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Abstract—A silicon photonic based transmitter and receiver
chipset for 4×106Gb/s 400 GBASE-DR4 data rates is presented.
Each channel of the transmitter chip reaches high extinction ratio
and optical modulation amplitude (OMA) with a low TDECQ
penalty in full compliance with the IEEE standard. The receiver
chips possess high responsivity with low polarization dependent
loss. The use of discrete III-V arrayed components hybridized onto
the silicon platform and passive alignment of single-mode fibers
provides a low-cost, compact and scalable solution extendable to
even higher aggregate rates and channel count.

Index Terms—Silicon photonics, Datacenter, distributed
feedback laser (DFB), Electro-absorption modulators (EAM),
pulse-amplitdue modulation (PAM)-4.

I. INTRODUCTION

W ITH demand for high-speed optical interconnects in
datacenters, high-performance computing and emerg-

ing AI/ML applications increasing, cost-effective, compact,
and scalable solutions are required. In the past decade, paral-
lelism and bit rate per lane grew the aggregate data rates from
1×10Gb/s to 4×10Gb/s, 4×25Gb/s and recently to 4×100Gb/s
and 8×100Gb/s in a single optical module (i.e. QSFP-DD [1] and
OSFP [2] form factors). This has been achieved by increasing
the baud rate (10, 25 and 50 GBd), the lane count (1,4,8,
either through more wavelengths, more fiber channels or both),
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and changing the modulation format from one bit per symbol
(Non-Return-to-Zero (NRZ)) to two bits per symbol (Pulse-
Amplitude-Modulation 4 (PAM4)) [3]. To address this growing
demand for bandwidth, while maintaining competitive costs,
silicon photonic (SiPh) based solutions have been presented
using both Mach-Zehnder modulators (MZMs) [4], [5], [6], [7],
ring resonators (RR) [8], [9], [10], [11] for transmitters and
integrated germanium photodiodes for receivers [12]. Electro-
absorption modulators (EAMs) integrated in a Si Photonic
platform have been demonstrated [13], using monolithically
grown SiGe quantum-well stacks, though no PAM4 signaling
has been published to our knowledge. The SiPh solutions offer
an advantage in terms of low-cost material and manufacturing
platforms, however, the most widely adopted solution in the
market utilizes externally modulated lasers (EMLs) comprised
of a single (typically InP) chip with separate laser and EAM sec-
tions paired [14] with discrete photodiodes. To differentiate from
III-V chips which combine lasers with MZM (e.g. for coherent
transmitters), we will refer to the chips combining lasers and
EAMs as electro-absorption modulated lasers (EAMLs) in this
paper. The EAML solutions typically have each channel placed
on its own RF carrier and actively aligned with a lens to a fiber,
scaling channel count becomes costly and at the extremes not
dense enough to fit the module form factors. EAML solutions
have the optical output and RF input at the same side of the chip
adding to the challenge of forming an array [15], [16], which are
difficult to yield, and complicated and need costly RF design to
the bring the RF input to the modulator. Typical SiPh solutions
also run into scaling challenges either with size of the MZM
based solutions or bandwidth for the RR based solutions. On the
receiver side, conventional InP and SiPh based solutions require
actively aligned lenses or fibers to achieve good responsivity
and low polarization dependence, and in some cases require
polarization diversity components [17] to deal with the strong
polarization dependence of the SiPh platform.

In this publication, the performance of a differentiated trans-
mitter (Tx) and receiver (Rx) chip set solution, utilizing the best
aspects of both Si and III-V platforms, is discussed. Details of
the design and the Si Photonics platform can be found in [18]).
On the transmit side, the SiPh platform is designed for low
loss integration with both III-V elements and optical fiber. All
components are passively aligned [19], [20], reducing cost and
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Fig. 1. TxPIC Schematic.

complexity of transceiver assembly. By the use of arrayed lasers
and arrayed modulators, the platform easily scales lane count in
a compact form factor. The silicon photonics Tx chip, which uses
quad EAM U-bend arrays [20], [21] and quad DFB arrays passes
the 400 GBASE-DR4 Tx spec requirements [22]. By separating
the EAM from the laser, a scalable and dense arrayed solution
is achieved, with an even higher channel count obtainable either
through attaching multiple arrays to our Si photonic integrated
circuits (PICs) or scaling the number of devices in the array.
Compared to traditional EAML solutions, our device separates
the RF input from the optical output reducing any RF loss
and power consumption needed to bring the electrical signal
to the optics. The Tx PIC exhibits more than 4 dB dynamic
extinction ratio (ER),+1 dBm fiber coupled Optical Modulation
Amplitude (OMA) and less than 2.0 dB TDECQ when directly
driven by a commercial-off-the-shelf (COTS) DSP with built-in
EML driver, at 106.25Gb/s and an SSPRQ pattern as defined in
the IEEE802.3 standard [22]. The compact silicon photonics
Rx chip, uses high speed monolithic Germanium waveguide
photodiodes (Ge PDs) [18], [23] and the same low-loss pas-
sive fiber coupling section as our Tx chip, enabling high fiber
responsivity and low Polarization Dependent Loss (PDL). The
receiver is then formed when the Rx PIC is wire bonded to a
COTS transimpedance amplifier (TIA). This receiver exhibits a
pre-FEC BER of better than 2.4× 10−4 at less than −6.5 dBm
OMA (for all channels on in the worst case cross-talk condition)
when it is tested with the COTS DSP at 106.25Gb/s PAM4 for a
PRBS31Q as defined in the IEEE802.3 standard [22]. Separating
the components of the widely adopted EAML and combining
with our low-loss passive alignment SiPh platform provides the
power efficiency and cost effectiveness necessary to scale the
channel count and bandwidth for pluggable optical modules or
other form factors such as Co-Packaged Optics.

The paper focuses on the performance results achieved from
the Tx and Rx PICs and first briefly discusses chip architecture
and some key features of the hybrid assembly which will en-
able low-cost high-volume production in Section II. Section III
reviews the component level and DC performance of the PICs
and Section IV discusses system level test results conforming
to specifications set out in the IEEE 802.3 standard. The final
section discusses how the solution can scale to 8 channels and
other embodiments enabling next generation aggregate data
rates and requirements.

II. ARCHITECTURE AND ASSEMBLY

The Tx PIC, with a schematic shown in Fig. 1, and top view
shown in Fig. 2(a), contains 7 key components. First are recessed
cavities in the silicon for attach of the III-V die. The cavities

Fig. 2. Top view of PICs (a) Transmitter, (b) Receiver.

Fig. 3. Top view EAM array.

contain mechanical stops as a height reference for flip-chip
bonding and the waveguide interfaces are designed for low-loss
and low back-reflection. Next a tap coupler and monolithically
integrated Ge waveguide MPDs are used to provide optical
power monitors for actively controlling the DFB drive current
under APC (Automatic Power Control) operation. Integrated
Ge temperature sensor diodes are used to monitor the chip tem-
perature and allow temperature control to ensure performance
of DFB and EAM during operating life. Low-loss waveguide
crossings enable efficient routing into and out of the U-bend
EAMs. At the output of the PIC a spot-size converter (SSC)
transforms the 3μm silicon mode to a 13μm mode optimized
for coupling to SMF fibers. The facet at the fiber interface is
optimized for low back reflection. Finally, V-grooves are etched
and lithographically aligned to the wavguide facet, to enable
self-aligned passive fiber attach coupling light from the output
of the SSC to the fiber.

The receive chip shown in Fig. 2(b) includes the V-grooves,
SSC, fiber interface facet and routing to a high-speed Ge wave-
guide PD array which is monolithically integrated into the Si in
the same manner as the MPDs and temperature sensors for the
Tx PIC. The design and fabrication of the components has been
previously discussed in [18].

The EAM array is comprised of 4 devices each consisting
of a tight U-bend waveguide, as seen in Fig. 3, resulting both
in a short device for high-speed operation and a tight channel
pitch to minimize die size. Bringing both input and output to
the same side of the die enables bonding with a small optical
gap to a single side of the die and minimizes coupling loss
independent of any dicing tolerances. The waveguides at the
EAM input and output are well matched to the Si PIC, which
contains a height converter [24], further reducing coupling losses
and improving bonding alignment tolerances. The facets are
designed to reduce back reflection into the laser to below the
required level. Isolation trenches separate the die on the quad
array ensuring low electrical crosstalk.
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Fig. 4. Top view DFB array.

Fig. 4 shows the quad DFB array chips which is processed
using the same standard III-V manufacturing techniques as
the EAM array. The DFB design is optimized for high single
mode yield and back reflection tolerance. Both InP die include
mechanical reference layers in the epitaxial layer stack to make
contact with the mechanical stops in the Si cavity on the PIC to
control the vertical alignment during flip-chip bonding.

Post-fabrication, the silicon wafers are electrically tested and
sent through automated wafer-level optical inspection (AOI) to
create maps of known good die (KGD). The photodetectors on
the Rx chips are also characterized for bandwidth and responsiv-
ity at wafer-level test (WLT). The receiver parts are then ready
for singulation and fiber attach while the Tx PICs can be sent for
wafer level flip-chip bonding of DFB array and EAM array. The
InP wafers also undergo wafer-level AOI and WLT post-fabout
and are singulated in preparation for bonding.

Bonding relies only on machine vision of fiducials on both
the Si PIC and InP die for in-plane passive die alignment. The
local eutectic solder reflow ensures good electrical and thermal
connection between the die and compresses the III-V die against
the Si pillars for vertical alignment, and enables consecutive
bonding of multiple III-V chips. The III-V die make direct ther-
mal contact with the Si to ensure proper heat sinking. The tool
alignment 3σ tolerance is specified to±0.5μm, further reducing
coupling loss between InP and Si die. After bonding, index
matching gel is dispensed to fill any gap remaining between the
die with a refractive index matched to the ARC (Anti Reflection
Coating) design for each part.

After die singulation, SMF fiber attach (pigtailing) is a passive
process. Due to the mode size at the output of the SSC the low
NA (numerical aperture) of the output enables a loose tolerance
with respect to the longitudinal placement of the fiber relative to
the facet. A fiducial lane at the end of the chip provides a visual
guide for alignment of fiber. The V-grooves provide complete
lateral, yaw and pitch alignment for the fibers. The interface
is designed for a fiber with a straight cleaved facet. A glass
cap is used to mechanically push and secure the fibers into the
V-grooves which are then bonded in place with epoxy. The epoxy
is selected so that it is index matched to the fiber mode index as
it fills the gap between the fiber facet and the Si facet, in order
to minimize the reflections from the straight cleaved fiber facet.

III. DC MEASUREMENTS

A. Rx PIC

The Rx PICs are measured at wafer level for diode IV charac-
teristics and opto-electronic S21 bandwidth measurements. The
responsivity is also measured at wafer level and a sample of
parts are pigtailed and measured for responsivity. The results of
those pigtailed measurements are used to calculate a calibration

factor needed for converting the WLT measured fiber-coupled
responsivity. Histograms of the WLT measurement results on
a sample of Rx PICs are shown in Fig. 5. The fiber-coupled
responsivity has a median value for the worst-case polarization
of 0.67A/W−1 with a typical PDL (not shown) of 0.5 dB of
which about 0.3 dB is attributed to the SSC PDL. The bandwidth,
into a 50Ω load, of the devices measured has a median value of
38.3 GHz, sufficient for 53GBaud PAM-4 operation. The dark
current for the devices is typically around 0.1μA and more than
95% of measured parts are lower than 1μA.

B. Tx PIC

The DFB are measured and screend at wafer level for electro-
optic and spectral characteristics of each device on the wafer.
Parts are screened for threshold current, side mode suppres-
sion ratio (SMSR) and mode hops. As shown in Fig. 6(a), the
wafer-level yield for channel SMSR > 30 dB is > 97% when
excluding the die at very top and bottom of the wafer which do
not have a grating written. The DFBs demonstrate single mode
behavior above threshold as seen in the plot of Fig. 6(b) with
very high SMSR across the full range of drive currents.

On a sample basis, DFB die are mounted p-side up on carriers
to characterize the die-level facet output power. The power
is measured using an integrating sphere and typical powers
are 22mW at 55 ◦C for 100mA drive current and 35mW
at 150mA drive current. The distribution of power measured
from the sample of parts is shown in Fig. 7(a) as a function
of temperature showing a power change with temperature
having a slope of −0.29mW◦C−1 at 150mA drive current. The
distribution of optical powers at 55 ◦C and 100mA is shown
in Fig. 7(b). Only a small sample of die are measured for facet
power since die-level measurements exclude parts from being
used for flip-chip bonding.

In characterizing a completed, bonded Tx PIC, the optical
coupled power is measured by both the monitor photodiodes
and by monitoring the fiber output power with 0V bias on
the EAM. In Fig. 8(a) we see typical I-I curves for the MPD
photocurrent as a function of laser drive current showing low
threshold current (not impacted by the flip-chip bonding) and
linear slope efficiency out to 150mA. The distribution of MPD
currents from measured parts at 100mA DFB drive current at
55 ◦C has a median value of about 1mA, as shown in Fig. 8(b).
This amount of photocurrent implies the coupled on-chip power
is at least 16.3mW for 100mA DFB drive current, based on
the designed tap coupler and an internal MPD responsivity of
1.05A/W. The coupled chip power is dependent on both the
facet output of the laser and the coupling efficiency between
the InP chip and the Si PIC. Combining with the data on the
facet power shown in Fig. 7 from the DFB measurements, we
estimate the median PIC to DFB coupling loss of 1.3 dB. The
measurements are in good agreement with the simulated results,
shown in Fig. 9, where the simulated distribution for the worst
channel coupled of the quad-array DFB with all stack-up, etch,
and both linear and angular bonding tolerances. The simulated
best-case coupling efficiency is 0.9 dB and the median value
is 1.2 dB. The measured LIV in Fig. 10 demonstrates coupled
output power in the fiber of up to more than 4mW at 150mA
laser drive current.

The EAM WLT electrically probes a sample of die monitoring
series resistance and dark current to confirm the diode’s behav-
ior. The median series resistance is measured at 20Ω. This low
value is sufficient for supporting high-speed RF performance.
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Fig. 5. Rx PIC DC Measurement Results.

Fig. 6. DFB Wafer Level DC Measurement Results. (a) SMSR wafer map, (b)
SMSR change with laser current on a sample.

Fig. 7. DFB Facet Power measurements. (a) Performance over Temperature,
(b) Distribution at 55 ◦C and 100mA.

Fig. 8. MPD Measurement Results (a) MPD current in function of laser
current, (b) Distribution at 55◦C and 100mA.

Fig. 9. DFB Coupling Simulation Results.

Fig. 10. Measured Tx PIC LIV of fiber coupled power at 55◦C and 0V bias
on the EAM.
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Fig. 11. Measured Tx PIC fiber coupled power in function of EAM bias at
55◦C and 100mA laser current.

Fig. 12. High Speed Test Setup.

Typical dark current values are less than2 nA. Die level measure-
ments are used to confirm electrical isolation between channels
in the array which is shown to be greater than 10MΩ. Optical
characterization of the modulator is done post integration with
the Si PIC and DFB.

The DC optical performance of the EAM is measured by
sweeping the reverse bias while maintaining the DFB current
at 100mA. The transfer curves of a typical array are shown
in Fig. 11. At a −1.75V bias, the device exhibits about 6 dB
of static extinction ratio with 1.5Vpp swing voltage, consistent
with the output of COTS DSPs, and the fiber coupled output
power is about 2 dBm at that bias point.

IV. HIGH SPEED MEASUREMENTS

A. Rx Chip

The Rx PICs were characterized for BER performance in a
link testbed (shown in Fig. 12) using a commercial TIA, and
DSP evaluation board, both for the 400GBASE-DR4 market.
A custom Rx evaluation board (RxEVB) was designed for the
RxPIC and the TIA, so that they can be co-located and wire
bonded directly with short wire bonds (≈ 350μm length). The
differential outputs of the TIA were routed to a parallel 8x high
speed connector and connected to the DSP EVB, which has a
similar parallel high-speed connector, through approximately
8” of RF cables. Both the presence of the cables and the PCB
trace length cause additional losses that would not be present in
a transceiver design, however the DSP equalizer was still able
to produce good BER results. A commercial 400GBASE-DR4
QSFP-DD transceiver on an evaluation board (EVB) was used
as a reference transmitter and operated as a pattern genera-
tor producing a PRBS31Q pattern. A single channel of the
QSFP-DD output is connected to the input of an optical amplifier
(OA) and followed by an optical filter (OF). This signal is then

Fig. 13. Measured RxPIC/TIA BER curves 25 ◦C.

split into 4 optical fibers. The power in each of the 4 fibers is
then controlled by a 4-channel programmable variable optical
attenuator (VOA). The presence of the optical amplifier enables
the test setup to go to overload conditions of + 4.2 dBm OMA
on all channels simultaneously. The OMA in each fiber after
the programmable attenuator was calibrated for each of the
programmed attenuation levels. The QSFP-DD channel used
had a measured outer ER of 4.7 dB, an SECQ of 1.0 dB and a
linearity RLM of 0.985.

BER measurements were performed using the error detection
and counting features in each of the 4 DSP channels while
varying the optical power incident on the channel under test
in steps of 1 dB, from −12 dBm to +5 dBm in OMA using
the programmable attenuator. The other 3 channels were kept
at a constant attenuation to emulate a desired level of optical
crosstalk penalty with aggressor channels set to either −30 or
+2 dBm OMA. For each optical input power, the DSP error
counter is reset after a wait time, typically 10− 15 s, to allow
the adaptive equalizer to adjust to the new signal level. The error
accumulation runs for 30 s and the BER is calculated from the
total number of errors.

Bathtub curves of BER as a function of received fiber OMA
are shown in Fig. 13 for 25◦C and 3.3V supply. Each channel is
shown with no crosstalk (−30 dBm on the aggressor channels)
and typical max power on the aggressor channels (+2 dBm),
also shown are the IEEE Receiver Sensitivity spec (RS) and
overload spec (OL). For a transmitter with 1 dB SECQ, the
minimum required receiver sensitivity is −3.9 dBm OMA at a
BER of 2.4× 10−4. Under crosstalk operation the measurement
shows that this spec is achieved with at least 2.5 dB margin. Data
center links will always operate at a received power higher than
the receiver sensitivity. The BER level at that input power with
crosstalk is around 10−6 on 2 of the channels, dropping to 10−8

at higher power levels, and around 10−7 on the other 2 channels,
and similarly dropping to 10−8 at higher power levels. Under
overload conditions of+4.2 dBm, the achieved BER has slightly
increased, but still better than 6× 10−8. A typical operating
input power range in data centers is −2 to +2 dBm, where the
achieved BER is better than 7× 10−8.

B. Tx Chip

To characterize the bandwidth of the device, the modulator
pads on the PIC are contacted with a high-speed RF probe which
is connected to a vector network analyzer. For a 50Ω source the
bandwidth of the EAM bonded to the PIC is > 25GHz across
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TABLE I
KEY PERFORMANCE MEASUREMENT RESULTS FOR EACH CHANNEL OF A DR4 TXPIC WITH −1.9V EAM BIAS

Fig. 14. Measured TxPIC S21.

the range of operating bias points. A representative E-O S21 plot
is shown in Fig. 14 for all 4 channels.

Tx PIC high-speed large signal measurements were per-
formed with the PIC sitting on a temperature-controlled stage. A
multi-channel DC probe is used for contacting the lasers, MPDs
and TSs, and an RF probe for contacting the EAM pads and
connect to the output from a COTS DSP eval board or an AWG
(Keysight M8196 A). When using the AWG, the signal from
the AWG is followed by an RF amplifier as the EAM required
voltage swing is higher than the output swing capabilities of the
AWG. The calibration correction features of the AWG are used
in this case to calibrate out the frequency dependent electrical
losses of the RF cables, RF amplifier and biasT (the RF probe
losses are not calibrated out). When using the DSP eval board as
a source, the eyes are post-processed removing the eval board’s
frequency response using de-embedding files provided by the
DSP supplier (the cable losses and the probe losses are not
de-embedded and hence add some uncorrected degradation to
the measurement). The laser is driven with an SMU current
source with the MPD and temperature sensor diodes monitored
for photocurrent and voltage respectively. The EAM is biased
with a SMU voltage source through the DC input of a high
speed BiasT either externally connected to the output from the
AWG or embedded in the DSP eval board. When modulating
with the AWG the output waveform is calibrated and set to
1.5Vpp swing. When driving directly from the DSP capable of
providing 1.5Vpp swing, tap settings from the available built-in
look-up tables (LUTs) are optimized for a small sweep around
the predicted EAM bias point and a low laser drive current. Each
channel is then measured for the optimal conditions using a small
sweep of both laser drive current and EAM bias. The output fiber
is connected to a clock recovery unit (CRU Keysight N1078a),
which taps off 50% of the power, and a sampling oscilloscope
(DCA Keysight 1092) for verifying compliance with the IEEE
standard by driving with a 53.125 GBd PAM-4 SSPRQ pattern.
The DCA measurements are calibrated to the power coming out
of the fiber before the CRU unit. The DCA reports the OMA,
AOP, dynamic ER and TDECQ which are recorded for each
EAM bias and laser drive current.

Fig. 15. Measured TxPIC PAM-4 Eye. left: De-embedded; right: post-Rx
equalizer.

Fig. 16. Link Test Measurement Results.

For a TxPIC with a laser wavelength of 1311 nm operating at
55◦C, an EAM bias of−1.9V and more than 7mA photocurrent
gives a dynamic extinction ratio of > 4.1 dB for all channels
when driven with the DSP EVB. The outer OMA for each
channel is greater than +0.9 dBm and the TDECQ penalty
is less than 2 dB for all channels. The sample eye diagram
of the de-embedded signal received by the DCA is shown in
Fig. 15 on the left. The post receiver equalizer eye used for
TDECQ calculations is shown to the right. A summary of the
results is shown in Table I highlighting the key metrics for each
channel.

A link test using the receiver EVB and one of the transmitter
channels, operating at 55◦C, was performed to confirm the BER
performance of the chipset solution. The transmitter output is
connected to a VOA, which has an excess loss of about 1.5 dB,
and then to the receiver input. Since the power is sufficient to
reach the floor of the receiver bathtub curve, no amplifier is used
for simplification of the measurement. Power recorded on the
plot in Fig. 16 is in the fiber before coupling to the Rx PIC. The
DSP output used to modulate the EAM is set to the PRBS31Q test
pattern consistent with receiver sensitivity measurements. Fig.
16 shows a floor value of 3× 10−7 BER and received power
of −8.5 dBm at 2.4× 10−4 BER consistent with the expected
penalty from the TDECQ difference between the TxPIC and the
reference transmitter used for the receiver PIC evaluation when
there is no cross-talk.
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V. CONCLUSION

We demonstrate a SiPh based 400GBASE DR4 Tx/Rx chipset
compatible with COTS DSP and TIA ICs. The integration
platform allows for simple passive fiber attach for ease of
packaging into a transceiver. The hybrid integrated III-V devices
(DFB arrays and U-Bend EAM arrays), allow for improved
manufacturing throughput and low cost by enabling packaging
of only known-good die, using a vision assisted passive align
and attachment process. Furthermore, the platform is extendable
while maintaining a small footprint by increasing either the num-
ber of quad EAM and DFB arrays, the channel count per array
or both as well as the number of lanes on the SiPh and integrated
PDs on the Rx side. PICs with 8 lanes of 100Gb/s PAM4 have
been fabricated and are presently in test and characterization.
Use of SiPh multiplexers and de-multiplexers [18] enables the
platform in a WDM architecture. Additionally, having both PDs
and contacts to the modulators at the edge of the chip opposite
the optical output enables tight integration with high-speed
electronics in, for example, co-packaged optics applications.
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