios, the number of spans is increasing with
every iteration step of the simulation, i.e., one span is added for
every step to a total of 15 spans. Every link can be interpreted
in a different way: For example, if the link contains 4 spans, we
represent a set of links with 0, 1, 2, and 3 intermediate nodes
and their various possible distance variations for the distances to
and from the intermediate node. This means, that there are 2Ni

different combinations for each link with Ni intermediate nodes
considered [15]. At the receiver side, the generalized optical
signal-to-noise ratio (GOSNR) is calculated by

GOSNR =
PRx

PASE + PNLI
. (12)

Here, the sum of the linear noise, i.e. PASE and the sum of
the noise induced by nonlinearities, i.e. PNLI is calculated over
the deviations of the received constellation points to the ideal
ones. The number of channels transmitted over the channel is
varied from 1 to 9 where only neighboring pairs to the center
channel are added or dropped. Furthermore, different scenarios
for adding and dropping of channels at intermediate nodes are

considered within the simulation. Up to 4 neighboring pairs to
the centered channel are dropped at all the intermediate nodes,
while for the add scenario on the other hand these channels are
added to the channel configurations in which their slots are free.
Including only neighboring pair ensures worst-case scenarios,
while keeping the simulation effort as low as possible.

The data extracted from the simulation is stored in a database.
It can be categorized as transmission-related and spectrum-
related features. In practice, it is assumed that an SDN controller
has knowledge of the transmission-related features. The spectral
features are extracted from the spectrum obtained by the OSAs.
The overall feature structure can be seen in Fig. 5(a). The
transmission-related features are composed out of the vectors
�T and �L. �T includes the modulation formats, launch powers,
channel spacing, symbol rates, and total link lengths, whereas
�L contains the lengths of the fibers between the nodes. The
spectral features are the vectors �A and �H . �A encloses the
area under the envelope of the power spectral density (PSD)
obtained by the OSA, i.e. the total signal power. The heights
of the peaks in the PSD at the channel wavelengths, i.e. the
channel powers, are included in the vector �H . Here the channel
usage, the uncertainties of e.g. the EDFA gain or non-linear
coefficient, and in general the influences of the non-linearities
is represented. In addition, the spectra themselves are stored in
the database to ensure later comparability with the variational
autoencoder. Sweeping through the simulation parameters in
Table I, analyzing the add and drop scenarios and including
Ni = 5 intermediate nodes at maximum in the simulations,
results in a dataset of 1.5 · 106 feature sets. To accommodate
more uncertainties in the variation of the randomly distributed
parameters from Table II, the simulation was repeated 10 times,
which results in a total dataset size of 15 · 106 feature sets.

B. QoT Estimation Framework

Looking at the structures of the feature vectors �L and �A in
Fig. 5(a), it can be seen that their size changes with the number
of intermediate nodes in the considered link. The changing
dimensions of the input vectors lead to another challenge in
selecting a suitable ML algorithm. Most algorithms work with
a fixed number of features, so we interpret each link as a set
of values that can be fed into a recurrent neural network, e.g.,
an LSTM or GRU [15]. The generated dataset is used to train a
QoT estimation framework based on LSTM and FF-NN layers.
The overall structure of the framework is depicted in Fig. 5(b).
First, the feature vectors are fed into the framework through an
input layer. While the dimension-changing vectors are handled
by LSTM-layers and a dense layer, meaning a fully-connected
layer, the feature vectors, which are not changing in size due
to the number of intermediate nodes, are directly handed to
the concatenation layer. The concatenation layer combines the
output of the RNN branch with the inputs of �T . This enables the
interpretation of the output by feed-forward NN layers. After the
FF-NN, the output is calculated resulting in an GOSNR value for
every node in the considered link. In the case of automatic feature
extraction, i.e. without manually selected features, the spectral
features are replaced by the latent space of an autoencoder with
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Fig. 5. Feature vectors and QoT estimation framework with used layer types; (a) Feature vector structure of �T , �L, �A and �H; NS : Start node, Ni: i-th node,
ND : destination node; (b) framework for manual selected features and (c) schematic view of the VAE-based feature extraction; LSTM: Long-short term memory;
FF-NN: Feed-forward neural network; dense: fully-connected layer.

the same dimensions as the spectral features. So the latent space
of the autoencoder is of size 12. The structure is shown in
Fig. 5(c). However, the further structure of the framework is
preserved to allow a comparison between manual and automatic
feature selection. Before the training of the framework, the
dataset is split into 60% training, 20% validation, and 20% test
data. The training is performed over 800 epochs and is optimized
using the Adam optimizer [27]. Choosing the optimal size of the
layers is key for a high accuracy, but also a fast estimation. If
the entire framework is sized too large, overfitting can occur.
In addition, the required number of multiplications per neuron
in the layers increases exponentially. Thus, the computational
effort is much lower with a smaller size of the layers. Due to this,
different sizes of the two hidden layers for two types of RNNs,
i.e. GRU and LSTM, are investigated with regard to the mean
absolute error (MAE). The results show, that an increase in the
size of the structures does not necessarily lead to a significantly
better performance with respect to the MAE. In general, the
estimation accuracy of the LSTM framework is better than that of
the GRU based one. Due to this, the QoT estimation framework
is implemented using LSTM recurrent layers of size 24 and 12.

IV. EXPERIMENTAL INVESTIGATIONS

In general, simulations cover a wider range of complex
network structures than experiments. Simulative investigations
also help with choosing optimal ML algorithms and datasets.
However, experimental data is essential to validate machine
learning algorithms and their application in a real-world scenario
to ensure a flawless usage of the trained ML algorithms in
deployed networks. Furthermore, data gathered from experi-
ments can be used to approximate real-world conditions in an
optical transmission as well as enabling possible future usage of
experimental data as training data for the machine learning algo-
rithms. Here, we compare the GOSNR estimation performance
on experimental data of different non-recurrent ML algorithms
to the developed recurrent structures inlcuding manually and

automatically selected features from the spectrum. We further
investigate the estimation performance of the VAE-based esti-
mator with regards to the OSA resolution to make statements
about the specifications of the OSAs needed. A lower resolution
and low number of points for a good QoT estimation would mean
that low-cost OSAs could be used at the intermediate nodes for
the performance monitoring.

A. Experimental Setup

The high-level black-box model of the experimental setup
is depicted in Fig. 6. The DSP is executed offline using MAT-
LAB routines. At the transmitter side, a pseudo-random mul-
tilevel sequence (PRMS) of length 217 − 1 is generated for
the channel of interest (COI) and mapped to QPSK, 8-QAM
or 16-QAM symbols and the training symbols for equalization
and synchronization are added. The signal is predistorted for
the electrical amplifier and digital-to-analog converter (DAC)
characteristics before it is up-sampled from the symbol rate
of 32 GBd to the sampling rate of the DAC (88 GSa/s) and
shaped using a root-raised cosine filter with a roll-off factor of
0.2, resulting in an almost rectangular spectrum. The digital-
to-analog-conversion is performed by an arbitrary waveform
generator (AWG) running at 88 GSa/s with an effective number
of bits (ENOB) of 5.5 b. An external laser with a wavelength
of 1550.004 nm in combination with a DP-IQ modulator that
is driven by the DAC via 4 driver amplifiers generates the
COI. The other WDM channels (loaders) are generated using
a programmable wavelength-shaping filter (II-VI WS4000 A)
with an amplified spontaneous emission (ASE) noise source as
input. This results in shaped ASE noise which represents the
WDM channels in the vicinity of the COI. The waveshaper
has a periodically repeating filter bandwidth corresponding to
the considered channel spacing and is configured to level all
channels at the output. The advantage of using noise-loading
over generating traditional channels arises from the lower com-
plexity of the transmitter side by only using one modulator, one
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Fig. 6. Experimental transmission setup with a recirculating loop. PRMS: pseudo-random multilevel sequence, DAC: digital-to-analogue converter, ASE:
amplified-spontaneous emission, WSS: wavelength selective switch, EDFA: Erbium-doped fiber amplifier, PS: polarization scrambler, EDC: electrical dispersion
compensation, SOP: state of polarization, CFO: carrier frequency offset, PNC: phase-noise compensation.

Fig. 7. Measurements of (a) Q-factor distribution over length; SD-FEC limit for 15% overhead according to OpenROADM specifications [28]; (b) GOSNR
distribution over length for QPSK, 8-QAM and 16-QAM; HD-FEC: hard decision forward-error-correction; SD-FEC: soft decision forward-error-correction.

laser, and one DAC. The characteristics of a noise-loaded signal
compared to a traditional WDM signal are very similar [29]. The
COI and the loaders are combined using a 3 dB-coupler before
being amplified using an EDFA. The EDFA output is fed into
the recirculating loop. The loop is composed of another wave-
shaper (Finisar WS4000S) being used as a gain-flattening filter
followed by three spans and a polarization scrambler (Fig. 6).
Each span consists of an EDFA running at a constant output
power of 10.5 dBm, a VOA after the EDFA to get the desired
launch power for the following 88.4 km SSMF. After the first
span, the polarization scrambler is localized to randomize the
polarization shift effects from the fibers. At the receiver side,
the signal is first amplified using another EDFA before the COI
is filtered. The COI is then detected using a coherent receiver.
The analog-to-digital conversion (ADC) is performed by an
oscilloscope with 80 GSa/s. The received signal is impaired by
several disturbances which can be either uncompensated (mostly
noise and nonlinearities) or compensated, i.e. IQ-skews and
IQ-imbalances from the transmitter and receiver, laser phase
noise from the transmitter and receiver, chromatic dispersion,
polarization mode dispersion (PMD), rotation of the state of
polarization (SOP), carrier frequency offset, and laser phase

TABLE III
EXPERIMENTAL SYSTEM PARAMETERS

noise from the receiver. The receiver DSP is done offline using
standard DSP algorithms for coherent DP WDM systems [30].
At the end of the DSP chain, the GOSNR is calculated using
pre-measured look-up tables of relations of OSNR and Q-factor
for the considered configurations using the back-trace method.
The spectrum is obtained using an OSA (Adavantest Q8384)
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Fig. 8. (a) Estimation performance of the QoT estimators regarding R2-score and MAE; OSA resolution is 10 pm (b) R2-score and MAE over OSA resolution;
MAE: Mean absolute error.

with a flexible optical resolution. The experimental parameters
for the investigations are summarized in Table III.

B. Experimental Results

1) Experimental Dataset: The performance of the experi-
mental setup is summarized in Fig. 7. The plot contains the
minimum and maximum of the metrics for each modulation for-
mat for a certain length indicated by the whiskers. The values in
the range between the first and third quartile are indicated by the
boxes. The median is indicated by the horizontal line within the
boxes. Fig. 7(a) shows the Q-factor distribution over length in the
obtained dataset, which contains different modulation formats,
number of channels and launch powers per channel. As expected,
the lower-order modulation formats have higher Q-factors than
higher-order modulation formats. Furthermore, a decrease of
the Q-factor is visible for higher lengths. It has to be noted, that
the hard decision forward-error-correction (HD-FEC) limit is
always surpassed for QPSK for any length. For 8-QAM, only the
median for 265.2 km and 530.4 km are above the HD-FEC limit,
whereas for 16-QAM it is not reached for any length. This is
mainly caused by non-optimal precompensation of the electrical
amplifiers and amplifier noise after the AWG as well as shot
noise and thermal noise of the coherent receiver. However, in
an optical long-haul transmission system strong FEC algorithms
are used anyways. So, the SD-FEC (soft decision FEC) limit [28]
(15% overhead) is added to the graph. It can be seen that for
8-QAM the maximum reach is increased to be over 1326.0 km
while for 16-QAM over 795.6 km transmission reach can be
achieved. The experimentally obtained Q-factors are used for
the back-trace to a Q-factor graph for a B2B configuration to
obtain the GOSNR. The GOSNR distribution over the lengths
is depicted in Fig. 7(b). In general, it can be observed that the
curves characterized by the medians approach a certain GOSNR
value, as expected. This is because the curves of the Q-factor
OSNR become steep below a certain low OSNR value. A similar
behavior could also be observed at high OSNR values since the
Q-factor OSNR curve is flat there. Furthermore, it is noticeable
that the modulation formats QPSK and 16-QAM have smaller
boxes than 8-QAM and generally the medians of the 8-QAM

values are below those of 16-QAM. This is due to the fact
that 8-QAM is more prone to nonlinearities from multi-channel
transmissions reasoned by the non-equal symbol distances.

2) ML-Algorithm Comparison: All of the considered ML-
algorithms are trained on simulation data and tested on the ob-
tained experimental dataset. A comparison is made with differ-
ent ML algorithms. For the algorithms, which do not include any
spectral information, an FF-NN with two hidden layers and 40
neurons per layer, a support vector regressor (SVR) [17] with a
radial bias function kernel, a decision tree regressor (CLF) [18], a
XGradientBoost (XGB) regressor [19], and the above mentioned
LSTM-based framework without the spectral features are com-
pared. When comparing the algorithms with spectral features,
a one-dimensional convolutional neural network (CNN) [20],
the LSTM-based framework, and the proposed LSTM-based
framework with feature extraction by the VAE are considered.
All algorithms are trained with the simulation data and tested on
the network topology. The hyperparameters of the non-spectral
estimators are optimized using a grid search with 250 different
configurations. The CNN is chosen to be one-dimensional since
the size of the spectral data inputs changes according to the
number of considered intermediate nodes. This enables to use a
single CNN for all node configurations rather than implementing
one CNN for each number of intermediate nodes. The LSTM
structures are built as described in Section III-B. Furthermore,
the OSA resolution is assumed to be 13 pm for the simulations.
The results are summarized in Fig. 8(a). At first glance, it
can be seen that the R2-scores for the non-spectral algorithms
are low (below 0.5). On a closer look, it can be seen that
the ML solutions based on neural networks achieve the best
performance of the non-spectral estimators with over 0.5. Thus,
the tree structures CLF and XGB perform worst followed by the
support vector regressor (SVR). The simple FF-NN achieves
the highest R2-score of the non-recursive ML algorithms with
0.51137. Due to the recursive structures and the inclusion of the
individual lengths between the nodes, the framework without
spectral features achieves a higher R2-score with 0.71563. This
is only surpassed by the algorithms which use spectral features.
The CNN shows an R2-score of 0.8238 and the presented LSTM
framework achieves an R2-score of 0.8964 for the manually
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selected features and 0.94826 for the features extracted by the
VAE. An equal performance order is observed regarding the
mean absolute error. These differences show that the usage of
spectral information for the QoT estimation is beneficial. The
LSTM framework without spectral feature inputs just learns the
dependency between the lengths and the nonlinearities, whereas
the spectral features obtained from the OSAs in the network
reduce the error for the GOSNR estimation.

3) OSA Resolution Investigation: The developed QoT esti-
mator using the spectral features extracted by the variational
autoencoder is trained with simulation data and is then tested on
the obtained experimental datasets with the different OSA reso-
lutions. The performance of the estimator regarding the R2-score
and the mean absolute error (MAE) is depicted in Fig. 8(b). First,
it can be stated, that the estimator can reliably estimate GOSNR
values from experimental data even though being trained on
simulation data only. Second, a lower resolution results in a
better estimation performance due to the estimator being trained
on simulation spectra obtained with an OSA resolution of 13 pm.
It can be seen, that the estimation performance is accurate with
low errors up to a resolution of 50 pm.

V. CONCLUSION

In this paper, we compared the performance of different ML-
algorithms for QoT estimation purposes when they are trained on
simulation data and tested on experimental data. Furthermore,
we investigated the influence of spectral data and recursive
ML structures on the estimator’s performance. The considered
ML-algorithms include feed-forward neural network, support
vector regressor, tree structures, such as XGradientBoost, a
one-dimensional convolutional neural network, and long-short
term memory networks. The LSTMs are either trained without or
with spectral data while this spectral data can be either manually
selected features or automatically extracted features by a vari-
ational autoencoder. These approaches were compared on ex-
perimental data acquired with a recirculating loop for 32 GBaud
DP-QPSK, DP-8-QAM, and DP-16-QAM with up to 5 channels
with 37.5 GHz spacing. The results show, that the algorithms
leveraging spectral features perform very well on experimental
data while being trained on simulation data surpassing R2-scores
of over 0.9. On top of that, an estimation with a mean absolute
error below 0.2 dB can be achieved with VAE-based spectral
feature selection with only 50 pm of OSA resolution. We showed
that heuristically distributed input features for the representation
of not exactly known component parameters together with spec-
tral features obtained from OSAs increase the QoT estimation
accuracy. This enables reliable QoT estimation in e.g. multi-
vendor networks on the road to fully-disaggregated networks
without the need for confidential component data sharing.
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