
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 14, JULY 15, 2023 4557

Reducing Computational Complexity of Neural
Networks in Optical Channel Equalization:

From Concepts to Implementation
Pedro J. Freire , Member, IEEE, Antonio Napoli , Bernhard Spinnler , Michael Anderson,

Diego Argüello Ron , Wolfgang Schairer , Thomas Bex, Nelson Costa , Sergei K. Turitsyn ,
and Jaroslaw E. Prilepsky

Abstract—This paper introduces a novel methodology for de-
veloping low-complexity neural network (NN) based equalizers to
address impairments in high-speed coherent optical transmission
systems. We present a comprehensive exploration and comparison
of deep model compression techniques applied to feed-forward
and recurrent NN designs, assessing their impact on equalizer
performance. Our investigation encompasses quantization, weight
clustering, pruning, and other cutting-edge compression strate-
gies. We propose and evaluate a Bayesian optimization-assisted
compression approach that optimizes hyperparameters to simul-
taneously enhance performance and reduce complexity. Addition-
ally, we introduce four distinct metrics (RMpS, BoP, NABS, and
NLGs) to quantify computing complexity in various compression
algorithms. These metrics serve as benchmarks for evaluating
the relative effectiveness of NN equalizers when compression ap-
proaches are employed. The analysis is completed by evaluating
the trade-off between compression complexity and performance
using simulated and experimental data. By employing optimal
compression techniques, we demonstrate the feasibility of designing
a simplified NN-based equalizer surpassing the performance of
conventional digital back-propagation (DBP) equalizers with only
one step per span. This is achieved by reducing the number of
multipliers through weighted clustering and pruning algorithms.
Furthermore, we highlight that an NN-based equalizer can achieve
better performance than the full electronic chromatic dispersion

Manuscript received 5 September 2022; revised 25 November 2022; accepted
20 December 2022. Date of publication 5 January 2023; date of current version
20 July 2023. The work of Antonio Napoli, Bernhard Spinnler, and Nelson Costa
was supported by the European Commission through the H2020 B5G-OPEN
under Grant 101016663. The work of Sergei K. Turitsyn was supported by the
EPSRC Project TRANSNET. The work of Jaroslaw E. Prilepsky was supported
in part by Leverhulme Trust, under Grant RP-2018-063. This work was supported
by the EU Horizon 2020 Program under the Marie Skłodowska-Curie under
Grants 813144 (REAL-NET) and 860360 (POST-DIGITAL). (Corresponding
author: Pedro J. Freire.)

Pedro J. Freire, Michael Anderson, Diego Argüello Ron, Sergei K. Tu-
ritsyn, and Jaroslaw E. Prilepsky are with the Aston Institute of Pho-
tonic Technologies, Aston University B4 7ET Birmingham, U.K. (e-mail:
p.freiredecarvalhosouza@aston.ac.uk; andersm2@aston.ac.uk; d.arguelloron@
aston.ac.uk; s.k.turitsyn@aston.ac.uk; y.prylepskiy1@aston.ac.uk).

Antonio Napoli, Bernhard Spinnler, and Wolfgang Schairer are with
Infinera R&D, 81541 Munich, Germany (e-mail: anapoli@infinera.com;
bspinnler@infinera.com; wschairer@infinera.com).

Nelson Costa is with Infinera Unipessoal, 2790-078 Carnaxide, Portugal (e-
mail: ncosta@infinera.com).

Thomas Bex is with R&D, Infinera Corp, 81541 München, Germany (e-mail:
tbex@infinera.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JLT.2023.3234327.

Digital Object Identifier 10.1109/JLT.2023.3234327

compensation block while maintaining a similar level of complex-
ity. In conclusion, we outline remaining challenges, unanswered
questions, and potential avenues for future research in this field.

Index Terms—Bayesian optimizer, coherent detection,
computational complexity, neural network, nonlinear equalizer,
pruning, quantization.

I. INTRODUCTION

TO ACHIEVE satisfactory optical performance in modern
high-speed optical transmission systems, the detrimental

impact of linear and, most importantly, nonlinear transmission
impairments that cap the systems’ throughput [1], [2], has to be
mitigated. Several digital signal processing (DSP) algorithms
specifically addressing optical fiber channel nonlinearity mit-
igation have already been proposed [3]. However, the “con-
ventional” equalizers/soft-demappers, which are mostly based
on deterministic algorithms, have recently started to lose their
attractiveness in favor of designs incorporating machine learning
(ML) techniques [4], [5], [6], [7], [8], [9], [10], [11], [12]. In
the meantime, the possibility of using neural networks (NNs)
in digital communication systems was already discussed over
20 years ago [13]. In general, various ML-based approaches
and, more specifically, deep artificial NNs, are rapidly finding
their way into the telecommunication sector. This is mainly due
to NNs’ being universal approximators with virtually unlimited
approximation capabilities.1 Thus, NNs can successfully reverse
the channel propagation function and, thereby, efficiently miti-
gate transmission- and device-induced impairments. Also, data
science-related approaches can flourish in optical communica-
tion applications since large datasets can be obtained in a short
period of time, which makes the (typically) data-hungry learning
process easier. However, despite several recognized advantages
and benefits of ML and, particularly, NNs in optical transmission
equalization, there are still many challenges that can seriously
hinder their success. One major challenge is the typically high
computational complexity of NN-based algorithms, resulting in

1The Universal Approximation Theorem [14] states that no matter what the
function is (with some fairly relaxed constraints on the function properties),
there exists a feed-forward NN that can approximate that function to any desired
degree of accuracy; a similar statement can be proven for recurrent NNs [15].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3145-1018
https://orcid.org/0000-0002-9264-9274
https://orcid.org/0000-0001-9578-0297
https://orcid.org/0000-0002-6004-385X
https://orcid.org/0000-0001-7417-9398
https://orcid.org/0000-0002-8678-5691
https://orcid.org/0000-0003-0101-3834
https://orcid.org/0000-0002-3035-4112
mailto:p.freiredecarvalhosouza@aston.ac.uk
mailto:andersm2@aston.ac.uk
mailto:d.arguelloron@aston.ac.uk
mailto:d.arguelloron@aston.ac.uk
mailto:s.k.turitsyn@aston.ac.uk
mailto:y.prylepskiy1@aston.ac.uk
mailto:anapoli@infinera.com
mailto:bspinnler@infinera.com
mailto:wschairer@infinera.com
mailto:ncosta@infinera.com
mailto:tbex@infinera.com
https://doi.org/10.1109/JLT.2023.3234327

4558 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 14, JULY 15, 2023

prohibitively strong requirements on the speed and energy con-
sumption of end devices performing the equalization (although
a lot of “traditional” approaches, like digital back-propagation,
are also deemed too complex).

It was demonstrated in [7] that, when the NN equalizer’s com-
plexity is not constrained, combining a convolutional layer with
a bidirectional long-short term memory (biLSTM) layer yields
the best performance (among several NN structures studied).
This is a consequence of the optical fiber channel’s involving
significant memory-related effects, primarily due to chromatic
dispersion (but optical line components can introduce memory
as well), but the recurrent NN models (to which the LSTM
belongs) are apt for efficient memory handling [16]. It was also
shown in [7] that reducing the overall computational complexity
by limiting the number of neurons, hidden units, filters, etc.,
of an NN may lead to significantly worse optical performance.
This can be attributed to the infamous underfitting phenomenon,
i.e., the case when the reduced-structure NN loses the capacity
to reverse the fairly complicated channel propagation func-
tion [17]. To address this performance-complexity trade-off,
two well-known approaches can generally be considered. First,
we can modify the original NN equalizer architecture, which
recovers just one symbol at a time from a multisymbol input, so
that multiple symbols can be recovered at a time [11], [18]. This
may be achieved by using multidimensional regression predic-
tive modeling (or a multidimensional classification when a soft
demapper is coupled to the NN equalizing structure [18]). In the
case when the resulting multi-output NN architecture is similar
to the original one (that recovered just one symbol at a time),
the overall complexity per recovered symbol is reduced. This is
the first method incorporated into our approach here. Second,
we can use sophisticated NN model compression techniques to
reduce the number of multiplications and, afterward, diminish
the hardware complexity by allowing low bitwidth precision on
the NN arithmetic operations. In this work, we describe how to
design a NN equalizer based on the use of the aforementioned
strategies, combining the multidimensional regression approach
with advanced model compression techniques, namely pruning,
weight clustering, and quantization. It is shown that the resulting
NN-based equalizer is less complex than a standard (deter-
ministic) and non-optimized digital back-propagation (DBP)
equalizer with just 1 step-per-span (STpS). Furthermore, NN-
based equalizers can achieve better optical performance than
multi-step DBP-based ones of similar complexity. In this work,
we:
� Compare various pruning approaches that use recurrent

layers. Our results are then used to prune the optical channel
equalizer model. We are not aware of any such comparison
being conducted in the ML literature.

� Enhance existing compression strategies by utilizing
Bayesian optimization (BO). BO enables improving op-
tical performance while also reducing computational com-
plexity.

� Investigate the potential of weight clustering to reduce the
NN model’s complexity (studied for the specific case of
optical channel equalization), and calculate the achieved

reduction in the number of multiplications in the equalizer
model.

� Compare quantization strategies in the context of optical
channel equalization (using recurrent layers).

� Provide four metrics for evaluating the computational com-
plexity and explain when each one is adequate for carrying
out the models’ comparative analysis.

This paper is organized as follows. Section II introduces
the physical layer problem that we aim to mitigate using a
post-equalizer. In Section III, we describe the steps used to
design the combined biLSTM+CNN equalizer that recovers
multiple symbols following a multidimensional complex-valued
regression predictive modeling approach configuration. Sec-
tion IV presents the compression techniques that we address
in this work and describes how we can use the BO method to
optimize the trade-off between complexity and performance.
Section V describes the experimental and simulated setup used.
It also includes a description of the considered computational
complexity metrics and explains how to compute them when
compression techniques are used. Section VI contains the main
results, including the comparison between optical performance
and computational complexity achieved when employing the
different proposed strategies to reverse the channel propagation
function. Our findings are described in the conclusions, which
also include a discussion of open problems, challenges, and
research opportunities.

II. THE NONLINEARITY PROBLEM IN OPTICAL FIBER

COMMUNICATIONS

A. Propagation of Light in the Fiber

The fundamental equation used to describe the propagation
of light along an optical fiber is commonly referred to as the
nonlinear Schrödinger equation (NLSE) [19] and can be de-
rived directly from the Maxwell equations, which describe the
foundations of electricity and magnetism [20]. The NLSE reads
as:

∂E

∂z
= (L̂+ N̂)E, (1)

where E is the electrical field as a function of the propagation
distance z and time t. D̂ and N̂ , describe the linear and nonlinear
parts of the NLSE, which are given by:

L̂ = −α

2︸︷︷︸
loss

− jβ2

2

∂2

∂t2︸ ︷︷ ︸
GVD

+
jβ3

6

∂3

∂t3︸ ︷︷ ︸
GVD slope

,

N̂ = jγ|E|2︸ ︷︷ ︸
Kerr effect

, (2)

where α, β2,3, and γ are the attenuation, the group velocity
dispersion (GVD), and the nonlinear coefficient, respectively. If
we substitute L̂ and N̂ from (2) into (1), it provides the explicit
form of the NLSE:

∂E

∂z
+

α

2
E +

jβ2

2

∂2E

∂t2
− jβ3

6

∂3E

∂t3
= jγ|E|2E. (3)

FREIRE et al.: REDUCING COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS IN OPTICAL CHANNEL EQUALIZATION 4559

Equation (3) is suitable to model optical fiber transmission
when transmission along a single-polarization only is explored,
e.g., intensity-modulation with direct-detection systems [19].
However, a coherent transceiver employs advanced digital signal
processing (DSP) which enables detecting a dual-polarization
signal, thus doubling the spectral efficiency of the system. In this
context, the linear and non-linear interactions between the two
signal polarization must be taken into account. Consequently,
the NLSE of (3) is extended in a vectorized form:

∂EX

∂z
= −α

2
EX +

jβ2

2

∂2

∂t2
EX − jβ3

6

∂3

∂t3
EX︸ ︷︷ ︸

linear part

−jγ
8

9

(|EX |2 + |EY |2
)
EX︸ ︷︷ ︸

nonlinear part

,

∂EY

∂z
= − α

2
EY +

jβ2

2

∂2

∂t2
EY − jβ3

6

∂3

∂t3
EY

− jγ
8

9

(|EX |2 + |EY |2
)
EY . (4)

This pair of equations is commonly referred to as “the Manakov
equation,” and it involves both polarization states. Here, EX

and EY represent the two orthogonal polarization components
of the electric field E. In addition to the two polarization, (4)
properly averages the impact of residual birefringence that leads
to fast polarization changes. Since the polarization state of the
electric field changes rapidly, the resulting nonlinearities do not
correspond to the ones from a linearly or circularly polarized
field but to an average over the entire Poincaré sphere. The
previous equations do not take into account, for example, stimu-
lated Raman scattering (SRS). The SRS is a nonlinear effect that
leads to the depletion of power from short to long wavelengths,
achieving its maximum efficiency when the signals are separated
by ∼100 nm. The Raman effect has mainly been explored to
design distributed Raman amplifiers. Indeed, the SRS impact
is usually negligible in C-band only systems, which occupy
∼35 nm. However, with the advent of ultra-wideband optical
systems, SRS will become the main transmission impairment in
optical networks [21].

B. Channel Capacity Limitations Caused by Nonlinear Kerr
Effect

The non-linear part of (4) imposes a severe limitation on the
maximum achievable throughput in an optical fiber. In fact, the
information theory indicates that the capacity of a linear channel
increases monotonically by raising the transmitted signal power
(or rather signal-to-noise ratio, SNR) [22]. This theoretical limit
is also commonly referred to as Shannon’s limit. However,
in fiber optics, this tendency does not hold because the term
(|EX |2 + |EY |2)EX,Y becomes progressively more important
as the transmitted signal power increases, thus causing phase dis-
tortions that limit the maximum throughput in the network [23].
Consequently, there is an optimal optical signal power that

balances the achievable maximum SNR and the signal distortion
induced by the optical fiber’s nonlinear behavior.

These peculiar aspects of fiber propagation have been widely
investigated, together with mitigation techniques, in both the
optical and digital domains. The next subsection provides a brief
overview of some studies carried out to mitigate the nonlinear
Kerr effect in the digital domain. Nevertheless, a more complete
review can be found in, e.g., [3].

C. Mitigation of Fiber Propagation Effects

Equation (4) is a multi-domain differential equation that does
not have a closed-form solution. A possible way to solve it is
to apply the “Split-step Fourier method” (SSFM). This method
assumes that the linear (L̂) and Kerr nonlinear (N̂) effects can
be separated and solved independently when a propagation step-
size small enough is considered, alternating between them along
the optical fiber. A more detailed description of this approach can
be found in [24], [25]. The absence of an analytical solution for
the Manakov equations makes the perfect compensation of trans-
mission effects very difficult. Additionally, and as an example,
the loss of the phase information severally limits the compensa-
tion of transmission effects in direct-detection-based receivers
(RXs). However, thanks to coherent detection, the amplitude and
phase of the transmitted signal can be simultaneously detected at
the RX input, which enables applying enhanced DSP algorithms
to at least partially compensate for transmission effects. Indeed,
the linear effects, such as GVD and polarization mode dispersion
(PMD), can be fully compensated for in the electronic domain
by using a frequency domain equalizer in conjunction with a
multiple-input multiple-output (MIMO) equalizer. On the other
hand, the compensation of the Kerr nonlinear effects that induce
a self- and cross-phase modulation (SPM and XPM, respec-
tively) on the transmitted signal is much more difficult. The full
compensation of the Kerr effect is troublesome, as the equalizer
would require complete knowledge of the propagation channel
itself (for the SPM compensation), of the neighboring channels
(for the XPM compensation), and of the amplified spontaneous
emission (ASE) noise (intertwining with both SPM and XPM).
Nevertheless, several methods have been proposed to digitally
mitigate nonlinearities. Among them, the most relevant ones that
are worth being explicitly mentioned and described are: 1) maxi-
mum likelihood sequence estimation (MLSE); 2) Volterra-series
based equalizers; 3) DBP; 4) NN-based techniques (we provide
some respective references below).

MLSE is the optimal method as long as there is no limitation
on the number of states of the trellis code, as shown by [26]
for coherent- and by [27] for direct-detection systems. How-
ever, complying with this limitation means that it may become
too complex, and its potential commercial application ended
with 10 Gb/s systems [28], where it has been mainly used to
compensate for GVD. At current high symbol rates, it seems
unrealistic to implement a sufficiently low-power-consumption
MLSE equalizer.

Volterra equalizers were proposed in the ’70 s for satellite
communications [29], and provide a nonlinear version of the

4560 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 14, JULY 15, 2023

widely used finite impulse response (FIR) filters. They are
based on the mathematical technique developed by Vito Volterra,
which is an extension of Taylor’s series but for a general function.
Volterra equalizers can result in significant improvements in
transmission quality [30], [31] but, like in the case of MLSE,
their complexity is too high for realistic implementation.

DBP2 gained momentum about a decade ago when the article
by Ip and Kahn [32] was published. The main idea behind DBP
is to extend the MIMO equalizer by adding a nonlinear part,
so that DBP would invert the nonlinear and linear parts of (4)
by applying the SSFM and solving the propagation equation
(4) backward at the RX. However, DBP is effective only when
combined with coherent detection and is deemed to be relatively
complex for realistic implementation. Several methods have
been proposed to simplify the DBP concept [33], [34], [35],
but its complexity is still considered high.

NNs are intrinsically nonlinear and, therefore, match well
with the type of effects we want to mitigate. Moreover, NNs
can still be employed even in the absence of link information
or in cases where the system configuration has changed, as they
obtain the required information directly from the received signal.
However, NNs can be quite complex, often even more complex
than DBP [7], [36]. As this limitation is the most relevant
blocking point for the implementation of ASICs, this work
specifically addresses this paramount issue, covering several
hardware simplification techniques.

III. LOW COMPLEXITY NEURAL NETWORK DESIGN

As described in [7], the bidirectional LSTM equalizer in a
configuration of many-to-one (1D regression task), i.e., when a
window of symbols is used to recover just the central one, leads
to a computational complexity in terms of real multiplication
per recovered symbol (RMpS) given by:

CbiLSTM = 2ns

⎛
⎝4nhni︸ ︷︷ ︸

a

+ 4n2
h︸︷︷︸

b

+ 3nh︸︷︷︸
c

+nonh︸ ︷︷ ︸
d

⎞
⎠ , (5)

where ns is the size of the input sequence in the time-domain,
ni is the number of input features, no is the output dimension
(which is equal to 2 - the real and imaginary parts of the symbol),
and nh is the number of hidden units in the LSTM cell. In (5),
the addend a is attributed to matrix multiplication of input and
weights; b to matrix multiplication of hidden states and weights;
c to pointwise multiplications occurring internally within the
LSTM cell; and d to matrix multiplication of hidden states
and output weights.3 During this investigation of computational
complexity reduction, we found that simply applying compres-
sion techniques would not be enough to reduce the complexity
beyond the DBP level because such compression strategies
reduce the multiplications between input and weights, as in a,
b, and d, but do not impact internal multiplications, as in c. As

2Not to be confused with the backpropagation through the NN layers used for
the training of NNs.

3Here, we consider that a flatten layer was applied to achieve a many-to-one
configuration. Instead, if the output comes from just one cell, the complexity of
the term d instead of 2nsnonh, would read as: 2nhno

a result, the multiplication nsnh would become the bottleneck
to achieving a reduction in complexity. To mitigate this effect,
we can follow two different strategies. As suggested in [11],
we can utilize basic vanilla recurrent neural networks (RNNs)
as our equalizers insofar as they lack an intrinsic point-wise
multiplier and, therefore, do not suffer from this issue. The
second possibility, again indicated in [11], is to recover several
symbols at a time rather than just the central one, which allows
for eliminating some of the ns multiplications.

Firstly, we tried using the vanilla RNN and optimizing it using
the BO. However, while comparable performance was shown
in [11] when using the LSTM and vanilla RNNs, we observed
quite different performances when using these NNs (with both
tuned using the BO). Indeed, and using the standard DBP as
the reference comparison scenario, as is typically done in the
literature, the vanilla RNN barely outperformed the 1 STpS DBP,
while the LSTM-based architecture showed better performance
than a 3 STpS DBP. In this case, the BO showed substantially
low (≈ 5.10−5) learning rates in the vanilla RNN scenario, in an
attempt to reduce the impact of exploding gradients (that such
layers are known to have). Consequently, the training process
got stuck in the local minima of the loss function landscape,
which limited the optical performance improvement achievable
by the equalizer. The LSTM cell, an enriched variant of the
vanilla RNN cell with several gating units that help propagate
the gradient and govern the flow of information through the NN,
solves this gradient problem. However, at the cost of additional
complexity.

The better performing LSTM equalizer is considered hence-
forth. However, we have enhanced it by recovering multiple
symbols with the same NN structure instead, as proposed in [11].
To recover multiple symbols, we need to consider that, since
chromatic dispersion plays an important role in fiber perturba-
tion, if the NN equalizer processes a window of M symbols as
input, we will be able to recover M − x symbols only, where
M is the number of input symbols and x depends on the
system memory length. Since the initial and final symbols of
the window will lack important information from their neighbors
(due to dispersion-induced memory), they may not be recovered
properly. The simplest way to reduce the dimensionality of the
time window tensor without losing information is by using a 1D
convolutional layer. For this purpose, we use a 1D-CNN with
kernel size nk, the padding set to zero, the dilation and stride set
to 1, and just two filters to represent the real and imaginary parts
of each symbol. In this case, the number of recovered symbols
(the recovery window) is M − nk + 1. We have used the BO to
estimate the appropriate values for M , nh, nk, learning rate, and
mini-batch size, limiting the number of hidden units to at most
150 for complexity constraint reasons. The equalizer scheme is
shown in Fig. 1.

The computational complexity of the bidirectional LSTM +
1D-CNN equalizer, in terms of RMpS, can be represented using
the formulae in [7], but this time taking into consideration the
parallel recovery of ns− nk + 1 symbols as:

RMpSNN =
2nsnh(4ni + 4nh + 3)

ns − nk + 1
+ 2nhnonk, (6)

FREIRE et al.: REDUCING COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS IN OPTICAL CHANNEL EQUALIZATION 4561

Fig. 1. Schematic of the biLSTM+CNN equalizer: the input consists of M
real (I) and imaginary (Q) parts of the symbols. The LSTM cells are indicated
by lozenges containing nh hidden units. The LSTM output is sequentially
processed by the convolutional layer with two filters to compute the I and Q
components of the symbols.

The analysis of (6) shows that the number of multiplications
has decreased when compared to that of the initial biLSTM
equalizer, but compression techniques are still required to further
reduce the number of multiplications to a level at least below 1
STpS DBP without affecting the resulting model’s performance.

IV. OVERVIEW OF DEEP COMPRESSION TECHNIQUES

Generally, the subject of deep NNs compression is vast [37],
[38], and new compression methods emerge almost continu-
ously. This section presents some chosen compression strategies
that can be used efficiently to overcome the constraints that limit
the real-time deployment of NNs. Strategies to reduce high pro-
cessing resources as well as to cut down on energy consumption
will also be discussed. According to [38], [39], the compression
can often be accomplished with little loss of accuracy, and in
some situations, the accuracy may even rise [40]. Three methods
of network compression are discussed below: pruning, weight
clustering, and quantization. Fig. 2 illustrates how the weight
distribution of the NN changes after applying each of these
compression techniques.

A. Pruning

Pruning is the process of removing parameters, neurons, or
even layers or parts of a NN that do not significantly affect its
performance to reduce its computational complexity. The area
of NN pruning is wide and encompasses several subcategories:
(a) static or dynamic; (b) one-shot or iterative; (c) structured
or unstructured; (d) magnitude-based or information-based; (e)
global or layer-wise. Detailed information on the different types
of pruning can be found in, e.g., [39], [41], [42], [43], [44], [45].
In our work, we prune the lowest magnitude weights globally
throughout the NN [41]. This low-complexity, traditional, un-
structured global magnitude pruning has already proven to be
quite effective [38], [41], [46], [47], [48]. To be more specific, we

consider static, iterative, unstructured, global magnitude-based
pruning. In this case, we remove weights offline from the net-
work after training and before inference. Moreover, iterative
pruning allows us to prune more weights while preserving
accuracy.

The four (most promising) strategies for the iterative-pruning
retraining process that are applied in our study are schematically
depicted in Fig. 3. The four approaches are referred to as fine-
tuning, weight rewinding, learning rate rewinding, and Bayesian
optimizer assisted.

1) Fine-Tuning Approach: This method prunes the model
once it has been trained. In a second step, it trains the weights that
remain after pruning using a constant learning rate; the latter is
usually the same as the final learning rate of the original training
procedure. The first panel of Fig. 3 shows how the fine-tuning
scheme is implemented. After determining the fine-tuning pe-
riod, we use the traditional gradual pruning method (a poly-
nomial decay) [49]. The pruning polynomial decay approach
quickly prunes the network at the beginning, when there are
many redundant connections, and gradually reduces the number
of weights pruned each time. This procedure results in a smooth
loss function during the fine-tuning period, which is beneficial
for the learning process to maintain an accuracy close to the
original NN model.

This approach can be used when employing the other “de-
terministic” methods for the equalization of optical fiber non-
linearities. For example, this pruning technique can be used (in
a simpler way) to eliminate the less relevant coefficients of the
Volterra equalizers [50], [51], [52] and to trim the unimportant
triplets (making the triplet feature vector more sparse). It can
also be used when employing perturbation approaches [53],
[54], [55]. Several papers investigated the use of fine-tuning,
mainly in short-reach intensity-modulated systems [56], [57],
[58], [59], [60], [61], to reduce the complexity of the model.
So far, the analysis of pruning in optical channel equalization
has been restricted to the case of the feed-forward NN models
only. In our work, we will also present such an analysis for a
recurrent equalizer and deal with the case of coherent optical
transmission.

2) Weight Rewinding Approach: This method was intro-
duced in [46] dealing with the lottery ticket hypothesis. The main
idea supporting it is that a dense NN with random initialization
contains a subnetwork that, when trained in isolation, can match
the test precision of the original network after training. This
approach is separated into three parts, as shown in the second
line of Fig. 3. First, during the initial training process, the weights
of each epoch are saved. Then, at the end of the initial training,
a percentage of the connections are pruned and the remaining
weights and the learning rate are reset to their prior values (that
we had at the k-th epoch of the initial training); the choice of the
particular epoch number k, used in our work, is explained below.
Subsequently, the retraining restarts from the k-th epoch and
goes up to the last epoch, followed by a fresh round of pruning
using the remaining weights. The cycle of resetting weights and
learning rates is repeated until a specific degree of sparsity is
achieved. In this approach, the loss function oscillates over the
pruning time since the loss increases every time the weights are

4562 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 14, JULY 15, 2023

Fig. 2. Illustration of the weight distribution of the recurrent kernel in the LSTM layer of our NN equalizer from the different phases of the NN design in this
paper. (a) Original trained NN; (b) The pruning phase; (c) The weight clustering phase; (d) The quantization phase.

Fig. 3. A schematic of the fine-tuning, weight rewinding, learning rate rewinding, and Bayesian optimizer-assisted pruning strategies is shown. A qualitative
representation of the evaluation loss over the training time process is shown on the right-hand side. Hp is the set of hyperparameters suggested by the BO for the
pruning phase.

reset, but the process tends to converge to the reference before
pruning.

In the context of channel equalization, to the best of our
knowledge, the first and only paper that applied this method is the
recent work by Koike-Akino et al. [62], where such a technique
has been tested in the feedforward model called ResMLP. It was
shown that this approach can give a sparsity of 99% compared
to the initial overparameterized solution with 6 layers and more
than 106 parameters. In this work, and similarly to [62], we use
rewinding of the first epoch, meaning that k = 1.

3) Learning Rate Rewinding Approach: This method was
introduced in [48] and combines fine-tuning with weight rewind-
ing. The third panel of Fig. 3 shows how this method operates.
While the weight rewinding, described above rewinds both the
weights and the learning rate, the learning rate rewinding simply
rewinds the learning rate, leaving the weights to be re-trained

after pruning from their values at the end of the initial training
phase (like in the fine-tuning approach described above). In a
nutshell, after initial training, a percentage of connections are
pruned and re-trained while just the learning rate schedule is
rewinded. This cycle is repeated until the network sparsity is at
the desired level. To the best of our knowledge, this approach
has not yet been evaluated in the optical equalization task.

4) Bayesian Optimizer Assisted Approach: The two previous
approaches were proposed because just fine-tuning the initial hy-
perparameters of the NN does not guarantee that the performance
of the equalizer remains similar. A possible explanation for this
effect is that, once the pruning of the NN starts, the optimization
problem’s target changes. Consequently, the hyperparameters of
the new architecture may also need to be adjusted. Indeed, and as
stated in [63], we may lose performance if the hyperparameters
are set to a default value when fine-tuning the NN’s weights

FREIRE et al.: REDUCING COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS IN OPTICAL CHANNEL EQUALIZATION 4563

after compression. Solutions as in [64] leverage reinforcement
learning to provide the model compression policy, determining
layer-wise pruning rates. Alternatively, we use the BO-based
approach to not only define the pruning policy, but also other
important hyperparameters of the model (the number of tuning
epochs, learning rate, batch size, and initial/final sparsity), thus
optimizing the trade-off between performance and computa-
tional complexity. We note that this is a completely new approach
that has not been tested in any other applications.

Let us briefly specify the BO approach4 that seeks the
global optimum x∗ of a black-box function opt, where opt(x)
can be evaluated for any arbitrary x ∈ X . That is, x∗ =
argminx∈X opt(x), where X is a hyperparameter space that
can contain categorical, discrete, and continuous variables [65].
For solving the problem formulated above, the BO assumes that
the function opt was sampled from a Gaussian process. The BO
maintains a posterior distribution for this function when obser-
vations are made [66]. The observations, for our application, are
the outcomes of our performing the NN-based equalization trials
with different hyperparameters. To choose the hyperparameters
for the next trial, in this work we have optimized the expected
improvement over the current best result, see more in [67].

In our case, the optimization process involves the following
procedures: After the initial training phase, the NN model with
hyperparameters Hi ∈ X , has a total computational complexity
(say, expressed in terms of real multiplications)Ci, and a certain
performance Pi (the Pi is evaluated using a testing dataset).
Then, we use the BO to minimize the following objective func-
tion:

opt =

{
(Pi − Pp)

Cp

Ci
, Pi > Pp

− Ci

Cp
, if Pp ≥ Pi

, (7)

where Pp and Cp are the performance and computational com-
plexity observed when using a set of hyperparameters Hp ∈ X
in the pruning and fine-tuning process, respectively. The two
possible scenarios that may occur when pruning is applied are
covered by (7): i) the first one corresponds to the usual case
where Pi is better than the pruned performance Pp. In such a
situation, the goal of minimizing opt is equivalent to minimizing
the Pi − Pp gap and, at the same time, reducing the number of
multiplications Cp when compared to the initial ones, Ci. ii)
the second case takes place when the pruned NN improves the
performance, Pp > Pi. This case occurs when pruning enables
escaping a local minimum, thus improving the NN performance.
The focus is then on reducing the computational complexity.
According to (7), this means that the reduction of opt can only
be achieved by reducing Cp, (since Ci is constant). To the best
of our knowledge, this procedure is a new approach (even in the
ML science): it aims at identifying the best balance between
the model’s performance and computational complexity, by
selecting a good candidate for the parameters set Hp.

4The hyperparameter optimization can be done using methods other than
the BO, although, as mentioned in [65], [66], the hyperparameter optimization
strategy, the BO offers numerous advantages over search algorithms in terms of
finding good candidates with fewer interactions.

Fig. 4. Scheme of weight clustering over dense layers using the BO of its
design. Once the NN weights are trained, a selection of weights per layer is
forced to be in the closest centroid learned using stochastic gradient descent.

B. Weights Clustering

Weights clustering, also referred to as the “weight-sharing
compression approach,” is another method that can be explored
to reduce the NN model’s complexity by reducing the number
of effective weights used by the model. This approach takes into
account that several connections may share the same weight
value, and then fine-tunes those shared weights. In the case of
feedforward structures, this strategy was already successfully
employed to minimize the complexity of NN models [45], [68],
[69], [70]. In this paper, we use the same method as in [45], but
modify it for the recurrent layers as well. Following the selection
of a centroids’ initialization technique, [45], a minimal distance
from each weight to such centroids is used to determine the
shared weights for each layer of a trained network so that all
weights in the same cluster share the same weight value. The
weights are not shared between the layers to prevent further per-
formance loss and because sharing weights between sequential
layers does not lower computing complexity. Fig. 4 illustrates
how this strategy is applied jointly with the BO. To apply the
weight clustering, we need to define three parameters: i) the
number of clusters, ii) the centroids’ initialization technique,
and iii) the weight’s fine-tuning process. The BO is used to
select these parameters so that the performance degradation
is minimized. The objective function depicted in (7) was also
used for the BO. Four possible centroid initializers to choose
from were provided to the BO: linear-, random-, density-, and
K-means-based. Using the weight clustering approach has the
advantage of reducing the number of distinct multipliers in
matrix multiplication to at least the number of clusters per input

4564 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 14, JULY 15, 2023

element. Then, the results of the multipliers are sent to the
different adders. To illustrate the weight clustering operation,
consider the first matrix in Fig. 4. Suppose that the input vector
I , the output vectorO, and the weight matrixW before clustering
are linked as follows (to explain the method, we explicitly use
4-dimensional vectors and respective matrices):

O=W × I=

⎡
⎢⎢⎢⎣
w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44

⎤
⎥⎥⎥⎦
[
i1 i2 i3 i4

]
.

(8)
In Fig. 4, we cluster this matrix with 3 centroids, c1, c2, and c3,
so the new equation connecting input and output, becomes:⎡

⎢⎢⎢⎣
o1

o2

o3

o4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
c1 c3 c2 c1

c2 c3 c1 c2

c3 c2 c3 c1

c2 c3 c1 c2

⎤
⎥⎥⎥⎦
[
i1 i2 i3 i4

]
. (9)

This result shows that, in the worst case scenario, the new number
of multiplications would decrease from 16 (input size × output
size= 4×4) to (input size× number of clusters= 4×3), because
in this case we can carry out all possible unique multiplications
(i1c1, i1c2,..., i4c3), and the rest of the operations are additions.
However, by properly designing such a matrix multiplication,
the number of multiplications can even be further reduced. In
the same example, we may define the output O as follows:⎡

⎢⎢⎢⎣
o1

o2

o3

o4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
i1c1 + (i2 + i4)c2 + i3c3

(i1 + i2 + i4)c3 + i3c2

i1c2 + (i2 + i4)c1 + i3c3

(i1 + i3)c1 + (i2 + i4)c2

⎤
⎥⎥⎥⎦ . (10)

Notice that the number of multiplications is reduced to 8 unique
multiplications in Eg. (10), which is half of its original value
(the number of additions remains the same). It is important to
note that the benefit resulting from using this technique depends
on the lengths of the input vector and the weight matrix, as well
as on how the learned weight pattern is spread over the weight
matrix. In addition, weight clustering is also used as a form
of heterogeneous quantization. In this sense, when assuming a
quantization of, say, 3 bits, the weight clustering approach will
try to identify the 8 unique weights that can best describe the
original weight distribution of the NN model. In this case, this
type of nonuniform quantization is implemented by maintaining
a codebook structure that stores the shared weights, and the
weights are grouped by index after calculating the gradient of
each layer [45], [71]. Importantly, in our current problem, the
weight clustering contributes the most to the NN-based equal-
izer’s complexity reduction. Moreover, we note that clustering
has never been used in NN-based optical channel equalization.

Finally, it is worth clarifying how the learning process occurs,
when backpropagation is used to update the clusters of centroids
and the original weights. The TensorFlow implementation used
in this paper works with a lookup table to hold the centroid values
during the model training, as described in [72]. The weights array

is populated with a “gather” operation so that, during the back-
propagation, the gradients can be calculated in the usual way.
The lookup table is then adjusted using the cumulative gradient
values for the weights that correspond to the same centroid. The
original weights are also updated by using a straight-through
estimator to overwrite the non-differential structure of clustering
with an identity function, which allows all upstream gradients
to be used in the updated original non-clustered weights of the
layer [72], [73].

C. Quantization

Quantization is used to lower the bitwidth of the numbers
participating in arithmetic operations along the signal processing
chain, which typically helps to significantly reduce the computa-
tion complexity of the processing. This means that a quantized
model can use, for example, integers instead of floating-point
numbers for some or all operations. Therefore, quantization
allows representing the model using less memory and doing
high-performance vectorized operations on a variety of hardware
platforms [74].

Quantization has demonstrated excellent and consistent re-
sults when used during the training and inference using different
NN models [39], [74], [75], [76]. Particularly, it is effective
during inference because it saves computing resources without
significantly decreasing accuracy. NNs benefit from quantiza-
tion because they are remarkably robust to aggressive quantiza-
tion and extreme discretization. This robustness emerges from
the large number of parameters involved in the NN, meaning
that they are typically working with over-parameterized models.
In this subsection, we present the categories of quantization
addressed in this work in terms of their mode (post-training
quantization [77] or quantization-aware training [78]) and quan-
tization approach (homogeneous [79] or heterogeneous [80]).

1) Homogeneous or Heterogeneous Quantization: Homoge-
neous is the most common quantization approach. The homoge-
neous quantization consists of reducing the precision of all NN
weights to the same number of bits. In this case, we use the same
type of quantization and number of bits across the entire NN
model. However, because the layered structure of multilayered
NN models offers high quantization flexibility, it is natural to
assume that different layers may impact the loss function dif-
ferently, which favors a mixed-precision quantization approach.
The process of quantizing the layers differently across the NN is
known as “heterogeneous quantization,” and it can be a critical
step toward improving the complexity-performance trade-off. In
this case, we quantize distinct layers with varying bitwidths into
their fixed-point representation, as in [80].

There are several different types of quantization that may be
used. In this work, we focus on the uniform quantization [81],
the power of two quantization (PoT) [82], and the additive
power of two quantization (APoT) [83], since they have a wide
range of applications and usually deliver quite good results.
Regarding those types of quantization, they usually convert the
floating-point representation to a fixed-point representation, thus
using integer mathematics instead of a floating-point one. This

FREIRE et al.: REDUCING COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS IN OPTICAL CHANNEL EQUALIZATION 4565

approach reduces both the memory and computing requirements
for the realization of a particular solution.

Uniform quantization is the most common and simplest quan-
tization approach. The uniform quantization applied to the NN
elements can be expressed as [81]:

Q(x)BW = R(x, αLuni(BW)), (11)

Luni(BW) =

⎡
⎢⎢⎣−1, 0,± 1

2BW−1
, . . .,±2BW−1 − 1

2BW−1︸ ︷︷ ︸
2BW−1−1 amplitudes

⎤
⎥⎥⎦ , (12)

whereQ(. . .)··· is the quantization operator, x is a real-valued in-
put (it can be weights or an activation function),BW is the quan-
tized bitwidth value,R(x, αLuni) is the function that roundsx to
the nearest element on the listLuni that contains all quantization
levels, and α is a scaling level that guarantees that the largest
weight in the NN will not be clipped. The quantization error
is introduced by the rounding functions, depending on the BW
precision. Note that, in this paper, we use a representation format
that, besides the “-1” and “”0 values, involves 2BW−1 − 1
additional amplitudes, defining a total of 2BW − 2 positive or
negative levels. The int8 quantization (BW = 8) is one of the
most widely used uniform quantization schemes, not only for
the ML frameworks such as TensorFlow and PyTorch, but also
for the hardware toolchains such as NVIDIA TensorRT [84] and
Xilinx DNNDK [85]. The int8 quantization has the advantage
of typically not leading to relevant performance degradation (as
can be observed from our results as well; see Fig. 14). In this
work, we will not restrict ourselves to int8 quantization only but,
in contrast, will also use the BO to determine the best number
of bits for the quantization process.

The PoT quantization is a logarithmic quantizer [86] designed
to approximate the weights to the closest power of two in the
range defined by the considered number of bits. Mathemati-
cally, we can represent the PoT quantization considering 2BW

elements as [83], [86], [87]:

Q(x)BW = R(x, αLPot(BW)), (13)

LPot(BW) =

⎡
⎢⎢⎢⎣−1, 0,±1

2
, . . .,± 1

2(2BW−1−1)︸ ︷︷ ︸
2BW−1−1 amplitudes

⎤
⎥⎥⎥⎦ . (14)

The POT quantization leads to much smaller computational
complexity when compared to the uniform quantization because
all multiplications can be represented in terms of bit-shift oper-
ations (since we have only power-of-two values). However, as
pointed out in several works [82], [83], [86], [88], the perfor-
mance of the PoT-quantized system can degrade compared to
the uniform quantized one due to this scheme’s rigid resolution
problem.

The APoT quantization was recently proposed to encompass
the benefits of PoT and uniform quantization types. As stated
in the original paper [83], the PoT and uniform quantization are
special cases of APoT with specific design parameters. The goal
of APoT is to have fewer shift-adds than uniform quantization,

but at the same time to take advantage of its non-uniform quan-
tization levels, as PoT does. Mathematically, we can represent
the APoT quantization [83] considering 2BW levels as:

QBW (x) = R (x, αLAPot(BW)) , (15)

LAPot(BW) =

[
−1,

{
n−1∑
i=0

pi

}]
, (16)

pi ∈

⎡
⎢⎢⎢⎣0,± 1

2i+1
,± 1

2n+i+1
, . . .,± 1

2[(2K−2)∗n+i+1]︸ ︷︷ ︸
2K−1 amplitudes

⎤
⎥⎥⎥⎦ , (17)

where n is the number of additive terms, k is defined as
k = (BW − 1)/n, and {. . .} is the set containing all possible
combinations of n additions from the 2K different elements in
the list pi.5 In this description, by setting n = 1 we have the PoT
case, whereas setting k = 1 leads to the uniform case.6 In this
work, we have considered n fixed and equal to 2, 3, or 4. We
have also addressed the case from the original paper [83], where
k was fixed equal to 2. Importantly, we will show the drawback
of using the APoT quantization with k = 2 when the model has
already been pruned.

2) Post-Training Quantization: The post-training quantiza-
tion (PTQ) [74], [77], [81], [89] is a conversion technique in
which all trained weights and activations of the NN model are
converted to some fixed point representation, following some
quantization precision established after the training phase. As
indicated in Fig. 5, blue box, a quantization approach is applied
after training the neural network weights, and the quantized
weights are saved for future use. As a result, the PTQ is an
extremely fast method of quantizing NN models. Moreover,
we found that, when using the PTQ, a quick grid search was
already enough to analyze all possibilities and get a satisfactory
result. Thus, we decided not to use the BO to determine the
optimal precision (bitwidth per layer). However, this approach
usually leads to a small degradation of the model’s performance,
independent of the selected quantization approach.

3) Quantization Aware Training: As stated previously, the
inference performance of the quantized integer models is gener-
ally worse than that of the floating-point models due to the infor-
mation loss induced by quantization. To address this limitation, a
method known as quantization-aware training (QAT) [74], [90],
[91] was proposed. QAT accounts for the loss of information
during the training phase, resulting in a smaller performance
degradation during inference. In this work, we use the QAT
approach proposed in [92], where the quantized weight levels are
optimized. Afterward, the quantization is reversed, but the final
forward-propagated values also include the errors aggregated by
the weight quantization scheme.

5To explain the notations better, consider the case where n = 2 and k = 3,
such that we have two sets, p0 = {p10, p20, p30}, and p1 = {p11, p21, p31}. Then,

{
∑1

i=0
pi} = {p10 + p11, p

1
0 + p21, p10 + p31, p

2
0 + p11, . . . , p

3
0 + p31}.

6Equations (12), (14), and (16) are valid forbw > 1; when bw = 1, we have
the same set of values, 1 or 0, independently of the type of quantization.

4566 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 14, JULY 15, 2023

Fig. 5. Schematic of the NN quantizer. BO can help with the post-training
quantization by finding the best bitwidth precision per layer, and with the
quantization-aware training by finding the best hyperparameters for the fine-
tuning training after quantization.

Fig. 6. Quantization-aware training scheme for forward and backpropagation.
The forward propagation uses the quantized alphabet cq to generate the quantized
weights Wqc and, in the backpropagation, such a weight is “skipped” by
imposing its gradient to be one (straight-through estimator, [87]).

The implementation of the QAT is illustrated in the green
box in Fig. 5. In the QAT case, the fine-tuning block operates
as follows: 1) It receives the weights quantized via the chosen
quantization strategy; 2) then performs the forward propagation;
3) Afterward, it converts all variables to float precision; 4)
Finally, it does the backpropagation. This cycle is repeated until
the weights are definitively quantized. The inference giving the
quantized structure performance is then completed.

For practical reasons, the QAT scheme for learning depicted
in Fig. 6 is similar to the one used with weight clustering. In the
case of weight clustering, the quantizer box is an identity since
the cluster centroids are the alphabet that the NN is training to
learn (a nonuniform quantizer), and both centroids and weights
are updated in the training process. We can instead force the
centroids to be fixed into a defined alphabet (e.g. uniform,
(12); POT, (14); APOT, (16), and update the weights only (the
centroids will fall into one of the possibilities in the quantization
alphabet). For the forward propagation, all weights in the NN,
W , are quantized to the nearest element of the quantized alphabet
cq , resulting in the quantized weights Wqc that will be used
to compute the loss function. However, in the backpropagation

stage, we compute the gradients using the floating-point values
(W). This is possible because the backpropagation engine is
forced to “ignore” the quantization step used in the forward

propagation. The latter is done by assuming that
∂Wqc

∂W
= 1.

As stated in [87], this process is known as a Straight-Through
Estimator, and it results in a smoother transition between con-
secutive quantization levels in the learning process.

Finally, BO was used to fine-tune, i.e., find the best hyperpa-
rameters, in the QAT. Note that, differently from the other two
compression approaches, where the computational complexity
C is measured in terms of the number of real multiplications, it
is now measured in terms of the number of bit operations.

4) Quantization Applications in Optical Channel Equaliza-
tion: The Current State of the Art: Several quantization strate-
gies have already been proposed to equalize optical channels.
Regarding the post-training quantization, the authors of [93]
implemented an MLP-based equalizer with two hidden layers
in an FPGA (XCZU9EG FFVC900) using post-training quan-
tization with traditional uniform int8 precision; the quantized
equalizer was tested in an experimental setup of a 50 Gb/s PON
with a 30 km SSMF link. Next, this time using a recurrent
NN-based equalizer, [94] tested the equalizer in a PAM4-based
100-Gbps PON signal transmission over a 20 km SSMF fiber
testbed and applied post-training quantization, changing the
bitwidth of the weights from 8 to 2 bits, to evaluate the BER
degradation resulting from the quantization. Also, the authors
of [94] implemented such an equalizer in an FPGA using the
Xilinx Vivado toolset for high synthesis. The authors of [95]
focused on coherent transmission. In this case, a complex-valued
dimension-reduced triplet input neural network was proposed
and experimentally tested with a 16-QAM 80 Gbps single-
polarization signal transmitted along 1800 km of SSMF (100 km
SSMF loop). In this study, to validate the robustness of such a NN
equalizer on the quantization, they reduced the bit precision of
weights to up to 2 bits, observing mostly only minor performance
degradation. Finally, in [40], an MLP equalizer was used to
mitigate the impairments in a 30 GBd 1000 km system. In this
case, the PTQ strategy along with the traditional uniform 8-bit
quantization were demonstrated using low-performing hardware
(the Raspberry Pi and Jetson nano).

Regarding the QAT strategies description, an important dis-
cussion on the quantization of NN weights was held in [96]
where it was emphasized that the equalizer inference should be
performed by a fixed-point system to address a more hardware-
friendly situation. An MLP-based equalizer was used, and its
weights were quantized with a PoT quantization strategy. The
authors incorporated the quantization error in the training of the
equalizer by using the learning-compression (LC) algorithm,
which is a possible QAT strategy. The authors of [97] used
a deep CNN equalizer to assess their proposed quantization
strategy, which combines QAT and post-equalization to find
the most appropriate number of bits for uniform quantization.
Considering a theoretical dispersive channel with AWGN noise
and ISI, the CNN equalizer achieved a performance comparable
to that of the full-precision model when using only 5-bit weights.
More recently, the paper [62] demonstrated that the APoT

FREIRE et al.: REDUCING COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS IN OPTICAL CHANNEL EQUALIZATION 4567

Fig. 7. Experimental setup. The input of the NN (shown as the red rectangle
after DSP RX) is the soft output of the regular DSP before the decision unit.

strategy could provide much higher resilience to quantization
than the ordinary PoT. In this case, a ResMLP equalizer was
tested (using simulation results) considering the transmission of
a dual-polarization 64/256QAM, 34 GBd 11Ch-WDM signal
over 22 spans of 80 km of SSMF.

V. ASSESSMENT OF PERFORMANCE OF NEURAL NETWORK

BASED EQUALIZERS

A. Experimental and Numerical Setups

The performance of the NN-based equalizers with reduced
complexity is assessed using data not only from numerical
simulations but also from a real experimental setup to make
the analysis as complete as possible. The setup used in our
experiment is depicted in Fig. 7. At the transmitter side, a dual-
polarized probabilistic shaped 64QAM (8bits/4D symbol)7 34.4
Gbaud symbol sequence was mapped out of data bits generated
by a Marsenner twister generator [98]. Then, a digital root-raised
cosine (RRC) filter with a roll-off factor 0.1 was applied to limit
the channel bandwidth to 37.5 GHz. The resulting filtered digital
samples were resampled and uploaded to a digital-to-analog
converter (DAC) operating at 88 GSamples/s. The DAC outputs
were amplified by a four-channel electrical amplifier that drove
a dual-polarization in-phase/quadrature Mach-Zehnder modula-
tor, modulating the continuous waveform carrier produced by an
external cavity laser at λ = 1.55μm. The resulting optical signal
was transmitted along 9×110 km spans of SSMF with lumped
(EDFA) amplification. The EDFA noise figure was in the 4.5 to
5 dB range. The SSMF is characterized at λ = 1.55μm by an
attenuation coefficientα = 0.21 dB/km, a dispersion coefficient
D = 16.8 ps/(nm· km), and an effective nonlinear coefficient γ
= 1.14 (W· km)−1.

7We address in the experiment the PS case to show that the equalizer works
in a variety of different scenarios.

At the Rx side, the optical signal was converted to the elec-
trical domain using an integrated coherent RX. The resulting
signal was sampled at 50 Gsamples/s with a digital sampling
oscilloscope and processed by an offline DSP based on the algo-
rithms described in [99]. First, the bulk accumulated dispersion
was compensated using a frequency domain equalizer, which
was followed by the mitigation of the carrier frequency offset.
A constant-amplitude, zero autocorrelation-based training se-
quence was then located in the received frame, and the equalizer
transfer function was estimated from it. Afterward, the two
polarization were demultiplexed and the signal was corrected for
clock frequency and phase offsets. The carrier phase estimation
was then done with the help of pilot symbols. Subsequently, the
resulting soft symbols were used as input for the NN equalizer.
Finally, the pre-FEC BER was evaluated from the signal at the
NN output.

The experimental transmission setup was mimicked by sim-
ulation. In this case, the transmission of a DP-64QAM, single-
channel (SC) 34.4 Gbaud signal pre-shaped by an RRC filter
with 0.1 roll-off, with an upsampling rate of 8 samples per
symbol (275.2 GSamples/s) over the same fiber link is assumed.
We have also tested an additional simulated setup consisting in
the transmission of a DP-64QAM signal (but with a symbol rate
of 30 Gbaud) along 20× 50 km SSMF spans. The propagation
of the optical signal along the optical fiber was simulated by
solving the Manakov equations (4) using the split-step Fourier
method (with a resolution of 1 km per step). Each fiber span
was followed by an EDFA with the noise figure NF = 4.5 dB,
which fully compensates for fiber losses and adds amplified
spontaneous emission noise. At the RX, after the full electronic
chromatic dispersion compensation (CDC) by the frequency-
domain equalizer and downsampling of the signal to the symbol
rate, the received symbols are normalized to the transmitted
ones. The performance of the system was evaluated in terms
of the Q-factor, defined as: Q = 20 log10[

√
2 erfc−1(2BER)].

Focusing now on the biLSTM + CNN NN implemented in this
work, the mean square error (MSE) loss estimator and the clas-
sical Adam algorithm for the stochastic optimization step [100]
were used when training the weights and bias of the NN. The
training hyperparameters (mini-batch size and learning rate) and
the NN design hyperparameters (output window, hidden units
of the LSTM, and kernel size of the 1D-CNN) were found
using the BO procedure described in [36]. An input window
with 221 symbols was selected because it allows recovering
a large number of symbols simultaneously, thus reducing the
computational complexity. The BO optimization cycle starts
with the training of the NN via backpropagation for 1000 epochs
with a fixed set of hyperparameters. The BER is evaluated after
each training epoch. For training, we used a fixed dataset with
220 data points (a vector of symbols), and, at every epoch,
we picked 218 random input data points from this dataset. For
testing, we used a never-seen-before dataset with 218 data points.
Here we recap in more detail the data generation for the training
and testing phases. Our multi-symbol equalizer, as described in
Section III, takes M symbols as input data point and recovers
Mo symbols as output. This produces a level of parallelization
of the solution, which reduces the computational complexity per

4568 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 14, JULY 15, 2023

TABLE I
THE BEST HYPERPARAMETERS WERE FOUND BY THE BO FOR THE TWO TRANSMISSION SETUPS CONSIDERED IN THIS WORK. THE SAME NN CONFIGURATION IS

EMPLOYED FOR THE NUMERICAL AND EXPERIMENTAL SETUPS

Fig. 8. Data flow generation for training and testing the NN-based equalizer.

recovered symbol. For training purposes, we need as much data
as we can produce to train our NN model. In this sense, each
input data point in the training dataset corresponds to the vector
of M symbols (I and Q for both X and Y pol) for every available
time k in the transmission, which at the end produces many
vectors with overlapped output symbols. In the testing phase, the
data was generated to simulate the real benefits of such output
parallelization. In this sense, for each input data point created
in time k, we will skip Mo times before generating the next
point to ensure that all recovered symbols are unique and BER
can be calculated with distinct symbols, avoiding any metric
miscalculations. Fig. 8 summarizes the data creation procedure
in both the training and testing phases.

Following the training phase, the best BER was fed to the
BO as an optimization target [36] (the optimizer assumes a
Gaussian conditional distribution of BERs). Using this input,
the optimizer updates the process model and generates a new set
of hyperparameters to be tested. After 20 Bayesian optimizer
cycles, we selected the set of hyperparameters leading to the
lowest BER. The BO grid space considered was: mini-batch size
[32 to 5000], learning rate [0.0001 to 0.002], hidden units [1 to
150], and kernel size [1 to 200]. In this case, the output window
is directly defined by the input window and the kernel size of the
1D-CNN. The BO was used to learn the best hyperparameters
for the two different transmission setups considered in this
paper. The results of the optimization process are summarized
in Table I. Here, we also emphasize that the automated kernel
acquired by the BO method can be explained by the fact that
shorter links are predicted to have bigger nonlinear memory;
hence, the BO discovered a larger kernel memory for the 20 ×
50 km (nk = 51) link than for the 9 × 110 km link (nk = 27).

Finally, we would like to mention the two benchmark lines
used in this paper: (i) for the computational complexity provided
by the CDC and (ii) for nonlinear mitigation performance in
Q-factor [dB] given by DBP, where we used the implementation
described in [33]. Our primary goal was to assess the complexity
of NN with respect to CDC while guaranteeing a level of
nonlinear compensation comparable to that of the widely used
DBP.8

The CDC block was designed using a frequency domain
equalizer (FDE). FDE gets rid of dispersion by multiplying the
signal by the opposite of the transfer function for dispersion.
After the transmission, the amount of dispersion that has built up
is estimated, and based on that, the FDE changes its parameters
on the fly. In terms of computational complexity, the CDC block
corresponds to two linear steps of the DBP method with 2
and 1 samples per symbol, respectively, and its computational
complexity in terms of the number of real multiplications per
transmitted symbol is [101]:

CCDE = 4 ·
(
2N (log2 N + 1)

(N −ND2
+ 1)

+
N (log2 N + 1)

(N −ND1
+ 1)

)
, (18)

where N is the FFT size and NDq
= qτD/T , where τD corre-

sponds to the dispersive channel impulse response and T is the
symbol interval. Factor 4 in the expression corresponds to the
fact that one complex multiplication can be expressed through
four real ones.

The DBP used in this paper was also used in multiple papers,
as previously reported in Ref [33], [102], [103]. In summary,
this DBP is implemented using the symmetric split-step Fourier
method. In this case, both the linear filter parameters and the
nonlinear operators are optimized to reduce the equalized BER,
and the nonlinear step was thought to be completely static.
Also, the DBP is implemented in the frequency domain with
an oversampling factor equal to 2,9 and the FFT size is set
to 256, which was not optimized any further. In the case of
a single channel, the computational complexity of the DBP
method in terms of the number of required real multiplications
per transmitted symbol can be estimated as [101] :

CDBP−1ch = 4NSpNStpSp

(
N (log2 N + 1) q(
N −NDq

+ 1
) + q

)
,

(19)

8The CDC benchmark is the most important because our primary goal is to
show the readiness of NN with respect to the already-available algorithm in
commercial transponders. In contrast, none of the existing DBP versions has
reached the hardware level of implementation.

9All NN-based equalizers presented in this work operate with 1 sample per
symbol.

FREIRE et al.: REDUCING COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS IN OPTICAL CHANNEL EQUALIZATION 4569

TABLE II
OVERVIEW OF MAIN METRICS FOR EVALUATING COMPUTATIONAL COMPLEXITY IN NN MODELS

where NSp is the total number of spans, NStpSp is the number
of propagation steps per span, and q is the oversampling factor.

B. Computational Complexity Evaluation Metrics

The accurate evaluation of computational complexity is crit-
ical when designing a DSP (to assess the potential for hard-
ware implementation) [104]. Fig. 9 summarizes the four most
commonly used criteria for assessing computational complexity,
from the software to the hardware level.

We have introduced in [105] a general way of estimating
the computational complexity for different-type of NN layers.
The proposed metrics were the number of multiplications [104],
[106], the number of bit operations [70], [91], [107], the number
of shift and add operations [105] and the number of hardware
logic gates [108], [109]. A brief description of each of these
metrics is presented in the Table II. In this subsection, we
focus on the expressions of computational complexity when
combining the biLSTM and 1D-CNN layers, and on how the
compression techniques impact the computational complexity
of NN equalizers.

Traditionally, the simplest estimation of complexity refers to
the number of real multiplications of the algorithm only. This
metric is also known as the number of real multiplications per
recovered symbol (RMpS) [7]. The RMpS corresponding to the
bidirectional LSTM + CNN equalizer is given by (6). Since in
this work we consider the unstructured pruning, which prunes
all layers in the same way, the number of multiplications is:

RMpSNN =

(
2nsnh(4ni + 4nh)

ns − nk + 1
+ 2nhnonk

)
(1− μ)

+
6nsnh

ns − nk + 1
, (20)

where we assume that the achieved sparsity level is equal to
μ. The explanation for the variables entering (20) can be found
below (5). Note that the pruning coefficient reflects the multipli-
cations’ reduction only for the weight multiplications. Since we
are interested in the recurrent layers, the number of pointwise
multiplications that occur internally in the recurrent cell is not
affected by pruning. Aside from pruning, we can also use weight
clustering to reduce the RMpS. As indicated in Section IV-B, and

Fig. 9. Computational complexity metrics diagram illustrating the various
levels of complexity measurement from software to hardware.

also taking into account the equations that describe the LSTM
cell and the 1D-CNN layer in [7], each LSTM cell depends on
four input kernel matrices, W i,f,o,c, and four recurrent kernel
matrices, U i,f,o,c. These four matrices for input and recurrent
kernels are usually treated as two matrices (say, W and U) with
shapes [ni, 4nh] and [nh, 4nh], respectively. Now, consider that
in the input matrix,W , we can identify some number of clusters,
ci, and for the recurrent kernel matrix, U , we can identify c′h
clusters. Therefore, the number of unique real multipliers would
be ni ∗ ci for the multiplications involving the matrix W , and
nh ∗ c′h for the multiplication with the matrix U .10 Then, the
contribution of unique multiplications to the overall complexity
of the LSTM is:

CLSTM = ns (nici + nhc
′
h + 3nh) , (21)

10Note that, once those multiplications are performed, a synthesis data-flow
and routing algorithm [110] would be needed to distribute the result of such a
multiplier to the correct adders, but here we do not account for the complexity
of this design step.

4570 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 14, JULY 15, 2023

For the complexity analysis, we also need to include the
contribution of the 1D-CNN layer. Since the 1D-CNN layer
receives the output of the biLSTM layer, the 1D-CNN layer
with kernel size nk and the number of filters no will possess
a CNN kernel tensor with the shape [nk, 2nh, no]. Suppose
that we have identified c′′j clusters in each of no the filter and the
biLSTM the output has the shape [ns, 2nh]. Now we can split the
operation for the convolution of the biLSTM output with a CNN
filter as c′′j multiplications between each of the clustered kernel
values to the sum of the selected input elements which share the
same clustered weight value. This operation has to be repeated
ns − nk + 1 times (the output shape of the CNN layer) for one
filter, and then for the total number of operations we multiply
this value by the number of filters no. The remaining operations
are just additions. Therefore, we can eventually represent the
1D-CNN layer complexity contribution as:

CCNN = (ns − nk + 1)
(
noc

′′
j

)
. (22)

And now, the ultimate complexity for the biLSTM + CNN
equalizer with clustering and pruning, becomes:

RMpSNNp+c =
Cforward

LSTM +Cbackward
LSTM +CCNN

ns − nk + 1
, (23)

We notice that the pruning simplifies the clustering method since
we have to group fewer weights. In summary, by doing clustering
first, we observed that the training was not that efficient because
the structural change was too abrupt, and so the learning af-
terward was more complex. However, when we prune first, the
set of weights to be clustered and fine-tuned drops to around
70% of its original size, which, in our tests, helped decrease the
learning complexity of this new structure. Also, when defining
the number of clusters in each layer (ci, c′h, and c′′j), one of
the clustered values is almost always zero. Consequently, this
cluster does not add multiplications, and we have even lower
computation complexity.

When comparing solutions that use floating-point arithmetic
with the same bitwidth precision, the RMpS is usually a mean-
ingful metric for comparative estimates. When moving to fixed-
point arithmetic, a second metric known as the number of bit-
operations (BOPs) should be adopted to understand the impact
of changing the bitwidth precision on the complexity.11 Because
we can readily find the number of bit operations required by
the additions and multiplications, we can calculate the BOPs
associated with the NN inference process, expressed in terms of
multiply-and-accumulate operations (MACs) [70], [91], [105],
[107]. As described in [105], the BOP complexity for the LSTM
and 1D-CNN layers can be expressed as:

BOPLSTM = 4nsnhMult(ni, bw, bi)

+ 4nsnhMult(nh, bw, ba)

+ 3nsnhb
2
a

11Two assumptions are made in the definition of the BoPs. First, we assume
that each parameter is only fetched once from an external memory; second, the
cost of fetching a b-bit parameter is assumed to be equal to b-BOPs [91], [107].
Also, the bias is supposed to be quantized in the same way as the weights.

+ 9nsnhAcc(nh, bw, ba), (24)

BOPCNN = OutputSize · nfMult(nink, bw, bi)

+ nfAcc(nink, bw, bi), (25)

where, in the context of NNs, bw is the number of bits used
to represent the weights of the NN, bi is the number of bits
used to represent the input, and ba is the number of bits used
to represent the NN’s activation functions. For the convenience
of further presentation, we have used short notations, Mult and
Acc:

Mult(ni, bw, bi) = nibwbi + (ni−1) (bw+bi+ 	log2(ni)
) ,
and

Acc(ni, bw, bi) = bw + bi + 	log2(ni)
.
The Acc expression represents the actual bitwidth of the ac-
cumulator12 required for MAC operations. Therefore, for our
NN-based equalizer (biLSTM+1D-CNN) with 4 input features,
2 output features, nh hidden units in the LSTM cell, nk con-
volutional kernel size, and ns = M memory time window, we
can represent the required number of BoPs considering that the
output of biLSTM is the input of 1D-CNN, as follows:

BOPfor/backward
LSTM = 4MnhMult(4, bw, bi)

+ 4MnhMult(nh, bw, ba)

+ 3Mnhb
2
a

+ 9MnhAcc(nh, bw, ba), (26)

BOPCNN = (M − nk + 1) · 2Mult(2nhnk, bw, bi)

+ 2Acc(2nhnk, bw, bi), (27)

BoPNN =
BoPforward

LSTM + BoPbackward
LSTM + BoPCNN

M − nk + 1
.

(28)

Most real DSP implementations use dedicated logic macros
(e.g., DSP Slice in FPGAs or MAC in ASIC), where the BoP
metric fits as a good complexity estimation/comparison metric.
However, with the advances in new quantization techniques [62],
[83], [111], [112], those multiplications can also be implemented
using just bit shifter- and adder-based algorithms [113], [114],
[115], when the fixed-point multiplications are used.13 There-
fore, to account for the impact of our using different quantization
strategies, we can utilize the metric that evaluates the number of
additions and bit shift (NABS) operations.

Next, we discuss how to translate the complexity of the NN
equalizer from RMpS into the NABS metric, in the cases when
we utilize uniform quantization, PoT quantization, and APoT

12The accumulator is the register in which the intermediate arithmetic logic
unit results are stored. For a more detailed explanation, see [105].

13Note that the translation from multiplications to additions and shift opera-
tions adds some quantization noise/error since we round the original coefficients
when converting them from a float representation to a fixed representation.
However, in the context of NNs, this can be partially mitigated by training
the NN with the quantized weights, as it was done in [62], [111], [112] and in
this current work.

FREIRE et al.: REDUCING COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS IN OPTICAL CHANNEL EQUALIZATION 4571

quantization (see also Section IV.C). According to [105], the
NABSs metric takes into account the conversion of all multipli-
ers into adders and shifters, and computes the complexity of the
total number of adders (including the pre-existing adders of the
NN structure) based on bit precision while ignoring the cost of
the bit shift operations. The NABSs complexity for the LSTM
and 1D-CNN layers can be expressed as [105]:

NABSLSTM = 4nsnh [ni(Xw + 1)− 1]Acc(ni, bw, bi)

+ 4nsnh [nh(Xw + 1) + 1]Acc(nh, bw, ba)

+ 6nsnhba. (29)

NABSCNN = OutputSize · nf [nink(Xw + 1)− 1]

· Acc(nink, bw, bi)

+ nfAcc(nink, bw, bi). (30)

In these expressions, X represents the number of adders re-
quired, at most, to perform the multiplication when considering
that the first bit represents the sign and the remaining ones con-
tain the magnitude of the weight. For the uniform quantization,
we have: X = bw − 2, whereas in the case of POT quantiza-
tion, we have: X = 0, because each multiplication costs only a
shift [87], [113]. Lastly, for the APOT quantization, we have:
X = n, where n denotes the number of additive terms. These
equations are in line with the expected complexity behavior
from [83], where it is stated that by using the APOT with k = 2
(which means that n = (bw − 2)/2), the multiplication would
be approximately 2 times faster than when using the uniform
quantization. Thus, for the biLSTM + 1D-CNN equalizer con-
sidered in our work, we have the following expressions for the
NABSs complexity per recovered symbol:

NABS
for/backward
LSTM = 4Mnh [4(Xw + 1)− 1]Acc(4, bw, bi)

+ 4Mnh [nh(Xw + 1) + 1]

× Acc(nh, bw, ba) + 6Mnhba, (31)

NABSCNN = (M − nk + 1) · 2 [2nhnk(Xw + 1)− 1]

· Acc(2nhnk, bw, bi)

+ 2Acc(2nhnk, bw, bi), (32)

NABSNN =
NABSforward

LSTM + NABSbackward
LSTM + NABSCNN

M − nk + 1
.

(33)

Notably, the BoPs and NABSs expressions given above do not
take into account the effects of pruning and weight clustering,
but they can be corrected, similarly to how the RMpS metric at
the beginning of this subsection.

Finally, the metric that is even closer to the hardware level is
the number of logic gates (NLGs) that are used for the hardware
(e.g. ASIC or FPGA) implementation of a signal processing
device. It is different from the NABSs metric because it indicates
the real cost of implementation. Within this metric, the cost of
activation functions, represented by look-up tables (LUTs), is
also taken into account. However, this metric is not used in this

work since it already depends on the particular hardware type
that we do not consider here.

VI. RESULTS

A. Multi-Symbol Equalizer Performance

We start by presenting the benchmark scenario obtained using
nonlinear equalization, i.e. using the equalizers without com-
pression. In this case, we can see the increase in optimum launch
power after equalization and the corresponding Q-factor im-
provement compared to the case without nonlinear equalization.
To speed up the training process and the acquisition of results, we
have trained our model at the highest launch power and applied
the transfer learning strategy [116] for the remaining lower
launch powers. For these lower power levels, we fine-tuned
the NNs for around five epochs. Fig. 10 shows the results of
Q-factor over launch power dependence for three transmission
scenarios. For the simulated transmission with 20× 50 km, the
NN equalizer enabled increasing the optimum launch power
from -1 dBm to 2 dBm. Furthermore, the maximum Q-factor
increased by about 2.8 dB, showing a similar maximum perfor-
mance as that achieved by 3 STpS DBP. For the transmission
over 9× 110 km system, which has a similar total transmission
length but more than doubled span length, we have the enhanced
impact of ASE noise. This effect can be observed in the results
depicted in Fig. 10(b). In this case, the optimum power increased
from 4 dBm to 6 dBm and the optimum Q-factor improved by
around 1.3 dB due to the equalization. Although the performance
improvement enabled by the NN equalizer was lower than in the
previous case, it was still higher than the one enabled by the 3
STpS DBP (about 0.7 dB performance improvement). Finally,
Fig. 10(c) shows the results obtained in the experimental setup
described in Section V-A. In this case, we observe that the NN
equalizer leads to an increase in the optimum launch power
of about 1 dB, and an increase in the maximum Q-factor of
about 0.7 dB. In this case, we observed that compared to the
results of the numerical modeling of a similar system (shown in
Fig. 10(b)), the NN allows us to approach the performance of 50
StPS DBP closer, because the probabilistic shaping (considered
in the experimental setup, but not in the numerical modeling of
Fig. 10(b)) modifies both signal-signal and signal-noise inter-
actions at higher signal powers [116], [117]. Also, the limited
performance of DBP and NN-based equalization within the
experimental conditions can be attributed to non-ideal condi-
tions, such as the presence of polarization effects and transceiver
noise.

Following this initial analysis, we chose the best launch power
in each transmission setup to evaluate the performance degrada-
tion resulting from using the different compression approaches.

B. Pruning Study

We start our comparative study by doing an analysis similar to
what was done in [48] for image classification, but this time in the
context of coherent optical channel post-equalization. Addition-
ally, besides the fine-tuning approach, the weight rewinding, and

4572 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 14, JULY 15, 2023

Fig. 10. Performance of the proposed NN equalizer, benchmarked against DBP [32] for three different transmission scenarios.

Fig. 11. Optical performance when using different pruning techniques for several NN sparsity level. The optimum launch power (without pruning) is set for each
case in this study: (Sim 1) 2 dBm; (Sim 2) 6 dBm; (Exp) 2 dBm

the learning rate rewinding, in our work, the fine-tuning assisted
by the Bayesian optimizer is also considered.

The results for the three transmission setups obtained after
pruning are depicted in Fig. 11. Similarly to the results shown
in [48], the weight rewinding and the learning rate rewinding
outperform the fine-tuning when we have a high level of com-
pression (≥ 50%). As an example, for the 60% sparsity and
when employing the fine-tuning for retraining, the Q-factor is
reduced by 1.9 dB, 0.6 dB, and 0.3 dB for the three consid-
ered transmission scenarios, as compared to the original per-
formance. If instead, the rewinding approaches are used, the
Q-factor degradation of only 1.1 dB, 0.2 dB, and 0.2 dB, and of
1.4 dB, 0.2 dB, and 0.2 dB, are observed for the learning rate
and weight rewinding, respectively, when considering the same
three transmission scenarios. However, when the fine-tuning is
assisted by the BO to select the hyperparameters (as described
in Section IV-A4), we observe that the performance can be
significantly improved compared to the other approaches. This
approach enabled reaching high sparsity (even higher than the
60% example mentioned above), leading to a Q-factor degra-
dation not exceeding 0.3 dB, 0.1 dB, and 0.1 dB for the three
considered transmission scenarios. This result shows the po-
tential of the BO-assisted fine-tuning approach, to outperform
the previous model compression techniques. In our view, the

superior performance of BO-assisted pruning comes from its
ability to cope with the dimensionality changes in multidimen-
sional trainable parameters’ space when the NN architecture
is pruned. Therefore, the training hyperparameters to achieve
a good local minimum may differ from the initial ones, and
the BO is capable of identifying this new set of training hyper-
parameters, while the other methods use their previous values
obtained before pruning. However, we emphasize that the BO
requires significant computational effort, which means that this
method is appropriate mainly for offline applications. When we
are interested in achieving the result in the fastest way possible,
rewinding the learning rate is the recommended approach.

Interestingly, the weight rewinding approach performed
worse than the fine-tuning approach in cases where the sparsity
was lower than 50%, while the learning rate rewinding led to
similar or even better performance as compared to fine-tuning.
This result can be explained by recalling that the original model
was learned using the transfer learning approach, which aids in
the learning process by improving generalization and avoiding
local minima. When fine-tuning and learning rate rewinding
are used, the original weights are the starting point of the
pruning process, preserving the good initialization provided by
transfer learning. However, in the case of weight rewinding, the
weights are reinitialized randomly after the pruning, which can

FREIRE et al.: REDUCING COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS IN OPTICAL CHANNEL EQUALIZATION 4573

Fig. 12. Optical performance (blue) and complexity (red) evaluation of the
pruning + clustering (darker colors) and pruning only (lighter colors) approaches
for the three considered transmission systems (Sim1, Sim2, and Exp).

be detrimental to training, thus leading to higher performance
degradation.

Regarding the computational complexity reduction in terms
of RMpS when using the BO plus fine-tuning (BO+FT) ap-
proach, in the result depicted in Fig. 11(a), the BO+FT approach
achieved a sparsity of 72%, which represents a reduction from
1.29e+5 to 3.66e+4 in the RMpS value. In the case of Fig. 11(b),
the achieved sparsity was 70%, which represents a reduction
from 1.42e+5 to 4.31e+4 in RMpS. Finally, in the case depicted
in Fig. 11(c), the attained sparsity was 61%, which gives a
reduction from 1.42e+5 to 5.58e+4 in the RMpS number.

C. Clustering Study

In this section, we evaluate the weight clustering compression
technique. To the best of our knowledge, this is the first time that
the trade-off between optical performance and computational
complexity when using such a technique in optical communi-
cations has been assessed. Note that quantization and clustering
can be implemented by maintaining a codebook structure that
stores the shared weights for each layer. However, in this work,
we have also used weight clustering as a pre-step to simplify
the problem for the next step, where the traditional quantization
techniques are used. The first goal of this subsection is to assess
if the weight clustering can reduce the number of multiplica-
tions without significantly impacting the performance. The BO
described in Section IV-B is used in this work to find the new
training hyperparameters and the number of k-weight clusters
throughout the NN-structure, so that the RMpS is given by (23).

Fig. 12 depicts the impact of weight clustering on perfor-
mance and computational complexity in the three considered
transmission scenarios. This figure demonstrates that weight
clustering leads to a small degradation in the Q-factor while still
allowing us to lower the computational complexity considerably.
In Sim1, Fig. 12, when 74 clusters were used, we saw a Q-factor
degradation of 0.2 B and a reduction in complexity from 36 k to
20 k RMpS, when compared to the pruned architecture results.

Fig. 13. Optical performance and complexity results when employing very
aggressive weight clustering in the Sim1 transmission scenario: 2 weights
clustering [NN(2 W)], 3 weights clustering [NN(3 W)], and 4 weights clustering
[NN(4 W)]. The traditional CDC and reference 1 STpS DBP results are shown
as benchmark.

In Sim2, in the same figure, we observe a similar degradation
of the Q-factor and a reduction in complexity from 43 k to 19 k
RMpS when 68 clusters are used. Finally, for our experimental
data and using only 62 clusters, we observe that the Q-factor
remains mostly unchanged, and the complexity is reduced from
55 k to 17 k RMpS. We observed that clustering the weights
after pruning leads to better results than clustering the original
weights. Moreover, the training time is also improved in the
former case since fewer parameters need to be learned during
the training phase.

Now we focus our analysis on the complexity part of the
weight clustering technique, i.e., how much can the number of
weight clusters be reduced while still enabling relevant optical
performance improvement? Only the Sim1 transmission sce-
nario is considered in the analysis, as this is the case where
nonlinear mitigation shows the most noticeable improvement.

We assess the potential of the weight clustering technique
when using up to four distinct weights. Launch powers in
the range from -1 dBm to 2 dBm are tested to assess if the
optimum launch power changes when using such an aggressive
compression approach. The achieved results are compared to the
ones obtained when using linear equalization only (CDC) or 1
STpS DBP. Fig. 13 depicts the Q-factor for each equalization
approach, as well as the number of RMpS.14 Fig. 13 shows that,
when using the CDC, the optimum launch power is -1 dBm,
leading to a Q-factor of 7.8 dB (113 RMpS are used in this case).
If the reference 1 STpS DBP is used, the optimal launch power
changes to 0 dBm, enabling the Q-factor of 9.2 dB but requiring

14The sparsity of the NN structure was not preserved while doing the cluster-
ing, because we observed that by allowing the zero-value weights, where pruning
removes the nodes, Fig. 2(b), to acquire a different value (small, but non-zero)
helped improve the overall performance when using an ultralow number of
weight groups (cluster). Additionally, the training phase, in this case, took much
longer (10 k epochs).

4574 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 14, JULY 15, 2023

Fig. 14. Performance of the Post Training Quantization (Homogeneous Approach).

1673 RMpS. We notice that the NN-based equalizer outperforms
the 1 STpS DBP, which is often used as a benchmark. Indeed, the
NN with 4 clustered weights per layer [NN(4 W) case in the fig-
ure], enables achieving a Q-factor of 9.7 dB (at 1 dBm optimum
launch power) using 1091 RMpS. Instead, if only 3 clustered
weights are used [NN(3 W) case in the figure], a Q-factor of
9.4 dB (at 1 dBm) can be reached, which requires only 820
RMpS. As expected, using 2 cluster weights [NN (2 W) case in
the figure] leads to the worst performance, where we can achieve
the Q-factor of 8.4 dB (at 0 dBm), thus still outperforming the
CDC, but at the expense of 549 RMpS complexity.

Finally, if we consider that the multiplier complexity is pro-
portional to bibw (as described in Section V-B), the savings
in complexity enabled by the clustering technique can be even
higher than the ones indicated above. Indeed, considering that
bi = 8 bits for all cases, the coefficients of the CDC and DBP
filters are also represented by 8 bits. However, for the NN with
3 and 4 clustered weights, we can encode the weights using
just a 2-bit format. Therefore, for the cases of 3 W and 4 W
NN, which performed better than 1 STpS DBP, the complexity
calculated as RMpS ∗ bi ∗ bw, is just 1.82 and 2.42 times higher
than the CDC one (and 8.15 and 6.13 times lower than the 1 STpS
DBP), respectively. Here we note that the CDC benchmark is
the most important because our primary goal is to show the
readiness of NN with respect to the already available algorithm
in commercial transponders. In contrast, none of the existing
DBP versions has reached the hardware level of implementation.
In this context, Fig. 13 and the previous analysis show that
an NN-based equalizer achieves a performance similar to that
obtained with the “DBP” [33], while approaching the complexity
of the CDC block.

D. Quantization Study

Quantization is the other approach considered in this work
to significantly reduce the computational complexity of equal-
izers. The PTQ homogeneous, PTQ heterogeneous, QAT
homogeneous, and QAT heterogeneous approaches are
considered in this subsection, see Section IV-C for the approach
details. In each case, a combined biLSTM+CNN equalizer
whose weights have undergone the clustering procedure de-
picted in Fig. 12 is quantized. The performance and complexity

in terms of BoPs and NABSs of the different quantization
techniques are further assessed for different bit precision.

1) PTQ Homogeneous Approach: We start by assuming that
all weights in the structure are quantized uniformly and with the
same bit precision. Fig. 14 depicts the Q-factor as a function of
the bit precision for the three considered transmission scenarios
and using the APoT with 2, 3, and 4 additive terms quantization
technique as well as the original version in [83], the uniform
quantization and PoT.15

From the results depicted in Fig. 14, we underline the notice-
able impact of sparsity. The PoT and APoT techniques were
purposely designed to have the majority of the quantization
levels close to zero, since the weight distribution after training
also shows a concentration of weights close to zero value,
see Fig. 2. However, when pruning the NN structure, such
weights are removed, Fig. 2(b), the quantization levels above
the pruning threshold are no longer used and, more importantly,
the remaining weights are underrepresented. Consequently, the
uniform quantization shows the best performance (for the re-
duced bitwidth of the weights) in the case shown in Fig. 14(a),
where the sparsity is 72%, whereas the APoT and POT reveal a
better performance in the scenario depicted in Fig. 14(c), where
the sparsity is 60%. Interestingly, up to 8 bits precision, we could
always find a quantization scheme that provides similar optical
performance as when using the original 32 bits precision for the
three considered transmission scenarios. For a high precision
bitwidth, the uniform quantization always shows superior re-
sults, whereas for a lower bit precision (say, for less than 8 bits)
and when the weight distribution is not heavily compromised by
sparsity, the original APoT introduced in [83] results in the best
performance. Here we highlight that, when doing with the PTQ
strategy, the weight distribution must serve as the main indicator
to select the best type of quantization. Also, note that, the POT
has performed badly in all cases studied in this subsection. As
described in [83], the PoT quantization does not benefit even
in the case from more bits, as we also observed in our work.
The PoT quantization has a rigid resolution, in which by adding
an extra bit, all new quantization levels concentrate around 0

15We have established a floor value of 0 dB for the Q-factor since a lower
Q-factor just means the information is completely corrupted.

FREIRE et al.: REDUCING COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS IN OPTICAL CHANNEL EQUALIZATION 4575

Fig. 15. Computational complexity when using uniform quantization (a) and when different types of quantization are used (b/c). bi and ba have 16 b precision,
whereas bw has a value in the range of 12 to 2 bits.

and, thus, the PoT cannot increase the model’s expressiveness
efficiently enough, as one would expect by addition of more
bits.16

Now we assess the computational complexity of the different
quantization techniques. In our analysis, we considered bi =
ba = 16 bits and bw changing between 12 and 2 bits. Fig. 15(a)
depicts the BoP metric for equally compressed models, showing
that the BoP decreases almost linearly with the value of bw.
Since the Sim2 transmission scenario requires a NN structure
with more hidden units and CNN filters than Sim1, the number
of BoPs for this case is also higher than that for Sim1. In
this analysis, we are evaluating the total number of operations
needed, as it is usually done in the literature [91], and there-
fore, do not account for the benefits stemming from weight
clustering.

Nevertheless, and as was mentioned in Section V-B, when
comparing the use of different quantization strategies and
bitwidth precision, the BoPs metric can not be recommended,
as it, actually, does not account for the effect resulting from
different quantization strategies. To have a better metric, the
NABS metric ought to be used, as it allows us to compare
the result of the model compression in terms of the number
of additions and bit shifts. Fig. 15(b) and (c) show the NABS
as a function of bw (the bit-precision) for the different quan-
tization strategies employed in this work. As expected, the
uniform quantization technique leads to the highest complexity,
whereas the PoT quantization gives the smallest one. The APoT
quantization leads to a complexity in-between the uniform and
PoT approaches. In the APoT case, the complexity depends not
only on bw, but also on the number of additive terms that are
considered. Interestingly, the least complex APoT strategies,
i.e., those with the smaller number of additive terms, are the ones
leading to better performance for the low bit precision region,
see Fig. 14. It is also interesting to note that, when we reduce the
bit precision to 5 bits, which already leads to high-performance
degradation, the NABS using uniform quantization becomes the
same as that when using the APoT with 4 additive terms. If
the bit precision is further reduced to 4 bits, the NABS using

16This problem can be partially solved by training further the weights after
approximating, as described next in the QAT section.

uniform quantization is the same as that when using the APoT
with 3 additive terms. In the same way, if the bit precision is
reduced to 3 bits, the NABS using uniform quantization is the
same as that when using the APoT with 2 additive terms and,
finally, if the bit precision is reduced to 2 bits, the NABS using
uniform quantization is the same as that when using the PoT
quantization.

2) PTQ Heterogeneous Approach: When using the hetero-
geneous approach, the bit precision and quantization method
are allowed to vary in different parts of the NN structure. For
simplicity, here we only consider the uniform quantization, the
original APoT, and the mix, where different types of quantization
are used throughout the NN structure. Fig. 16 depicts 3D plots
with the Q-factor as a function of i) the bitwidth of the input
and recurrent kernel of the LSTM layer, and ii) the bitwidth of
the filter kernel of the CNN layer. A gradient of colors is used,
with the warmer colors corresponding to the higher Q-factor,
so we can identify which combination of bw values gives the
best performance. Same as in the homogeneous approach (see
Fig. 14), the uniform quantization is the most interesting solution
for the Sim1 transmission scenario, whereas the APoT leads to
better performance for the Sim2 and Exp scenarios.

However, when using heterogeneous quantization, we ob-
serve that lower complexity can be achieved. For example,
considering the Sim1 transmission, in order to achieve the
same optical performance as we have when using the 1 STpS
DBP, we may quantize all weights with 6 bits (homogeneous
quantization) or we may further reduce the recurrent kernel
and CNN kernel to 5 bits using heterogeneous quantization
without any significant degradation in optical performance. Sim-
ilar results can be observed in the Sim2 and Exp transmission
scenarios.

In addition to using different bit precision in different parts
of the NN, we can also use different types of quantization to
improve the performance. For this objective, we have used a
grid search, testing different combinations of quantization types.
The result of this optimization is referred to in Fig. 16 as Mixed
Quantization. By following such an approach, we observe an
improvement in the hot area of the Sim 1 results when we
quantize the input and CNN kernels with uniform quantization
and the recurrent kernel with APoT using the original terms;

4576 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 14, JULY 15, 2023

Fig. 16. Performance of the Post Training Quantization (Heterogeneous Approach).

for Sim2, we quantized the input with the 3 terms APoT and
the recurrent and CNN kernels with the original APoT. Un-
fortunately, no significant optical improvement was observed
when compared to using just the original APoT. In this case,
just an improvement of 0.1 dB in Q-factor is achieved in the
mix quantization, where we quantize the input and CNN kernels
with the original APoT and the recurrent kernel with the 2 terms
APoT, compared to the case with all weights quantized with the
original APoT.

3) QAT Homogeneous Approach: We now evaluate the po-
tential of implementing quantization during the training phase of
the NN to mitigate the error introduced by the low bit precision
of weights. Since QAT leads to at least as good performance as
PTQ and the results depicted in Fig. 17 show that the optical
performance is highly impacted when the bitwidth decreases
below 6 bits, we will focus the QAT analysis in this region
(between 6 and 2 bits).

Fig. 17 depicts the Q-factor as a function of the bit precision
for the three considered transmission scenarios. The considered
quantization techniques are the Uniform, PoT, APoT with 2, 3,
and 4 additive terms, and the original version of APoT that can
be found in [83]. In order to better illustrate the impact of QAT,
we compare the results in Figs. 14 and 17. As an example, let

us assume that all weights are quantized equally with 4 bits. For
Sim1, Fig. 14(a) shows that the uniform quantization provided
the best performance with a Q-factor close to 4 dB, whereas
Fig. 17(a) shows that using the APoT original and following a
QAT strategy enables reaching Q-factor values close to 8.5 dB.
Similar conclusions can be drawn in Sim2 and Exp transmission
scenarios: Fig. 17(b) and (c) show that optical performance is
highly impacted when weights are quantized to 4 bits whereas,
when implementing QAT, the original APoT provides Q-factor
values close to 4.5 dB and 7.8 dB, respectively. These results
demonstrate the huge positive impact of QAT on the compres-
sion of the NN model. Moreover, when further reducing the
bitwidth, the optical performance degradation is not as drastic
as in the case of PTQ. The original APoT quantization technique
leads to very good optical performance in most of the cases de-
picted in Fig. 17. This good performance is a direct consequence
of performing quantization during the training phase. Indeed, in
this case, the weights remaining after the pruning are no longer
underrepresented, but rather adjusted to the non-uniform levels
of quantization, leading to the good performance.

Nevertheless, the difference between PoT and APoT is no
longer as significant as the one observed in Fig. 14. To high-
light the Q-factor gains that training gives, we summarized in

FREIRE et al.: REDUCING COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS IN OPTICAL CHANNEL EQUALIZATION 4577

Fig. 17. Performance of the Quantization Aware Training (Homogeneous Approach).

Fig. 18. Gain achieved by using Quantization Aware Training vs Post Training
Quantization in the SC-DP 30GBd; 64QAM; 20×50 km SSMF link (Sim1)
dataset.

Fig. 18 the Q-factor difference between the PTQ and QAT,
both homogeneous for the Sim 1 case. In this case, we see that
both the APOT original and the POT have benefited from the
extra training after quantization, mitigating almost completely
the impacts of such quantization for certain numbers of bits
(e.g. 6 bits). As a consequence, no universal conclusion can be
drawn about which is the best quantization technique for QAT. In
general, the original APoT and the APoT with 2 terms were the
two techniques that performed the best for the range of bitwidths
studied and transmission scenarios. But, since the APOT with 2
terms uses only one adder and bit shift for each multiplication,
it is probably the best choice in terms of the trade-off between
optical performance and computational complexity.

We would like to stress that the training of such NN structures
is unstable. Consequently, the model needs to be monitored dur-
ing training. In this work, early stopping was not used for QAT.
Instead, the quantized NN structure was trained for 5000 epochs,
with the intermediate NN models leading to the best Q-factor
being saved and used as the final NN. As described in [118],
the training phase of the quantized model can suffer from
learning problems (e.g. exploration vs. exploitation trade-offs).
As suggested in that reference, we also used large mini-batch

sizes (≥ 4000), since “this shrinks the variance of the gradi-
ent distribution without changing the mean and concentrates
more of the gradient distribution towards downhill directions,
making the algorithm more greedy”. As a result, we emphasize
that when performing the QAT, the training hyperparameters
must be properly set, and the training will most likely require
a higher number of epochs as the bitwidth of the weights is
reduced.

4) QAT Heterogeneous Approach: In this compression tech-
nique, and as described in Section IV, the BO is used to
determine the ideal bitwidth per layer as well as the type of
quantization in each layer (and other hyperparameters, like the
learning rate), seeking to improve the overall performance.

Similarly to the PTQ case, when going from the homogeneous
to the heterogeneous approach, the bitwidths and quantization
types employed can be different in different parts of the NN
architecture. Like in Section VI-D2, the performance of the
heterogeneous approach is evaluated by considering the different
bit precision of the input kernel of the LSTM layer, the recurrent
kernel of the LSTM layer, and the filter kernel of the CNN layer.
The values obtained by the BO can be found in Table III for
the considered transmission scenarios as well as the Q-factor
achieved when i) the NN model is not quantized (w/o Quant.),
ii) the model is only quantized (PTQ), and iii) the model is si-
multaneously quantized and fine-tuned (QAT). This table shows
that, at the low levels of bit precision, the PTQ corrupted the NN
model completely. Nevertheless, the QAT adapts the weights
in such a way that only a small degradation of performance is
observed.

To conclude, we evaluate the complexity of the different ap-
proaches. We do this in terms of NABS insofar as we employ si-
multaneously different bit precision and quantization techniques
(see Section V-B). Our reference complexity is the “traditional”
uniform quantization with 8 bits in all layers, which we compare
against the heterogeneous structures depicted in Table III. For
Sim1, the reference complexity is 28.6 M NABSs while for the
heterogeneous architecture, the complexity is 10.9 M NABSs,
which translates into a complexity reduction of ≈ 62%. Sim-
ilarly, for Sim2 and Exp, the reference complexity is ≈ 31 M
NABSs, whereas after heterogeneous QAT it is ≈ 7.9M and
≈ 7.4M NABSs, for the two cases, respectively, representing a
reduction of ≈ 76%.

4578 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 14, JULY 15, 2023

TABLE III
RESULTS OBTAINED USING THE BAYESIAN OPTIMIZER. THE PERFORMANCE RESULTS OF BOTH QAT AND PTQ ARE DEPICTED TO HIGHLIGHT THE

BENEFIT OF QAT

VII. CONCLUSION, OPEN PROBLEMS AND RESEARCH

DIRECTIONS

In this paper, a full-scale study focusing on the reduction of
the computational complexity of NN-based solutions was pre-
sented, evaluating them in the context of coherent transmission
equalization.

First, we demonstrate the complexity bottleneck resulting
from recovering one symbol at a time, showing the compu-
tational complexity benefit resulting from changing the NN
structure to recover multiple symbols instead.

Then, we introduced the first compression method evaluated
in the paper: the pruning strategy. We provided examples of the
three most well-known pruning techniques: fine-tuning, weight-
rewinding, and learning rate rewinding. We explained their the-
oretical foundation and proposed a new strategy, which results
from combining fine-tuning with BO to improve the learning
of the hyperparameters of the pruning.Later, we demonstrated
that, at the cost of making the model’s training more difficult,
the latter leads to smaller performance degradation and more
sparsity when compared to the former.

Next, we present the second compression technique, known
as weight clustering (or weight sharing). We demonstrated its
application in both recurrent and feedforward layers, empha-
sizing its goal of reducing the number of effective weights
and effective multiplications required by the model. This is
achieved by having multiple connections that share the same
weight, and then fine-tuning those shared weights. In addition,
we demonstrated the advantages of using the BO to determine
the number of clusters per layer and the training hyperparameters
for the fine-tuning phase.

Afterward, we provided a comprehensive overview of the
various aspects of quantization in neural networks. The
difference between post-training quantization and quantization-
aware training was discussed, as well as how the Bayesian
optimizer can aid in the design process. In addition, the use of
different quantization types, such as uniform, APOT, and POT
quantization, in the field of optical channel equalization, was
examined. It is challenging to compare the computational com-
plexity of two different NN structures with different quantization
types. As a result, we’ve covered several computational metrics
and discussed when they’re useful and how to calculate them for
our NN equalizer.

Finally, we evaluated the performance of the different com-
pression techniques considering three different transmission se-
tups, comparing the Q-factor versus computational complexity
in all scenarios. As the most relevant result, we observed that
when using weight clustering and pruning, as a nonuniform
quantization step, for the Sim1 transmission, we presented a

Q-factor gain of 1.6 dB compared to the CDC in the case of
3 clustered weights at the cost of increasing the complexity
by 182%, and a Q-factor gain of 0.6 dB at the expense of a
61% increase in complexity in the case of 2 clustered weights.
This result represents a big step forward in reaching commercial
implementation, since we are approaching the computational
complexity of the existing CDC block in the DSP chain.

Next, we describe some open problems in the design of low
complexity NN-based equalizers, with the aim of spurring more
research effort on advancing the design of machine learning
solution in optical communication systems.

1) The parallelization problem: Training and evaluating each
node can be very time-consuming in large NNs. This
is unquestionably a bottleneck in the development of a
high-speed NN design suitable for optical communication
applications. A possible solution is to parallelize such
models when implementing them in hardware. This topic
was partially covered in [119] for feed-forward layers.
If recurrent layers, like the LSTM layer proposed in this
work, are in demand for future industrial applications, it
would be interesting to investigate how to parallelize them
in hardware implementations.

2) Knowledge distillation: This is another possible type of
compression that was not investigated in this work, but
that is receiving increasing attention from the commu-
nity [120]. The idea behind knowledge distillation is to
train a distilled NN model that has many layers and is truly
computationally complex, and then use it to train a more
compact NN model. An evaluation of the possible benefit
of this technique in the design of NN-based equalizers is
an interesting direction for future work.

3) Meta Learning Based Compression: In [121], the authors
have jointly considered network pruning and quantization
in an end-to-end meta-learning framework. Other papers,
e.g. [122], [123], used meta-learning to learn how to
quantize or how to prune the NN structure. We see this
as a potentially good alternative to the BO technique used
in this paper, which, perhaps, could provide the same or
even better solutions, but in a faster manner.

4) Stabilization of the quantization training: for different
transmission scenarios. The effectiveness of quantization,
as mentioned in this work, is highly dependent on the
difficulty of the transmission equalization task and the
learning process. Several authors have already discussed
the challenges and possible solutions of the training pro-
cess for the quantized NN models [118], [124], [125].
To fully understand this application for future industrial
applications, e.g., in the optical communications field, a

FREIRE et al.: REDUCING COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS IN OPTICAL CHANNEL EQUALIZATION 4579

deeper investigation into how to make this training process
more stable and faster, independently of the transmission
setup, is required.

5) Flexibility study after compression:. In [116], [126], [127],
it can be observed that by using techniques such as transfer
learning and domain randomization, an NN-based equal-
izer can operate in multiple distances, modulation formats,
launch powers, and symbol rates. However, in the context
of this study, the following question naturally arises: Can
the NN equalizer keep its re-usability and flexibility if its
representability capacity is drastically lowered by com-
pression approaches (such as pruning and weight sharing)?

Some works in the machine learning field [128], [129], [130],
[131] have presented some of the good and bad aspects on the
NN flexibility when compression is applied in the NN model,
but a deeper report for the channel equalization task is also
required because flexibility is a key feature desired by the
telecommunications industry.

REFERENCES

[1] E. Agrell et al., “Roadmap of optical communications,” J. Opt., vol. 18,
no. 6, May 2016, Art. no. 063002.

[2] P. J. Winzer, D. T. Neilson, and A. R. Chraplyvy, “Fiber-optic transmis-
sion and networking: The previous 20 and the next 20 years,” Opt. Exp.,
vol. 26, no. 18, pp. 24190–24239, 2018.

[3] J. C. Cartledge, F. P. Guiomar, F. R. Kschischang, G. Liga, and M. P.
Yankov, “Digital signal processing for fiber nonlinearities [Invited],” Opt.
Exp., vol. 25, no. 3, pp. 1916–1936, Feb. 2017.

[4] F. Musumeci et al., “An overview on application of machine learning
techniques in optical networks,” IEEE Commun. Surv. Tut., vol. 21, no. 2,
pp. 1383–1408, Apr.–Jun. 2019.

[5] C. Häger and H. D. Pfister, “Nonlinear interference mitigation via deep
neural networks,” in Proc. Opt. Fiber Commun. Conf. Expo., 2018,
pp. 1–3.

[6] C. Häger and H. D. Pfister, “Physics-based deep learning for fiber-optic
communication systems,” IEEE J. Sel. Areas Commun., vol. 39, no. 1,
pp. 280–294, Jan. 2021.

[7] P. J. Freire et al., “Performance versus complexity study of neural network
equalizers in coherent optical systems,” J. Lightw. Technol., vol. 39,
no. 19, pp. 6085–6096, Oct. 2021.

[8] P. J. Freire, A. Napoli, B. Spinnler, N. Costa, S. K. Turitsyn, and J. E.
Prilepsky, “Neural networks-based equalizers for coherent optical trans-
mission: Caveats and pitfalls,” IEEE J. Sel. Topics Quantum Electron.,
vol. 28, no. 4, Jul./Aug. 2022, Art. no. 7600223.

[9] J. W. Nevin, S. Nallaperuma, N. A. Shevchenko, X. Li, M. S. Faruk,
and S. J. Savory, “Machine learning for optical fiber communication
systems: An introduction and overview,” APL Photon., vol. 6, no. 12,
2021, Art. no. 121101.

[10] S. Deligiannidis, A. Bogris, C. Mesaritakis, and Y. Kopsinis, “Compen-
sation of fiber nonlinearities in digital coherent systems leveraging long
short-term memory neural networks,” J. Lightw. Technol., vol. 38, no. 21,
pp. 5991–5999, Nov. 2020.

[11] S. Deligiannidis, C. Mesaritakis, and A. Bogris, “Performance and com-
plexity analysis of bi-directional recurrent neural network models versus
volterra nonlinear equalizers in digital coherent systems,” J. Lightw.
Technol., vol. 39, no. 18, pp. 5791–5798, Sep. 2021.

[12] O. Sidelnikov, A. Redyuk, and S. Sygletos, “Equalization performance
and complexity analysis of dynamic deep neural networks in long haul
transmission systems,” Opt. Exp., vol. 26, no. 25, pp. 32765–32776,
2018.

[13] M. Ibnkahla, “Applications of neural networks to digital communi-
cations–A survey,” Signal Process., vol. 80, no. 7, pp. 1185–1215, 2000.

[14] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, no. 5,
pp. 359–366, 1989. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0893608089900208

[15] A. M. Schäfer and H.-G. Zimmermann, “Recurrent neural networks
are universal approximators,” Int. J. Neural Syst., vol. 17, no. 04,
pp. 253–263, 2007.

[16] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-
bridge, MA, USA: MIT Press, 2016. [Online]. Available: http://www.
deeplearningbook.org

[17] H. Jabbar and R. Z. Khan, “Methods to avoid over-fitting and under-
fitting in supervised machine learning (comparative study),” Comput.
Sci., Commun. Instrum. Devices, vol. 70, pp. 163–172, 2015.

[18] B. Sang et al., “Low complexity neural network equalization based
on multi-symbol output technique for 200 Gbps IM/DD short reach
optical system,” J. Lightw. Technol., vol. 40, no. 9, pp. 2890–2900,
May 2022.

[19] G. P. Agrawal, Fiber-Optic Communication Systems, 5th ed. Hoboken,
NJ, USA: Wiley, 2021. [Online]. Available: https://www.wiley.
com/en-us/FiberOpticCommunicationSystems%2C5thEdition-p-
9781119737360#description-section

[20] Y. Kodama, “Optical solitons in a monomode fiber,” J. Stat. Phys., vol. 39,
no. 5, pp. 597–614, 1985.

[21] A. Ferrari et al., “Assessment on the achievable throughput of multi-band
ITU-T G. 652. D fiber transmission systems,” J. Lightw. Technol., vol. 38,
no. 16, pp. 4279–4291, Aug. 2020.

[22] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, 1948.

[23] R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel,
“Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28,
no. 4, pp. 662–701, Feb. 2010.

[24] O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimiza-
tion of the split-step Fourier method in modeling optical-fiber com-
munications systems,” J. Lightw. Technol., vol. 21, no. 1, pp. 61–68,
Jan. 2003.

[25] D. S. Millar et al., “Mitigation of fiber nonlinearity using a digital
coherent receiver,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5,
pp. 1217–1226, Sep./Oct. 2010.

[26] O. E. Agazzi and V. Gopinathan, “The impact of nonlinearity on elec-
tronic dispersion compensation of optical channels,” in Proc. Opt. Fiber
Commun. Conf., 2004, paper no. TuG6.

[27] S. J. Savory et al., “IMDD transmission over 1,040 km of standard single-
mode fiber at 10Gbit/s using a one-sample-per-bit reduced-complexity
MLSE receiver,” in Proc. IEEE Conf. Opt. Fiber Commun. Nat. Fiber
Optic Engineers Conf., 2007, pp. 1–3.

[28] T. Kupfer, C. Dorschky, M. Ene, and S. Langenbach, “Measurement
of the performance of 16-states MLSE digital equalizer with different
optical modulation formats,” in Proc. Opt. Fiber Commun. Conf., 2008,
paper no. PDP13.

[29] S. Benedetto, E. Biglieri, and R. Daffara, “Modeling and perfor-
mance evaluation of nonlinear satellite links-a Volterra series approach,”
IEEE Trans. Aerosp. Electron. Syst., vol. AES-15, no. 4, pp. 494–507,
Jul. 1979.

[30] F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Mitigation
of intra-channel nonlinearities using a frequency-domain Volterra series
equalizer,” Opt. Exp., vol. 20, no. 2, pp. 1360–1369, 2012.

[31] J. Cho and S. T. Le, “Volterra equalization to compensate for transceiver
nonlinearity: Performance and pitfalls,” in Proc. Opt. Fiber Commun.
Conf. Exhib., 2022, pp. 1–3.

[32] E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear im-
pairments using digital backpropagation,” J. Lightw. Technol., vol. 26,
no. 20, pp. 3416–3425, Oct. 2008.

[33] A. Napoli et al., “Reduced complexity digital back-propagation methods
for optical communication systems,” J. Lightw. Technol., vol. 32, no. 7,
pp. 1351–1362, Apr. 2014.

[34] L. Zhu and G. Li, “Nonlinearity compensation using dispersion-
folded digital backward propagation,” Opt. Exp., vol. 20, no. 13,
pp. 14362–14370, 2012.

[35] D. Rafique, M. Mussolin, M. Forzati, J. Mårtensson, M. N. Chugtai, and
A. D. Ellis, “Compensation of intra-channel nonlinear fibre impairments
using simplified digital back-propagation algorithm,” Opt. Exp., vol. 19,
no. 10, pp. 9453–9460, 2011.

[36] P. J. Freire et al., “Complex-valued neural network design for mitigation
of signal distortions in optical links,” J. Lightw. Technol., vol. 39, no. 6,
pp. 1696–1705, Mar. 2021.

[37] A. Alqahtani, X. Xie, and M. W. Jones, “Literature review of deep
network compression,” Informatics, vol. 8, no. 4, 2021, Art. no. 77.
[Online]. Available: https://www.mdpi.com/2227-9709/8/4/77

[38] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
Proc. IEEE, vol. 108, no. 4, pp. 485–532, Apr. 2020.

[39] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and quanti-
zation for deep neural network acceleration: A survey,” Neurocomputing,
vol. 461, pp. 370–403, 2021.

https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.wiley.com/en-us/FiberOpticCommunicationSystems%2C5thEdition-p-9781119737360#description-section
https://www.wiley.com/en-us/FiberOpticCommunicationSystems%2C5thEdition-p-9781119737360#description-section
https://www.wiley.com/en-us/FiberOpticCommunicationSystems%2C5thEdition-p-9781119737360#description-section
https://www.mdpi.com/2227-9709/8/4/77

4580 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 14, JULY 15, 2023

[40] D. A. Ron, P. J. Freire, J. E. Prilepsky, M. Kamalian-Kopae, A. Napoli, and
S. K. Turitsyn, “Experimental implementation of a neural network optical
channel equalizer in restricted hardware using pruning and quantization,”
Sci. Rep., vol. 12, no. 1, pp. 1–14, 2022.

[41] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag, “What is the state of
neural network pruning?,” 2020, arXiv:2003.03033.

[42] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value
of network pruning,” 2018, arXiv:1810.05270.

[43] M. Augasta and T. Kathirvalavakumar, “Pruning algorithms of neural
networks–A comparative study,” Open Comput. Sci., vol. 3, no. 3,
pp. 105–115, 2013.

[44] S. Vadera and S. Ameen, “Methods for pruning deep neural networks,”
2020, arXiv:2011.00241.

[45] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
2015, arXiv:1510.00149.

[46] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” 2018, arXiv:1803.03635.

[47] F. Tung and G. Mori, “Deep neural network compression by in-parallel
pruning-quantization,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42,
no. 3, pp. 568–579, Mar. 2020.

[48] A. Renda, J. Frankle, and M. Carbin, “Comparing rewinding and fine-
tuning in neural network pruning,” 2020, arXiv:2003.02389.

[49] M. Zhu and S. Gupta, “To prune, or not to prune: Exploring the efficacy
of pruning for model compression,” 2017, arXiv:1710.01878.

[50] C.-Y. Chuang et al., “Sparse volterra nonlinear equalizer by employing
pruning algorithm for high-speed PAM-4 850-nm VCSEL optical inter-
connect,” in Proc. Opt. Fiber Commun. Conf., 2019, Paper no. M1F–2.

[51] W.-J. Huang et al., “93% complexity reduction of volterra nonlinear
equalizer by l1-regularization for 112-Gbps PAM-4 850-nm VCSEL
optical interconnect,” in Proc. Opt. Fiber Commun. Conf. Expo., 2018,
pp. 1–3.

[52] F. P. Guiomar, S. B. Amado, N. J. Muga, J. D. Reis, A. L. Teixeira, and A.
N. Pinto, “Simplified Volterra series nonlinear equalizer by intra-channel
cross-phase modulation oriented pruning,” in Proc. IEEE 39th Eur. Conf.
Exhib. Opt. Commun., 2013, pp. 1–3.

[53] S. Zhang et al., “Field and lab experimental demonstration of nonlinear
impairment compensation using neural networks,” Nature Commun.,
vol. 10, no. 1, pp. 1–8, 2019.

[54] M. M. Melek and D. Yevick, “Nonlinearity mitigation with a perturbation
based neural network receiver,” Opt. Quantum Electron., vol. 52, no. 10,
pp. 1–10, 2020.

[55] O. S. Kumar, L. Lampe, S. Luo, M. Jana, J. Mitra, and C. Li, “Deep neural
network assisted second-order perturbation-based nonlinearity compen-
sation,” in Proc. Signal Process. Photon. Commun., 2021, pp. 1–10.

[56] M. Li, W. Zhang, Q. Chen, and Z. He, “High-throughput hardware
deployment of pruned neural network based nonlinear equalization for
100-Gbps short-reach optical interconnect,” Opt. Lett., vol. 46, no. 19,
pp. 4980–4983, 2021.

[57] Z. Wan et al., “Nonlinear equalization based on pruned artificial neural
networks for 112-Gb/s SSB-PAM4 transmission over 80-km SSMF,” Opt.
Exp., vol. 26, no. 8, pp. 10631–10642, 2018.

[58] W. Zhang, L. Ge, Y. Zhang, C. Liang, and Z. He, “Compressed nonlinear
equalizers for 112-Gbps optical interconnects: Efficiency and stability,”
Sensors, vol. 20, no. 17, 2020, Art. no. 4680.

[59] L. Wang, X. Zeng, J. Wang, D. Gao, and M. Bai, “Low-complexity
nonlinear equalizer based on artificial neural network for 112 Gbit/s
PAM-4 transmission using DML,” Opt. Fiber Technol., vol. 67, 2021,
Art. no. 102724.

[60] L. Ge, W. Zhang, C. Liang, and Z. He, “Compressed neural net-
work equalization based on iterative pruning algorithm for 112-Gbps
VCSEL-enabled optical interconnects,” J. Lightw. Technol., vol. 38, no. 6,
pp. 1323–1329, Mar. 2020.

[61] A. G. Reza and J.-K. K. Rhee, “Nonlinear equalizer based on neural
networks for PAM-4 signal transmission using DML,” IEEE Photon.
Technol. Lett., vol. 30, no. 15, pp. 1416–1419, Aug. 2018.

[62] T. Koike-Akino, Y. Wang, K. Kojima, K. Parsons, and T. Yoshida,
“Zero-multiplier sparse DNN equalization for fiber-optic QAM systems
with probabilistic amplitude shaping,” in Proc. Eur. Conf. Opt. Commun.,
2021, pp. 1–4.

[63] H. J. Weerts, A. C. Mueller, and J. Vanschoren, “Importance
of tuning hyperparameters of machine learning algorithms,” 2020,
arXiv:2007.07588.

[64] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “AMC: AutoML for
model compression and acceleration on mobile devices,” in Proc. Eur.
Conf. Comput. Vis., 2018, pp. 784–800.

[65] H. Cho, Y. Kim, E. Lee, D. Choi, Y. Lee, and W. Rhee, “Basic enhance-
ment strategies when using Bayesian optimization for hyperparameter
tuning of deep neural networks,” IEEE Access, vol. 8, pp. 52588–52608,
2020.

[66] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimiza-
tion of machine learning algorithms,” in Proc. Adv. Neural Inf. Process.
Syst., 2012, vol. 25, pp. 52588–52608.

[67] P. I. Frazier, “A tutorial on Bayesian optimization,” 2018,
arXiv:1807.02811.

[68] L.-N. Wang et al., “Compressing deep networks by neuron agglomerative
clustering,” Sensors, vol. 20, no. 21, 2020, Art. no. 6033.

[69] S. Son, S. Nah, and K. M. Lee, “Clustering convolutional kernels to
compress deep neural networks,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 216–232.

[70] J. Wu, Y. Wang, Z. Wu, Z. Wang, A. Veeraraghavan, and Y. Lin, “Deep
k-means: Re-training and parameter sharing with harder cluster assign-
ments for compressing deep convolutions,” in Proc. Int. Conf. Mach.
Learn., 2018, pp. 5363–5372.

[71] J. H. Lee, J. Yun, S. J. Hwang, and E. Yang, “Cluster-promoting quanti-
zation with bit-drop for minimizing network quantization loss,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 5370–5379.

[72] “Github implementation of the weights clustering algorithm in tensor-
flow,” 2021. Accessed: May 30, 2022. [Online]. Available: https://github.
com/tensorflow/model-optimization/blob/v0.7.2/tensorflow_model_
optimization/python/core/clustering/keras/clustering_algorithm.py#
L24-L194

[73] M. Cho, K. A. Vahid, S. Adya, and M. Rastegari, “DKM: Differen-
tiable k-means clustering layer for neural network compression,” 2021,
arXiv:2108.12659.

[74] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A
survey of quantization methods for efficient neural network inference,”
2021, arXiv:2103.13630.

[75] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model compres-
sion and acceleration for deep neural networks,” 2017, arXiv:1710.09282.

[76] O. Weng, “Neural network quantization for efficient inference: A survey,”
2021, arXiv:2112.06126.

[77] H. Bai, L. Hou, L. Shang, X. Jiang, I. King, and M. R. Lyu, “Towards ef-
ficient post-training quantization of pre-trained language models,” 2021,
arXiv:2109.15082.

[78] R. Alvarez, R. Prabhavalkar, and A. Bakhtin, “On the efficient represen-
tation and execution of deep acoustic models,” 2016, arXiv:1607.04683.

[79] J. Duarte et al., “Fast inference of deep neural networks in FPGAS for
particle physics,” J. Instrum., vol. 13, no. 07, 2018, Art. no. P07027.

[80] C. N. Coelho et al., “Automatic heterogeneous quantization of deep neural
networks for low-latency inference on the edge for particle detectors,”
Nature Mach. Intell., vol. 3, pp. 675–686, 2021.

[81] R. Goyal, J. Vanschoren, V. V. Acht, and S. Nijssen, “Fixed-point
quantization of convolutional neural networks for quantized inference
on embedded platforms,” 2021, arXiv:2102.02147.

[82] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless cnns with low-precision weights,” 2017,
arXiv:1702.03044.

[83] Y. Li, X. Dong, and W. Wang, “Additive powers-of-two quantization:
An efficient non-uniform discretization for neural networks,” 2019,
arXiv:1909.13144.

[84] S. Prasanna, “Deep learning deployment with NVIDIA TensorRT,”
NVIDIA Deep Learn. Inst., New York, NY, USA, 2019.

[85] Xilinx, dnndk user guide, 2019. Accessed on: May 30, 2022. [On-
line]. Available: https://www.xilinx.com/support/documentation/sw_
manuals/ai_inference/v1_6/ug1327-dnndk-user-guide.pdf.47

[86] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neural net-
works using logarithmic data representation,” 2016, arXiv:1603.01025.

[87] D. Przewlocka-Rus, S. S. Sarwar, H. E. Sumbul, Y. Li, and B. D. Salvo,
“Power-of-two quantization for low bitwidth and hardware compliant
neural networks,” 2022, arXiv:2203.05025.

[88] P. Nayak, D. Zhang, and S. Chai, “Bit efficient quantization for deep
neural networks,” in Proc. 5th Workshop Energy Efficient Mach. Learn.
Cogn. Comput.-NeurIPS Ed., 2019, pp. 52–56.

[89] H. V. Habi et al., “HPTQ: Hardware-friendly post training quantization,”
2021, arXiv:2109.09113.

[90] X. Zhang, I. Colbert, K. Kreutz-Delgado, and S. Das, “Training deep
neural networks with joint quantization and pruning of weights and
activations,” 2021, arXiv:2110.08271.

[91] B. Hawks, J. Duarte, N. J. Fraser, A. Pappalardo, N. Tran, and Y.
Umuroglu, “PS and QS: Quantization-aware pruning for efficient low
latency neural network inference,” 2021, arXiv:2102.11289.

https://github.com/tensorflow/model-optimization/blob/v0.7.2/tensorflow_model_optimization/python/core/clustering/keras/clustering_algorithm.py#L24-L194
https://github.com/tensorflow/model-optimization/blob/v0.7.2/tensorflow_model_optimization/python/core/clustering/keras/clustering_algorithm.py#L24-L194
https://github.com/tensorflow/model-optimization/blob/v0.7.2/tensorflow_model_optimization/python/core/clustering/keras/clustering_algorithm.py#L24-L194
https://github.com/tensorflow/model-optimization/blob/v0.7.2/tensorflow_model_optimization/python/core/clustering/keras/clustering_algorithm.py#L24-L194
https://www.xilinx.com/support/documentation/sw_manuals/ai_inference/v1_6/ug1327-dnndk-user-guide.pdf.47
https://www.xilinx.com/support/documentation/sw_manuals/ai_inference/v1_6/ug1327-dnndk-user-guide.pdf.47

FREIRE et al.: REDUCING COMPUTATIONAL COMPLEXITY OF NEURAL NETWORKS IN OPTICAL CHANNEL EQUALIZATION 4581

[92] B. Jacob et al., “Quantization and training of neural networks for efficient
integer-arithmetic-only inference,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2018, pp. 2704–2713.

[93] N. Kaneda et al., “FPGA implementation of deep neural network based
equalizers for high-speed PON,” in Proc. Opt. Fiber Commun. Conf.,
2020, pp. 2704–2713.

[94] X. Huang, D. Zhang, X. Hu, C. Ye, and K. Zhang, “Low-complexity
recurrent neural network based equalizer with embedded parallelization
for 100-gbit/s/λ PON,” J. Lightw. Technol., vol. 40, no. 5, pp. 1353–1359,
May 2022.

[95] P. He et al., “A fiber nonlinearity compensation scheme with complex-
valued dimension-reduced neural network,” IEEE Photon. J., vol. 13,
no. 6, Dec. 2021, Art. no. 7200507.

[96] F. A. Aoudia and J. Hoydis, “Towards hardware implementation of
neural network-based communication algorithms,” in Proc. IEEE 20th
Int. Workshop Signal Process. Adv. Wireless Commun., 2019, pp. 1–5.

[97] W. Xu et al., “On the efficient design of neural networks in communication
systems,” in Proc. IEEE 53rd Asilomar Conf. Signals, Syst., Comput.,
2019, pp. 522–526.

[98] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number genera-
tor,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, 1998.

[99] M. Kuschnerov et al., “Data-aided versus blind single-carrier coherent
receivers,” IEEE Photon. J., vol. 2, no. 3, pp. 387–403, Jun. 2010.

[100] A. Gulli and S. Pal, Deep Learning With Keras. Birmingham, U.K.: Packt
Publishing Ltd, 2017.

[101] O. Sidelnikov, A. Redyuk, S. Sygletos, M. Fedoruk, and S. Turitsyn,
“Advanced convolutional neural networks for nonlinearity mitigation in
Long-Haul WDM transmission systems,” J. Lightw. Technol., vol. 39,
no. 8, pp. 2397–2406, Apr. 2021.

[102] C.-Y. Lin et al., “Adaptive digital back-propagation for optical com-
munication systems,” in Proc. Opt. Fiber Commun. Conf., 2014,
pp. 2397–2406.

[103] A. Napoli, D. Rafique, B. Spinnler, M. Kuschnerov, M. Noelle, and
M. Bohn, “Performance dependence of single-carrier digital back-
propagation on fiber types and data rates,” in Proc. Opt. Fiber Commun.
Conf., 2014, paper no. M3C–4.

[104] B. Spinnler, “Equalizer design and complexity for digital coherent
receivers,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5,
pp. 1180–1192, Sep./Oct. 2010.

[105] P. J. Freire, S. Srivallapanondh, A. Napoli, J. E. Prilepsky, and S. K.
Turitsyn, “Computational complexity evaluation of neural network ap-
plications in signal processing,” 2022, arXiv:2206.12191.

[106] E. Jacobsen and P. Kootsookos, “Fast, accurate frequency estimators
[DSP tips & tricks],” IEEE Signal Process. Mag., vol. 24, no. 3,
pp. 123–125, May 2007.

[107] C. Baskin et al., “UNIQ: Uniform noise injection for non-uniform quan-
tization of neural networks,” ACM Trans. Comput. Syst., vol. 37, no. 1–4,
pp. 1–15, 2021.

[108] S. Sahin, Y. Becerikli, and S. Yazici, “Neural network implementation in
hardware using FPGAS,” in Proc. Int. Conf. Neural Inf. Process., 2006,
pp. 1105–1112.

[109] A. Dinu, M. N. Cirstea, and S. E. Cirstea, “Direct neural-network
hardware-implementation algorithm,” IEEE Trans. Ind. Electron.,
vol. 57, no. 5, pp. 1845–1848, May 2010.

[110] W. Sun, M. J. Wirthlin, and S. Neuendorffer, “FPGA pipeline synthe-
sis design exploration using module selection and resource sharing,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 26, no. 2,
pp. 254–265, Feb. 2007.

[111] M. Elhoushi, Z. Chen, F. Shafiq, Y. H. Tian, and J. Y. Li, “DeepShift:
Towards multiplication-less neural networks,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2021, pp. 2359–2368.

[112] H. You et al., “ShiftaddNet: A hardware-inspired deep network,” 2020,
arXiv:2010.12785.

[113] P. Gentili, F. Piazza, and A. Uncini, “Efficient genetic algorithm design
for power-of-two fir filters,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 1995, vol. 2, pp. 1268–1271.

[114] J. B. Evans, “Efficient FIR filter architectures suitable for FPGA imple-
mentation,” IEEE Trans. Circuits Syst. II: Analog Dig. Signal Process.,
vol. 41, no. 7, pp. 490–493, Jul. 1994.

[115] W. R. Lee, V. Rehbock, K. L. Teo, and L. Caccetta, “Frequency-response
masking based fir filter design with power-of-two coefficients and sub-
optimum PWR,” J. Circuits, Syst., Comput., vol. 12, no. 05, pp. 591–599,
2003.

[116] P. J. Freire et al., “Transfer learning for neural networks-based equal-
izers in coherent optical systems,” J. Lightw. Technol., vol. 39, no. 21,
pp. 6733–6745, Nov. 2021.

[117] J. Cho and P. J. Winzer, “Probabilistic constellation shaping for optical
fiber communications,” J. Lightw. Technol., vol. 37, no. 6, pp. 1590–1607,
Mar. 2019.

[118] H. Li, S. De, Z. Xu, C. Studer, H. Samet, and T. Goldstein, “Training
quantized nets: A deeper understanding,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, vol. 30, pp. 6733–6745.

[119] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey of
two decades of progress,” Neurocomputing, vol. 74, no. 1–3, pp. 239–255,
2010.

[120] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A
survey,” Int. J. Comput. Vis., vol. 129, no. 6, pp. 1789–1819, 2021.

[121] J. Ye, S. Zhang, and J. Wang, “Hybrid network compression via meta-
learning,” in Proc. 29th ACM Int. Conf. Multimedia, 2021, pp. 1423–
1431.

[122] S. Chen, W. Wang, and S. J. Pan, “Metaquant: Learning to quantize
by learning to penetrate non-differentiable quantization,” in Proc. Adv.
Neural Inf. Process. Syst., 2019, vol. 32, pp. 1789–1819.

[123] Z. Liu et al., “Metapruning: Meta learning for automatic neural network
channel pruning,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019,
pp. 3296–3305.

[124] B. Bartan and M. Pilanci, “Training quantized neural networks to global
optimality via semidefinite programming,” in Proc. Int. Conf. Mach.
Learn., 2021, pp. 694–704.

[125] B. Zhuang, L. Liu, M. Tan, C. Shen, and I. Reid, “Training quantized neu-
ral networks with a full-precision auxiliary module,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2020, pp. 1488–1497.

[126] P. J. Freire et al., “Domain adaptation: The key enabler of neural network
equalizers in coherent optical systems,” in Proc. Opt. Fiber Commun.
Conf. Exhib., 2022, pp. 1–3.

[127] Z. Xu, C. Sun, T. Ji, J. H. Manton, and W. Shieh, “Feedforward and recur-
rent neural network-based transfer learning for nonlinear equalization in
short-reach optical links,” J. Lightw. Technol., vol. 39, no. 2, pp. 475–480,
Jan. 2021.

[128] J. Xiao, L. Sun, C. Liu, and G. N. Liu, “Optimizations and investigations
for transfer learning of iteratively pruned neural network equalizers for
data center networking,” Opt. Exp., vol. 30, no. 20, pp. 36358–36367,
2022.

[129] S. Myung et al., “PAC-Net: A model pruning approach to inductive trans-
fer learning,” in Proc. Int. Conf. Mach. Learn., 2022, pp. 16240–16252.

[130] B. Liu, Y. Cai, Y. Guo, and X. Chen, “Transtailor: Pruning the pre-trained
model for improved transfer learning,” in Proc. AAAI Conf. Artif. Intell.,
vol. 35, no. 10, 2021, pp. 8627–8634.

[131] M. A. Gordon, K. Duh, and N. Andrews, “Compressing Bert: Studying the
effects of weight pruning on transfer learning,” 2020, arXiv:2002.08307.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

