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Quantum Limits on the Capacity of Multispan Links
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Abstract—Long-distance fiber communication stands as a cor-
nerstone of modern technology. One of the underlying principles,
preventing signal levels from diminishing below the detectability
threshold, is optical amplification. In particular, phase-sensitive
amplifiers offer a promising solution as ideally they do not in-
troduce any excess additive noise. Since such devices in principle
operate at the quantum noise level, a natural question is whether
one can further improve the capacity of amplified links using
principles of quantum mechanics as it offers a much broader scope
of signal modulations and detection schemes. We derive ultimate
limits determined by the laws of quantum mechanics on the capac-
ity of multispan links with phase sensitive amplification. We show
that the quantum advantage over the standard approach based on
optical quadrature detection is small and vanishes for long links.

Index Terms—Optical amplifiers, optical fiber communication,
channel capacity, quantum communication, low-noise amplifiers.

I. INTRODUCTION

THE technological demand for the constantly raising
amount of information exchanged between different enti-

ties puts extensive pressure on the increase of the communication
rates of optical fiber links [1]. One of the main factors that limits
the performance of a communication link is the reduction of the
signal-to-noise ratio (SNR) due to the presence of losses in a fiber
cable or other parts of an optical link. In order to overcome this
issue, one may investigate various techniques such as changing
the fiber structure or using different modulation formats [1],
[2], [3], [4]. The primary way, however, is to incorporate sig-
nal amplification, by which one can restore signal power to
a desired level. Standard phase-insensitive amplifiers allow to
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bring back signal level at the cost of introducing additional
noise. Importantly, this noise cannot be reduced below a certain
value because of fundamental quantum mechanical effects [5].
This phenomenon causes a decrease of SNR with link length,
since the noise introduced by each amplifier in the cable is
amplified by subsequent ones. The overall effect is that one can
indeed vastly improve communication rates with conventional
phase-insensitive amplification, however, the rate still inevitably
decreases with the link length [6], [7], [8].

A more sophisticated method of signal restoration is phase-
sensitive amplification [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24]. A phase-
sensitive amplifier (PSA) in general can amplify one of the signal
quadratures while simultaneously reducing the other one [5].
At first sight, this is detrimental to the capacity, since one is
able to efficiently transmit information encoded only in a single
(amplified) quadrature of light whereas in the previous case
both quadratures could carry the information. The advantage,
however, is that PSAs are in principle noiseless devices, i.e.,
they do not introduce any additive noise. It is therefore expected
that for large distances, when one would like to use a significant
number of amplifiers, they can lead to an improved SNR as
compared with the phase-insensitive scenario.

On the other hand, one may go beyond the standard picture
of classical information theory and instead inspect a broader
range of strategies allowed by the laws of quantum mechanics.
In particular, novel detection schemes [25], such as the Dolinar
receiver [26], [27] or various collective receivers [28] make it
possible in certain scenarios to surpass classical capacity limits
imposed by the Shannon-Hartley bound and attain the funda-
mental quantum capacity limit given by the Gordon-Holevo
expression [29], [30], [31], [32]. Crucially, for such more general
strategies one has to abandon SNR as a figure of merit and instead
consider signal and noise separately. Another possibility for
improvement is to use a non-standard modulation format that
utilizes such quantum features of light as squeezing which in
principle seems to be beneficial for phase sensitive channels [33].

In this article we analyze quantum capacity limits of multispan
links in the presence of PSA. We identify two important regimes
of amplification, depending on whether just the signal or the total
power are restored to their initial values. We show that in the large
distance limit in the former regime one obtains an exponential
gain in the capacity with respect to the unamplified scenario.
On the other hand, for total power restoration the capacity
maintains its exponential decay known from the pure loss
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Fig. 1. Scheme of a lossy channel of length L with R amplifiers with gains
Gr separated by distances Δr = lr − lr−1 from each other.

channel instance but with an advantage in the form of an
improved exponent when compared to both unamplified and
phase-insensitive amplification cases. In the range of more
typical distances, up to a few thousand kilometers, depending
on the signal strength, one observes an exponential advantage
in SNR and the capacities are approximately equal in both
approaches. Importantly, the enhancement attainable by the
most general quantum strategies over the standard Shannon
information bound is present only for low distances and becomes
negligible for large fiber lengths, meaning that quadrature de-
tection is a nearly optimal detection strategy.

II. PSA FIBER LINK

A basic model of a PSA fiber link, presented schematically
in Fig. 1, consists of a standard lossy channel characterized by
an attenuation constant α, with total length L and with R PSAs
inserted at regeneration nodes. The i-th amplifier is specified
by a gain Gi and is located at a distance li from the input, i =
1, 2, . . . R. An optical field is characterized by two orthogonal
quadratures, denoted by xQ and xI . These quadratures can be
further decomposed as

xQ/I = x
Q/I
S + x

Q/I
N , (1)

where x
Q/I
S represents the contribution of the signal and x

Q/I
N

describes the noise. Since noise and signal are not correlated the
quadratures variances can be similarly decomposed

Var[xQ/I ] = SQ/I +NQ/I , (2)

where SQ/I = Var[xQ/I
S ] denotes the signal power in each

quadrature and NQ/I = Var[xQ/I
N ] are the corresponding noise

powers. Assuming that no external additive noise is introduced
at any point of the link, the quadratures and their variances after
the i-th amplifier are equal to

xQ
i = xQ

i−1

√
Giτi +

√
1− τi x

Q
N,i, (3)

xI
i = xI

i−1

√
τi
Gi

+
√
1− τi x

I
N,i, (4)

SQ
i = GiτiS

Q
i−1, NQ

i = Gi

(
τiN

Q
i−1 +

1− τi
2

)
, (5)

SI
i =

τi
Gi

SI
i−1, N I

i =
1

Gi

(
τiN

I
i−1 +

1− τi
2

)
, (6)

where τi = e−α(li−li−1) and x
Q/I
N,i denote respectively transmis-

sion and noise variables contributed by the i-th span. Impor-
tantly, since amplifiers are phase sensitive, only one quadrature
is amplified; the Q quadrature for Gi ≥ 1 and the I quadrature

for Gi ≤ 1. Note also that we assumed in (3)-(6) that the am-
plification process is aligned with the quadrature basis of the
signal, i.e., it does not introduce correlations between xQ and
xI . This requires some kind of phase stabilization between the
source and the PSA.

In the absence of losses, τi = 1, PSA just rescales quadratures
and their variances correspondingly. This means that it can
amplify a particular quadrature without introducing any additive
noise. Crucially, however, when the channel is nonideal, τi < 1,
there appears a second term in the expression for NQ/I in (5)
and (6) which increases the noise. This term originates from the
amplification of the vacuum fluctuations that entered the signal
during losses in the i-th span in (3) and (4). Note that these
fluctuations are then amplified by each remaining PSA in the
link which can make their contribution substantial at the output.
Therefore, even though PSA is a noiseless process, due to the
interaction between amplification and losses in the link, one
cannot completely eliminate this phase sensitive noise.

In the quantum mechanical description, the optical field is
characterized by quantum states of light and the quadrature
random variables are promoted to operators [27]. A particu-
larly important class of states, which we will consider here,
are Gaussian quantum states which are fully characterized by
the first and second quadrature operators moments. They in-
clude a wide variety of practically relevant states of light such
as coherent states, which are quantum analogues of classical
electromagnetic waves, and squeezed states. Crucially, both
phase-sensitive and insensitive amplification as well as losses
are examples of Gaussian quantum operations which preserve
the Gaussian features of quantum states, meaning that if the
input state is Gaussian the output of the link is Gaussian as
well [34].

Assuming one considers only Gaussian states, the classical
description in (1) and (2) can be also used to describe the
quantum signal since one can take x

Q/I
S as the first moment

of the state and x
Q/I
N as a value of a Gaussian random variable

with distribution x
Q/I
N ∼ N (0, V Q/I), where V Q/I denotes the

fundamental quantum noise level corresponding to each quadra-
ture. For coherent states V Q/I = 1/2 is the typical shot noise
limit present in quadrature detection, but in general the noise just
has to satisfy V QV I ≥ 1/4 due to the Heisenberg uncertainty
principle. One can therefore fully characterize the state of the
received light pulses by looking at the quadrature values and
their variances at the channel output which are equal to

xQ
out = xQ

in

√
τtotGtot, x

I
out = xI

in

√
τtot

Gtot
, (7)

SQ
out = SQ

in τtotGtot, SI
out = SI

in
τtot

Gtot
, (8)

NQ
out = τtotGtotN

Q
in +

τR+1

2

R∑
i=1

Gi(1− τi)

R∏
j=i+1

Gjτj

+
1− τR+1

2
, (9)
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N I
out =

τtot

Gtot
N I

in +
τR+1

2

R∑
i=1

1− τi
Gi

R∏
j=i+1

τj
Gj

+
1− τR+1

2
, (10)

where τtot =
∏R+1

i=1 τi, Gtot =
∏R

i=1 Gi, x
Q/I
in , SQ/I

in and N
Q/I
in

are the initial values of quadratures and signal and noise powers.
In the quantum mechanical language one can interpret the above
phase sensitive noise as an effect of a series of beam splitters that
mix the signal with increasingly squeezed vacuum states [11].

III. INFORMATION THEORY

In the standard information theory picture a general memo-
ryless communication channel is characterized by a conditional
probability distribution p(y|x) which describes the statistical
dependence of output symbols y on the input ones x. The sender
uses symbols x with some prior probability distribution p(x). In
such a picture the communication rate is bounded by the mutual
information

I(X,Y ) = H(Y )−H(Y |X), (11)

where H(Y ) = −∑
y p(y) log2 p(y) and H(Y |X) = −∑

x,y

p(x)p(y|x) log2 p(y|x) are the output and conditional Shannon
entropies. One can optimize mutual information over the input
probability distribution p(x) in order to get the best performance
and obtain the channel capacity

C = max
p(x)

I(X,Y ), (12)

which specifies the best achievable rate for a given information-
theoretic channel.

In optical communication it is customary to impose some form
of constraint on the input modulation, otherwise the capacity
may become infinite. Typically, it is the average energy of the
signal that cannot exceed some given value. This constraint can
be expressed in terms of the average number of photons in the
signal n̄ and reads

SQ
in + SI

in = 2n̄. (13)

Under the above constraint and assuming heterodyne detection
performed at the output one can derive the well known Shannon-
Hartley bound

CS2 =
1

2
log2

(
1 + SNRQ

)
+

1

2
log2

(
1 + SNRI

)
, (14)

where SNRQ/I = S
Q/I
out /N

Q/I
out are the SNRs corresponding to

Q and I quadratures respectively. PSA amplifies the signal in
just one direction of the optical phase space while it reduces it
in the orthogonal one. Therefore, for large distances, when the
total accumulated losses are considerable, the PSA would reduce
SNR in one direction in (14) to low values. Thus, it is beneficial
to spend all energy on modulating just a single quadrature and
perform homodyne detection. The resulting capacity is equal to

CS1 =
1

2
log2

(
1 + SNRQ

)
, (15)

where we decided to amplify the Q quadrature and SQ
in = 2n̄.

Importantly, the capacity in the above expressions (14) and (15)
is given solely by the signal-to-noise ratio (SNR) in respective
quadratures.

The physical channel over which the information is trans-
mitted at the fundamental level is characterized by the laws
of quantum mechanics. In particular, the information about
symbols x is encoded in quantum states ρx of physical infor-
mation carriers, which in case of optical communication are
photons. These states then undergo an evolution described by
a quantum channel Λ and are detected by the receiver using a
measurement described by a positive operator valued measure
(POVM) Πy . The classical information theoretic channel can be
then reconstructed using the Born rule p(y|x) = Tr[Λ(ρx)Πy]
which allows to evaluate both mutual information and channel
capacity through (11) and (12) respectively.

Crucially, in the quantum mechanical description one explic-
itly includes measurement and quantum states of the signal,
meaning there are more degrees of freedom which can be
used to boost information transfer rate of a physical channel
Λ. In particular, optimization of the mutual information over
measurements results in the Holevo bound [30]

CGH = S

[∑
x

p(x)Λ(ρx)

]
−
∑
x

p(x)S [Λ(ρx)] , (16)

where S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy of a
state ρ. The Holevo bound is in principle saturable but in general
it requires exotic collective measurements performed on a very
large number of channel outputs.

In order to find the upper bound on the capacity attainable
for the general quantum measurements and states, one needs to
evaluate (16) and optimize it over all prior ensembles of states at
the input. In the case of the pure loss channel the result is given
by the Gordon-Holevo capacity and equal to [29], [35], [36]

CGH(n̄) = g(τtotn̄), (17)

where the function g(x) = (x+ 1) log2(x+ 1)− x log2 x.
This formula can be further generalized to the case of general
phase-insensitive Gaussian bosonic channels [37]. However,
since the quantum channel implied by PSA is phase-sensitive,
standard expressions for the capacity do not apply in this case.
Instead, one rather needs to perform quite cumbersome calcula-
tions [33] resulting in

CGH(n̄) = g(M̄out)− g(Mout), (18)

where M̄out ad Mout are quantities implicitly depending on the
properties of the link which we discuss in the Appendix A.
Note that in the case of the pure loss channel, when the total
transmission τtot = e−αL is small, both classical and quantum
bounds predict capacity scaling as C ∼ e−αL, which prevents
communication on large distances.

A crucial difference between (18) and (14) and (15) is that
the quantum mechanical bound does not depend solely on the
SNR. One needs to separately consider signal and noise in
both quadratures in order to find the Gordon-Holevo capacity.
For large noise, however, one may simplify the Gordon-Holevo
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bound. To see this, note that the function g(x) for large x can be
approximated as

g(x) ≈ log2 e(1 + x) +O

(
1

x

)
. (19)

For large phase sensitive noise, i.e. NQ � 1, one can approxi-
mate (50) and (51) in Appendix A by

M̄out ≈ y
√
1 + SNRQ − 1

2
, Mout ≈ y − 1

2
, (20)

where y ≈
√
NQN I . Plugging these values into (18) gives

CGH(n̄) ≈ 1

2
log2

(
1 + SNRQ

)
, (21)

which is exactly (15). Therefore, in the regime of large noise
quantum effects are not relevant and the Gordon-Holevo capac-
ity can be attained by the homodyne measurement irrespectively
of the signal strength [8].

IV. CAPACITY OF THE PSA LINK

The capacity of the PSA channel is given by either (15) if
one insists on quadrature detection or (18) if general quantum
measurements are allowed. The signal and noise variances en-
tering these formulas are given by (7)-(10). In order to find the
ultimate bound on the capacity in both scenarios one needs
to perform an optimization over the ensemble of input states
and locations and gains of amplifiers. Assuming Gaussian input
states, the first task can be done by simply optimizing the
input signal and noise variances. In particular, the coherent state
ensemble, which is most readily available, can be considered by
just taking N

Q/I
in = 1/2. On the other hand, optimization over

the amplifiers has to be somehow constrained in order to avoid
infinite gains of PSAs which would require large power at each
amplifier. We will consider two types of constraints that have
a simple physical interpretation: the amplitude restoration and
total power restoration regimes.

In the first scenario, the amplitude restoration regime, each
PSA restores the amplitude of the Q quadrature to its initial
value. In terms of gains and losses in each span this requirement
translates into equality constraint Gi = 1/τi. The signal and
noise Eqs. (5),(6) therefore read

SQ
i = SQ

in , NQ
i = NQ

i−1 +
1− τi
2τi

, (22)

SI
i = τ2i S

I
i−1, N I

i = τ2i N I
i−1 +

τi(1− τi)

2
. (23)

Note that even though the signal in the Q quadrature remains
constant, the noise increases with each subsequent span of the
link. This is because not only the signal is amplified at each PSA
but also the noise. A consequence of this fact is the growth of
the total power traveling through the link with each passed PSA.

The constraints in the amplitude restoration regime can be
easily formulated mathematically, but as argued above, in gen-
eral they may lead to large total power in the fiber. This may be
problematic since if the combined intensity of signal and noise
becomes too strong, various non-linear effects begin to play
a role in the propagation, which decreases the communication

Fig. 2. Capacity attainable with homodyne detection CPSA and the Gordon-
Holevo bound CGH in the (a) amplitude and (b) total power restoration regimes
as a function of the link length for α = 0.05km−1 and n̄ = 100. The gray
dotted curves represent capacity in the distributed amplification scenario for a
hybrid double homodyne scheme with optimized transmissivity of the first beam
splitter and signal power distribution between the quadratures.

capacity [38]. The workaround to avoid this issue is provided by
the total power restoration regime in which it is the total power
that cannot exceed its initial value at any point in the link. The
relevant constraints read

SQ
i + SI

i +NQ
i +N I

i ≤ 2n̄+ 1, (24)

for every amplifier i, which in terms of PSA gains is given
by a set of complicated nonlinear inequalities. In general, the
constraints in the total power restoration regime are stricter than
in the amplitude restoration scenario, leading to a weaker output
signal.

We performed numerical optimization over PSA gains and
their locations in both approaches mentioned above. We chose
the average number of photons n̄ = 100 which corresponds
to SNRQ = 26dB at the input. It is seen in Fig. 2 that the
Gordon-Holevo capacity CGH can be improved by using PSA
for distances L � 70km for the typical value of the fiber attenu-
ation coefficient α = 0.05km−1. The advantage grows with the
number of amplifiers and saturates at the curve representing the
distributed amplification case, R → ∞, which is discussed in
detail in the next section. On the other hand, it is seen that the
quantum advantage from using general POVMs is small when
PSAs are applied and becomes negligible when the length of
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the link becomes considerable. Therefore, in this case one can
attain the quantum bound using just the homodyne detection,
as discussed in the previous section. In the regime of small
distances L � 70km it is highly beneficial to utilize general
quantum measurements, as the Gordon-Holevo bound is much
larger than the Shannon-Hartley bound. However, in this limit,
the capacity cannot be increased by signal amplification. The
threshold value of distance for which this happens is derived in
Appendix C. One can improve the capacity also by considering
a more general classical strategy such as double homodyne de-
tection with an adjustable beam splitter redirecting appropriate
fractions of signals to each of the detectors, optimized over the
distribution of signal power between the quadratures and beam
splitter transmissivity. Still, as can be seen in Fig. 2, such receiver
leaves a gap with respect to the Gordon-Holevo bound.

V. CONTINUOUS AMPLIFICATION

In general, finding the exact expressions for quadratures vari-
ances for optimal distribution of amplifiers is very complicated.
However, one can derive simple formulas for the case of contin-
uous amplification, when R → ∞. In such a case, the discrete
transmission of each span and PSA gains can be approximated
as τi = 1− αΔl and Gi = 1 + γ(l)Δl, respectively. Note that
although this approximation is performed assuming equal spans
with length Δl = L/(R+ 1), it remains valid in the general
case. As discussed in [39] in the regimeΔl → 0, the propagation
is approximated by

dSQ

dl
= (γ(l)− α)SQ, (25)

dSI

dl
= − (γ(l) + α)SI , (26)

dNQ

dl
= (γ(l)− α)NQ +

α

2
, (27)

dN I

dl
= − (γ(l) + α)N I +

α

2
. (28)

In case of amplitude restoration, one has γ(l) = α, which,
assuming coherent state modulation in the Q quadrature, gives

SQ
out = 2n̄, SI

out = 0, (29)

NQ
out =

1 + αL

2
, N I

out =
1 + e−2αL

4
, (30)

which agrees with previously obtained results [9], [11]. Plugging
these results into (15) gives in the large distance regimeαL � 1

C ≈ 2n̄

αL ln 2
. (31)

This is an exponential gain with respect to theC ∼ e−αLn̄ value
obtained for the pure loss channel without PSA.

For total power restoration the situation is more complicated
since the gain function γ(l) is given implicitly by the constraint
in (24). Nevertheless, one can still solve (25)-(28) analytically.
For coherent state modulation in the Q quadrature the optimal

Fig. 3. Optimized capacity as a function of the link length forα = 0.05km−1.
Power restoration regime: orange curve - n̄ = 100, blue curve - n̄ = 10; am-
plitude restoration regime: red curve - n̄ = 100, green curve - n̄ = 10. Dashed
lines of respective colors represent corresponding asymptotic expressions, (31)
for amplitude restoration and (34) for power restoration.

gain profile reads

γ(l) =
2αn̄√

4n̄2 + 2n̄(1− e−2αl)
, (32)

and the optimal quadrature variances are given in Appendix B.
The capacity attainable with homodyne detection can then be
approximated to

C =
1

2
log2

⎛
⎝1 +

4n̄e−
αL

4n̄+1

4n̄
(
1− e−

αL
4n̄+1

)
+ 1

⎞
⎠ . (33)

In the large distance regime the above formula can be further
approximated as

C ∼ 2n̄

(4n̄+ 1) ln 2
e−

αL
4n̄+1 . (34)

Crucially, this represents an improvement in the exponent by
factors of 1/(4n̄+ 1) and 1/4 with respect to the situation
without PSA and when the amplifiers are phase-insensitive,
respectively [8], [39]. Note that the latter scenario includes for
example distributed Raman amplification. On the other hand,
the exponential decay of the capacity is still present, even in the
optimal case.

In practical realizations, however, the average number of
photons in the signal is large, n̄ � 1. This means that if
L � 4n̄/α, the exponential term in (33) in the denominator
is nonegligible and for strong signals one can approximate it
by e−αL/(4n̄+1) ≈ 1− αL

4n̄ . Therefore, the capacity is rather
equal to C ∼ 1

2 log2
4n̄
αL which is also the value obtained under

the amplitude restoration constraint in this regime. One can
intuitively understand this fact by inspecting the optimal gain
profile in (32). Upon Taylor expansion for large n̄ values one
obtains γ(l) ≈ α+O(1/n̄) which is very close to the gain in
the amplitude restoration approach γamp = α. Therefore, the
capacities in these two instances should also be equal. This is
seen in Fig. 3 in which the attainable capacities in the amplitude
and total power restoration regimes are equal for small and
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moderate distances and start to diverge for large link length,
when they saturate respective asymptotic expressions.

VI. CONCLUSION

In conclusion, we derived the ultimate quantum limits for
the capacity of communication links with PSA. The advantage
offered by general quantum mechanical measurement strategies
against conventional protocols is small and becomes negligible
in the long link regime. We showed that, depending on the
constraints imposed on the amplification, one can consider
two physically relevant regimes - amplitude and total power
restoration. The asymptotic capacity values obtained in these
two approaches differ significantly. Importantly, compared to
pure loss and phase-insensitive amplification scenarios, the ex-
ponential decay rate of the capacity in the power restoration
regime is improved by the factors of 1/(4n̄) and 1/4 respec-
tively, representing a huge advantage in the capacity. An even
stronger enhancement can be found in the amplitude restoration
regime in which the capacity scaling changes from exponential
to inversely proportional in the link length. On the other hand,
for strong signals, typically encountered in optical fiber links,
both approaches turn out to be equivalent, offering exponential
enhancement of the SNR. Crucially, our results suggest that
quantum enhanced measurement strategies are beneficial only
for short-haul links in which noise effects are not predominant.

APPENDIX A
GORDON-HOLEVO BOUND FOR THE PSA CHANNEL

In this section we outline the method to calculate the Gordon-
Holevo capacity bound for phase-sensitive Gaussian channels
described and proven in [33]. A general phase-sensitive single
mode quantum Gaussian channel is specified by its action on
the vector of the first moments d and the covariance matrix Σ
of quadrature operators [34]. This can be described as

dout = Xdin, Σout = XΣinX
T + Y, (35)

where X and Y are real and symmetric matrices, satisfying
certain conditions [34]. The von Neumann entropy of a general
Gaussian state with a covariance matrix Σ is given by

S(ρ) = g(M), M =
√
detΣ− 1/2. (36)

Assuming that the signal is modulated by displacing a certain
Gaussian state with a given covariance matrixΣin in phase space
according to some Gaussian input distribution, the averaged
input state in (16) is also Gaussian and is specified by the
covariance matrix Σ̄in. Therefore, the Gordon-Holevo capacity
in such case is given by

CGH = g(M̄out)− g(Mout), (37)

with

M̄out =
√

det Σ̄out − 1/2, Σ̄out = XΣ̄inX
T + Y, (38)

Mout =
√

detΣout − 1/2, Σout = XΣinX
T + Y. (39)

This expression depends on the average input energy which reads

n̄ =
1

2

(
Tr Σ̄in − 1

)
. (40)

One can show that for a given Gaussian channel one can come
up with a so-called fiducial channel with the same capacity as
the original one and diagonal matrices X, Y [40]. The problem
can then be described by just three parameters τ, y, ω given by
equations

τ = detX = det

(
x1 0
0 x2

)
, y =

√
detY (41)

and

Y = y

(x1

x2
ω−1 0

0 x2

x1
ω

)
. (42)

For the PSA channel link in consideration the
parameters of the fiducial channel are given by

τ = τtot, y =
√

(NQ
out − x2

1 N
Q
in )(N

I
out − x2

2 N
I
in), ω =

Gtot

√
(N I

out − x2
2 N

I
in)/(N

Q
out − x2

1 N
Q
in ). Note that y and ω

do not depend on the initial values of the quadratures noise
but rather solely on the amount of noise added in the course
of signal propagation. These parameters calculated for a given
channel allow one to specify a threshold energy

n̄thr =
1

2ω

(
1 +

y

|τ | |1− ω2|
)
− 1

2
. (43)

If one wants to further optimize the Gordon-Holevo capacity
formula in (18) over ensembles of input states, the calculation
proceeds based on whether the input energy is above this thresh-
old, n̄ ≥ n̄thr, or below it, n̄ < n̄thr.

A. Above Threshold

We define

w̄in =

√
|τ |(2n̄+ 1) + y(ω−1 − ω)

|τ |(2n̄+ 1)− y (ω−1 − ω)
. (44)

The optimal input covariance matrices read then

Σin =
1

2

(
1
ω 0
0 ω

)
, Σ̄in =

2n̄+ 1
1
w̄in

+ w̄in

(
1
w̄in

0

0 w̄in

)
, (45)

which corresponds to displacing in phase space a squeezed
vacuum state according to a symmetric Gaussian distribution.
The corresponding Gordon-Holevo capacity is given by

CGH(n̄) = g

[
|τ |

(
n̄+

1

2

)
+

1

2

(
y(ω−1 + ω)− 1

)]

− g

[ |τ |
2

+ y − 1

2

]
. (46)

B. Below Threshold

To calculate the classical capacity below threshold, one has
to solve the following transcendental equation for ωin:

g′
(
M̄out

)( 1

w̄out
− w̄out

)
= g′ (Mout)

(
1

ωout
− ωout

ω2
in

)
(47)
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where g′(x) is the derivative of g(x) and we define

ωout =

√
τ ωin

2 + yω

τ 1
2ωin

+ y
ω

, (48)

w̄out =

√
τ ωin

2 + yω

τ
(
2n̄+ 1− ωin

2

)
+ y

ω

, (49)

Mout = − 1

2
+

√(
τ

1

2ωin
+

y

ω

)(
τ
ωin

2
+ yω

)
, (50)

M̄out = − 1

2
+

√(
τ
(
2n̄+ 1− ωin

2

)
+

y

ω

)(
τ
ωin

2
+ yω

)
.

(51)

After finding ωin one then has

w̄in =
1√

2(2n̄+ 1)ω−1
in − 1

. (52)

The optimal average input covariance matrix reads

Σin =
1

2

(
1
ωin

0

0 ωin

)
, Σ̄in =

2n̄+ 1
1
w̄in

+ w̄in

(
1
w̄in

0

0 w̄in

)
, (53)

which corresponds to displacing a squeezed vacuum state across
a single quadrature. The Gordon-Holevo capacity below the
threshold is finally given by

CGH(n̄) = g
(
M̄out

)− g (Mout) . (54)

Note that one can easily find what is the optimal capacity below
the threshold assuming coherent state modulation by taking
ωin = 1 in (50) and (51) and plugging the result in (54).

APPENDIX B
EXACT SOLUTION FOR DISTRIBUTED AMPLIFICATION

In order to find the exact quadrature variances with the con-
straint of total power (24) one can sum (25)-(28) resulting in

SI +N I =
1

γ(l) + α

(
α+ (γ(l)− α)(SQ +NQ)

)
, (55)

where we have used the fact that dSQ/dl + dSI/dl +
dNQ/dl + dN I/dl = 0 due to constant total power. Plugging
this into (24) one obtains

γ(l) = − 2αn̄

2n̄+ 1− 2(SQ +NQ)
. (56)

Let us now sum (25) and (27) and introduce ZQ = SQ +NQ:

dZQ

dl
= −αZQ

(
1 +

2n̄

2n̄+ 1− 2ZQ

)
+

α

2
. (57)

The solution to this equation is given by

ZQ(l) =
1

2

[
1 + 2n̄+

√
4n̄2 + 2n̄−Ae−2αl

]
, (58)

whereA is a constant specified by initial conditions. For coherent
state modulation in the Q quadrature one has A = 2n̄. One can

now plug this result in (56) and find the optimal gain profile

γ(l) =
2αn̄√

4n̄2 + 2n̄−Ae−2αl
, (59)

which for A = 2n̄ gives (32). Using the derived value of γ(l)
one can now solve (25)-(28) resulting in

SQ = 2n̄e−αl

⎡
⎣1−

√
1+2n̄
2n̄

1 +
√

1+2n̄
2n̄

×
1 +

√
1+2n̄

2n̄+1−e−2αl

1−
√

1+2n̄
2n̄+1−e−2αl

⎤
⎦
√

n̄
4n̄+2

,

(60)

NQ = ZQ − SQ, (61)

SI = 0, (62)

N I =
1

2

[
1 + 2n̄−

√
4n̄2 + 2n̄− 2n̄e−2αl

]
, (63)

where we have taken A = 2n̄. By assuming large distances and
then large power one can approximate the expressions for SQ

and NQ by

SQ = 2n̄e−
αL

4n̄+1 , (64)

NQ = 2n̄(1− e−
αL

4n̄+1 ) +
1

2
, (65)

which results in capacity given in (33). On the other hand, by
expanding (60)-(63) for large input power n̄ � 1 these euqations
can be approximated by

SQ ≈ 2n̄− αL

2
+

1− e−2αl

4
, (66)

NQ ≈ 1 + αL

2
, (67)

SI = 0, (68)

N I ≈ 1 + e−2αl

4
. (69)

Note that this makes sense only when n̄ � αL/4.

APPENDIX C
QUANTUM THRESHOLD DISTANCE

It is seen in Fig. 2 that for short communication links, when
the length of the link is smaller than a threshold value L < Lth

the Gordon-Holevo capacity exceeds the performance of the
homodyne setup. In this section we derive an approximate
expression for the threshold length Lth below which this effect
occurs. We will derive this distance for the distributed amplifi-
cation scenario in the amplitude restoration regime. Crucially,
the Gordon-Holevo bound for Lth for this case is equal to the
bound on the pure loss channel. Therefore, based on (29) one
needs to solve the following transcendental equation

g
(
n̄e−αLth

)
=

1

2
log2

(
1 +

4n̄

1 + αLth

)
. (70)
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Fig. 4. Product of the fiber attenuation coefficientα and the threshold distance
Lth above which homodyne detection suffices to attain the quantum Gordon-
Holevo bound, plotted as a function of the average number of photons in the input
signal n̄. The solid line is the exact solution of the transcendental equation (70),
and the dashed and dotted curves are the analytic approximations given by (72)
and (73) respectively.

Assuming large input power n̄, one can approximate both sides
of the above equation as

1 + log n̄− αLth =
1

2
log 4n̄− 1

2
log (1 + αLth) , (71)

which has a solution given in terms of Lambert W−1 function

Lth = − 1

2α

[
2 +W−1

(
− 8

n̄e4

)]
. (72)

One can further approximate Lth by noting that W−1(x) ≈
log(−x)− log(− log(−x)) for small x, which gives

Lth ≈ 1

α

(
1 +

1

2
log

[ n̄
8

(
log

n̄

8
+ 4

)])
. (73)

The relation between the product αLth and n̄ is shown in Fig. A.
As expected, for a given value of the fiber attenuation coefficient
α, increasing the input signal power extends the region in which
no amplification is beneficial.
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