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Abstract—The application of two gain switched optical fre-
quency combs (OFCs) in dual comb gas phase spectroscopy is
demonstrated. We report on the stability analysis of the wave-
length and power of individual comb lines of the two OFCs. The
examination reveals that a maximum wavelength fluctuation of
<2.5 pm and a maximum peak power fluctuation of ∼0.3 dB
is achievable for the OFCs. The radio frequency (RF) beat tone
spectrum shows the standard deviation of the peak power of an
individual beat tone from the mean is as low as ∼0.14 dB with
negligible frequency fluctuations. In a proof-of-principle experi-
ment the dual comb system is applied to the detection of hydrogen
sulphide (H2S) with a detection sensitivity of (740 ± 160) ppmv,
demonstrating its excellent frequency and power stability. The dual
OFCs can in principle be monolithically integrated and thus enable
the development of compact, cost-efficient dual comb devices, for
the detection of multiple trace gas species or isotopologues.

Index Terms—Gain-switched laser, gas detection, hydrogen
sulphide, optical frequency comb, optical injection locking,
semiconductor lasers, trace gas sensing.

I. INTRODUCTION

IN RECENT decades, optical frequency combs (OFCs), pro-
viding a number of equally spaced, phase coherent narrow

spectral lines, have been used in state-of-the-art gas-phase laser
(absorption) spectroscopy [1]. Typical OFCs employed for this
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purpose have been based mainly on semiconductor and fibre
mode-locked lasers [1]. However, these techniques suffer from
costly and complex fabrication processes and an inherently fixed
free spectral range (FSR). While electro-optic modulators may
be seen as a viable alternative offering tuneable FSR [2], [3],
they can suffer from bias drift causing instability, which may
require additional feedback-based dc bias control to maintain
stable operation [4]. Kerr effect-based micro-ring resonators
can be used but these combs require a pumping scheme which
typically needs a pump power of at least a few tens of milliwatts
[5]. Gain switching of commercially available semiconductor
lasers to generate an OFC has gained interest due to its sim-
plicity (direct modulation) and flexibility (wavelength and FSR)
[6]. Some shortcomings associated with gain switching can be
overcome by external optical injection locking (OIL) realised
via a primary-secondary configuration [7]. External OIL can
enhance the OFC by improving the number of generated comb
lines, the spectral flatness, and the transferring of the primary
laser’s narrow linewidth to each individual comb line [7].

In recent years, dual comb spectroscopy (DCS) [8], [9] has
become a popular approach to overcome many of the constraints
of conventional Fourier transform spectroscopy. DCS simplifies
the receiver and offers high precision, short acquisition times
and potentially low bandwidth detectors [8], [10]. DCS uses a
pair of OFCs with small differences in their respective FSRs.
When the tones of both OFCs beat on a photodetector, an RF
beat spectrum is generated; the intensity variations (absorption
of comb lines) are translated into an RF beat spectrum. Crucial
factors for DCS are high frequency accuracy and high spectral
resolution [11]. In this letter, it is described how high frequency
accuracy and high resolution can be provided through a high
level of phase coherence between two gain switched OFCs. The
two gain switched OFCs can be generated using cost-efficient
commercially available semiconductor lasers. The OFCs are
phase and FSR locked via external optical injection with a single
semiconductor tuneable laser (TL). The mutual injection locking
of the two OFCs results in a narrow linewidth RF beat tone
spectrum stable in both frequency and amplitude. Two of the
main parameters governing the overall stability of the individual
OFCs, and in turn the stability of the generated RF beat tone
spectra, are the variations in optical power and the wavelength
of the individual comb lines with respect to time.
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Fig. 1. (a) Dual comb system based on mutually injected gain switched OFCs. Optical spectra of (b) OFC1 and (c) OFC2 prior to coupling; the vertical coloured
arrows in (b) and (c) Indicate the comb lines used in the stability analysis, and the black vertical arrow indicates the injection wavelength; (d) Dual comb before
(blue) and after (orange) the OBPF. All optical spectra are measured with a resolution of 0.16 pm. Electrical spectrum of (e) the corresponding RF beat tones with
a resolution bandwidth (RBW) of 100 Hz; (f) Measurement of a single RF beat tone with an RBW of 10 Hz. OFC: Optical frequency comb; TL: Tuneable laser;
OBPF: Optical bandpass filter; ESA: Electrical spectrum analyser.

In this paper, the stability of the individual mutually injection
locked OFCs is characterised in terms of wavelength and power
fluctuations. A characterisation of the generated RF beat tone
spectrum is then conducted examining the relative frequency
fluctuations and peak amplitudes of individual RF tones. Finally,
the applicability of this dual comb system for gas absorption
spectroscopy is demonstrated through the detection of H2S in a
661 cm single pass cell. This offers detection below the lower
explosive limit. It is important to note that the dual comb system
outlined in this paper lends itself to being monolithically inte-
grated, enabling the realisation of a compact and cost-efficient
dual comb interrogator which should provide even greater wave-
length and amplitude stability [12].

II. EXPERIMENTAL SETUP

The dual comb system used in this work is shown in Fig. 1(a).
It comprises two Fabry-Pérot (FP) lasers, acting as secondary
lasers in a dual primary-secondary configuration, with thresh-
olds of 12 and 13 mA respectively. The FP lasers are biased
at 17.5 and 25.9 mA respectively with their corresponding
temperatures being maintained at 23.2 and 31.6 °C. Utilising
these FP lasers allow for central wavelength tuneable dual comb
generation across the entire C-band (∼1525 – 1575 nm) [6]. Both
FPs are gain switched [7] using sine waves, amplified to ∼24
dBm, at frequencies of 1.250000 and 1.250125 GHz, respec-
tively. The individual OFCs are mutually injection locked using
a single TL acting as a common primary laser providing phase
synchronisation between both secondary lasers. The wavelength
of the primary laser (injection wavelength), is optimised to
1549.901 nm, as indicated by the black arrow in Fig. 1(b) and
(c). The TL is detuned to a lower wavelength of the individual
OFCs, allowing for the creation of broad asymmetric OFCs [6].
Utilising asymmetric OFCs will maximise the number of comb
lines, generating unique RF beat tones at wavelengths higher

than the injection wavelength [13]. The optical spectra of the
generated mutually injection locked OFCs are observed, using a
high-resolution optical spectrum analyser (HR-OSA) with a res-
olution of 0.16 pm. The respective spectra for OFC1 and OFC2
are shown in Fig. 1(b) and (c). The two OFCs are combined using
a 3-dB coupler. It is important to note that all individual fibres
and components used in this experiment prior to the wavelength
and bandwidth tuneable optical bandpass filter (OBPF) (EXFO
XTM-50) are polarisation maintaining. The dual comb before
the OBPF is shown by the blue line in Fig. 1(d). The OBPF is
used to remove the comb line where the injection occurs and
the tones lower than the injection wavelength (≤1549.901 nm).
The resulting output from the OBPF is shown by the orange
line in Fig. 1(d). The OBPF ensures that any beating on the
photodetector between the two OFCs will generate a unique RF
beat tone frequency. The filtered dual comb is subsequently sent
to a 15 MHz InGaAs photodetector. The tones from the dual
comb yield an RF comb spectrum with 125 kHz harmonics.
The RF comb spectrum, shown in Fig. 1(e) by the red trace, is
captured on an electrical spectrum analyser (ESA). A resolution
bandwidth (RBW) of 100 Hz was used. An ESA is used as we
did not have access to a real time oscilloscope. A measurement
of a single RF beat tone is shown in Fig. 1(f), with an RBW of
10 Hz, illustrating the narrow RF linewidth achieved as a result
of the beating of the correlated OFCs.

III. STABILITY ANALYSIS

Initial stability tests are performed on the individual OFCs
utilising the HR-OSA. The optical spectra were captured every
∼5 s over a 60 min period at the output of the individual OFCs
but before the 50/50 coupler in Fig. 1(a). Wavelength and peak
power stability analysis is performed simultaneously for each
comb line of the individual OFCs. Fig. 2(a) and (b) illustrate the
relative wavelength fluctuations of four comb lines belonging



4518 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 13, JULY 1, 2023

Fig. 2. Relative wavelength (nm) vs time (s) of four comb lines from:
(a) OFC1 and (b) OFC2. Peak power (dBm) vs time (s) of four comb lines
from: (a) OFC1 and (b) OFC2. The selected comb lines are indicated by arrows
in Fig. 1(b) and (c), respectively.

Fig. 3. Standard deviation of the peak amplitude (blue circles) and standard
deviation of the RF beat tone frequency (orange circles) for each tone of the
RF spectrum at its individual RF beat tone frequency. 42 samples were captured
every 11 s over a ∼60 min period.

to each OFC at the wavelengths indicated by the corresponding
coloured arrows in Fig. 1(b) and (c), respectively. A high degree
of robustness is observed with a maximum wavelength fluctu-
ation of <2 pm, without the need for complicated automated
feedback control. Fig. 2(c) and (d) illustrate the peak power
fluctuations of four comb lines belonging to OFC1 and OFC2 at
the wavelengths indicated by the corresponding coloured arrows
in Fig. 1(b) and (c), respectively [14]. Examining the peak power
stability in Fig. 2(c), it is evident that the maximum fluctuation
of the comb line at 1550.312 nm is ∼0.3 dB, indicated by the
purple line. The power fluctuations increase with increasing
wavelengths, i.e., further away from the injection wavelength.
Inspecting the peak power stability of OFC2 (Fig. 2(d)) shows
that the comb line at the longest wavelength (purple trace)
exhibits the largest variation. At this wavelength the maximum
fluctuation is ∼0.25 dB. Note, that these results are limited by a
power resolution of 0.2 dB of the HR-OSA, and that each OFC
is measured at different times as we only have access to one
HR-OSA.

Subsequent to the optical stability tests, the RF beat tone spec-
trum was characterised in terms of individual RF beat tone peak
power and frequency stability. The peak power and frequency
of the individual RF beat tones of the generated RF beat tone
spectrum were monitored over∼60 min and recorded at intervals
of 11 s. The maximum frequency fluctuation for any one tone was
<1 kHz and the standard deviation is<50 Hz, as shown in Fig. 3.
The standard deviation of the RF beat tone peak power was
calculated and is shown in Fig. 3. The larger standard deviation
experienced by the first RF beat tones can be attributed to being
on the edge of the OBPF passband. It is also evident that as the RF
frequency increases, the peak power standard deviation exhibits
a marginal increase with a final value of∼0.28 dB for the last RF
beat tone. This is a result of the greater amplitude fluctuations of
the individual OFCs, as the wavelength increases further away
from the injection wavelength. Despite this, 41 samples showed
very stable behaviour in frequency with a peak power standard
deviation smaller than 0.3 dB established without any averaging
or additional digital signal processing.
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Fig. 4. Measurement set up of dual comb-based gas sensing using a single pass cell with a resulting RF spectrum placed inset.

IV. SPECTROSCOPY APPLICATION

Finally, the wavelength tuneable dual comb system was
utilised to measure the absorption of H2S in synthetic air close
to standard pressure at a wavelength of ∼1574.55 nm. Utilising
the TL, it was possible to inject into the modes of FP lasers at
1574.376 nm to generate mutually injected OFCs. The optical
spectrum is not shown here as it is outside the wavelength range
of the HR-OSA. The OFCs possessed FSRs of 1.250000 and
1.250125 GHz. The signal from the OBPF is approximately
−15 dBm and is amplified by an Erbium doped fibre amplifier
(EDFA) to 0 dBm.

A single pass static gas cell with a length of 661 cm was
used for this application. The light beam from the dual comb
was collimated (Thorlabs F260APC-1550) and guided to a
cylindrical stainless steel cell (100 mm diameter) with quartz
windows (diameter 25 mm) at either end, acting as optical ports.
Before experiments, the cell was always evacuated by a rotary
pump to < 0.1 mbar. The light exiting this single pass cell was
collected by an achromatic lens and focused onto the active area
of a fast photodiode. The photodiode was attached to the ESA to
capture the electrical beat spectrum. Measurements were carried
out by first filling dry air at approximately atmospheric pressure
(1007.0 mbar) into the evacuated gas cell, in order to measure the
transmission, I0, without the sample species. The gas cell was
evacuated after the I0 measurements again and a small amount of
H2S (15.8 mbar) was gradually injected into the chamber. After
a waiting time of 10 min the cell was topped up with 991.2 mbar
of dry air so that the total pressure was again ∼1007.0 mbar.

The transmission, I, with sample (H2S) under quasi atmo-
spheric conditions was recorded after an additional waiting
time of 20 min. The absorption coefficient as a function of
wavelength,α(λ), of H2S was calculated using the Beer-Lambert
law (see (1) below) for the approximation of small optical losses:

α(λ) = nσ(λ) =

(
I0(λ)

I(λ)
− 1

)
1

d
(1)

Fig. 5. (a) Comb intensities transmitted through the gas cell (length d = 661
cm) filled with H2S and air (I, red) and air only (I0, black). (b) Spectrum of the
absorption coefficient, α = d−1 [(I0/I)-1] (resolution 0.04 cm−1 according to
FSR of 1.25000 GHz) and stick spectrum (blue) of the absorption strength, S,
from the HITRAN database [16].

Here n is the number density of H2S, σ(λ) is the wavelength-
dependent absorption cross-section of H2S, and d is the inter-
action pathlength (distance between the quartz windows) [15].
Fig. 5(a) shows the transmitted relative comb intensities corre-
sponding to measurements of I0 (grey trace) and I (red trace).
The drop in intensity between the red and black traces is clearly
discernible. The spectrum of the absorption coefficients (black
dots) is shown in Fig. 5(b) along with the integrated absorption
strengths, S, for H2S from the HITRAN database [16]. The half-
width of the band at ∼1574.55 nm is covered by approximately
four comb tones. The wavelength scale in Fig. 5 is based on
the calibrated and stable emission wavelength of the master
laser. The wavelength accuracy is further corroborated through
Fig. 5(b) by comparing the line positions reported in HITRAN
data base, which are in good agreement in the region shown.
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The overall measurement time for the H2S measurements
was below 60 min and the comb was stable within the limits
outlined in Section III during this time. The minimum detectable
absorption coefficient can be calculated from the standard de-
viation, σ, of the noise of the detected intensities [17]. 1σ of
the linear dual comb intensities achieved was 0.0093 (∼0.01).
Substituting this value into (1) yields a minimum estimated α of
1.4×10−5 cm−1. The approximate absorption cross-section for
the line at 1574.55 nm for the given measurement conditions at
1007 mbar and room temperature is 7.587×10−22 cm2. From the
minimum absorption coefficient and cross-section, the minimum
detectable number density can be estimated to be ∼740 ppmv.
The major uncertainty contributing to the measured number den-
sities of H2S is dominated by the uncertainty in the absorption
cross-section and self-broadening parameters in the HITRAN
database [16]. This overall uncertainty is approximately 22%.
Other minor uncertainties are based on the measurement error
of ∼0.2% of the absorption pathlength, and the comb intensity
fluctuations of ∼1%. The total detection sensitivity based on
Gaussian error propagation in this proof-of-principle experiment
was therefore (740 ± 160) ppmv [18].

V. CONCLUSION

The work in this paper illustrates the importance of mutu-
ally injection locking both OFCs to obtain relative wavelength
stability and a high degree of phase correlation. Minimisation
of the power fluctuation to ∼0.3 dB has been achieved for
individual OFC lines, highlighting the importance of a stable
RF source. The power fluctuation of the dual comb system
outlined here could potentially be minimized further through
photonic integration of the interrogator [12]. The maximum
wavelength fluctuation of any individual comb line is measured
to be ∼2.5 pm. In turn, this generates an RF comb comprising
41 sample points with a peak power standard <0.3 dB and a
frequency stability within 1 kHz. The applicability of this dual
comb system for gas absorption spectroscopy is demonstrated
through the detection of H2S where a sensitivity of 740 ± 160
ppmv is achieved in a 661 cm single pass gas cell, which allows
for detection below the lower explosive limit. Through photonic
integration of the dual comb system and utilization of stable
RF sources, the stability of the RF beat tone spectrum could be
improved significantly further and enable greater sensitivities
to be achieved. In conclusion, these measurements highlight
the robustness of a potentially monolithically integrable and
cost-efficient dual comb system, which provides mutual coher-
ence between two OFCs and offers excellent stability without
the requirement for automated or complex electrical or optical
feedback control or manual adjustments.

ACKNOWLEDGMENT

E. P. Martin et al. thank Mr. Alfonso Gonzalez (UCC) for his
advice and support during the research.

REFERENCES

[1] S. A. Diddams, K. Vahala, and T. Udem, “Optical frequency combs:
Coherently uniting the electromagnetic spectrum,” Amer. Assoc. Adv. Sci.,
vol. 369, no. 6501, 2020, Art. no. eaay3676.

[2] W. Shieh, H. Bao, and B. Y. Tang, “Coherent optical OFDM: Theory and
design,” Opt. Exp., vol. 16, pp. 841–859, 2008.

[3] A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-
power broadly tunable electrooptic frequency comb generator,” IEEE J.
Sel. Topics Quantum Electron., vol. 19, Nov./Dec. 2013, Art. no. 3500306.

[4] V. T. Company and A. M. Weiner, “Optical frequency comb technology
for ultra-broadband radio-frequency photonics,” Laser Photon. Rev., vol. 8,
no. 3, pp. 368–393, 2014.

[5] W. Weng et al., “Gain-switched semiconductor laser driven soliton micro-
combs,” Nature Commun., vol. 12, 2021, Art. no. 1425.

[6] R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. Barry, and P. Anan-
darajah, “40 nm wavelength tunable gain-switched optical comb source,”
Opt. Exp., vol. 19, pp. B415–B420, 2011.

[7] P. M. Anandarajah et al., “Generation of coherent multicarrier signals by
gain switching of discrete mode lasers,” IEEE Photon. J., vol. 3, no. 1,
pp. 112–122, Feb. 2011.

[8] I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,”
Optica, vol. 3, pp. 414–426, 2016.

[9] N. Picqué and T. Hänsch, “Frequency comb spectroscopy,” Nature Photon.,
vol. 13, pp. 146–157, 2019.

[10] B. Jerez, P. Martín-Mateos, E. Prior, C. Dios, and P. Acedo, “Dual
optical frequency comb architecture with capabilities from visible to
mid-infrared,” Opt. Exp., vol. 24, pp. 14986–14994, 2016.

[11] L. A. Sterczewski, A. Przewłoka, W. Kaszub, and J. Sotor, “High-
resolution dual-comb spectroscopy with a free-running all-fiber laser,”
in Proc. CLEO: Sci. Innov., 2019, Paper SF1I-4.

[12] J. Alexander et al., “Integrated dual optical frequency comb source,” Opt.
Exp., vol. 28, pp. 16900–16906, 2020.

[13] B. Jerez, P. Martín-Mateos, E. Prior, C. D. Dios, and P. Acedo, “Gain-
switching injection-locked dual optical frequency combs: Characterization
and optimization,” Opt. Lett., vol. 41, pp. 4293–4296, 2016.

[14] R. Zhou, T. N. Huynh, V. Vujicic, P. M. Anandarajah, and L. P. Barry,
“Phase noise analysis of injected gain switched comb source for coherent
communications,” Opt. Exp., vol. 22, pp. 8120–8125, 2014.

[15] E. P. Martin et al., “Mutually injection locked gain switched optical
frequency combs for dual comb spectroscopy of H2S,” in Proc. CLEO:
Appl. Technol., 2020, Paper AM4K.2.

[16] E. Gordon et al., “The HITRAN2016 molecular spectroscopic
database,” J. Quantitative Spectrosc. Radiative Transfer, vol. 203,
pp. 3–69, 2017.

[17] S. Chandran, A. Puthukkudy, and R. Varma, “Dual-wavelength dual-cavity
spectrometer for NO2 detection in the presence of aerosol interference,”
Appl. Phys. B, vol. 123, no. 213, pp. 1–8, 2017.

[18] S. Chandran, A. A. Ruth, E. P. Martin, J. K. Alexander, F. H. Peters, and
P. M. Anandarajah, “Off-axis cavity-enhanced absorption spectroscopy of
14NH3 in air using a gain-switched frequency comb at 1.514μm,” Sensors,
vol. 19, pp. 5217–5232, 2019.

Eamonn P. Martin received the B.Eng. and M.Eng. degrees from Dublin City
University (DCU), Dublin, Ireland, in 2009 and 2010, respectively, and the
Ph.D. degree from Radio and Optical Communications Lab, DCU, in May
2015. He was a Postdoctoral Researcher with Radio and Optical Communi-
cations Lab, predominately with optical frequency combs for the generation of
millimetre-waves for distribution in 5G radio over fibre systems. In 2017, he
joined the Photonics Systems and Sensing Laboratory, DCU. He has appointed
as a Research Fellow and is a Principal Investigator of Enterprise Ireland on
a Commercialisation Fund. His research interests include the use of optical
frequency combs for not only millimetre-wave generation and radio over fibre
distribution systems but also for optical sensing applications, in particular their
use in dual comb spectroscopy.

Syed T. Ahmad (Member, IEEE) received the B.Eng. degree in electronics and
communication engineering from the University of Kashmir, Srinagar, India,
and the M.Tech. degree in communication and IT from NIT Srinagar in 2011,
and the Ph.D. degree in optical communication and networks from the Indian
Institute of Technology Kanpur, Kanpur, India, in 2019. In 2019, he joined the
Photonics Systems and Sensing Laboratory, Dublin City University, Ireland, as
a Postdoctoral Researcher and then a Principal Investigator of DCU INVENT
centre. In September 2022, he joined SRM University AP India, as an Assistant
Professor with ECE Department. He has authored or coauthored more than
30 articles in internationally peer reviewed journals and conferences. His main
research interests include applications of optical frequency combs in data-centre
networks, radio-over fibre mmW generation systems, photonic sensing and
THz transmission systems, nonlinear fibre optics, machine learning and signal
processing.



MARTIN et al.: STABILITY CHARACTERISATION AND APPLICATION OF MUTUALLY INJECTION LOCKED GAIN SWITCHED OFC 4521

Satheesh Chandran received the Ph.D. degree in physics from the National
Institute of Technology Calicut, Calicut, India, in 2016. He is currently a
Postdoctoral Researcher of physics with University College Cork, Cork, Ireland.
He is one of the founders of the start-up firm Optind Solutions, Private Limited,
Calicut, India and this company is focused on developing optical sensors for
light scattering and extinction measurements of atmospheric constituents for air
pollution monitoring and Climate applications. His research interests include
laser spectroscopy, molecular spectroscopy, and developing optical sensors for
trace gas detection.

Alejandro Rosado was born in Madrid, Spain, in 1993. He received the
graduation degree in physics and the M.Sc. degree in advance materials from
the Universidad Autónoma de Madrid, Madrid, Spain, and the Ph.D. degree in
physics from Universidad Politécnica de Madrid, Madrid, Spain. He is currently
a Postdoctorate Researcher with the Universidad Politécnica de Madrid in
collaboration with the Institute of Optics of the Spanish National Research
Council thanks to a Margarita Salas Scholarship. His research interests include
the use of Optical Frequency Comb generated by semiconductor lasers and their
numerous applications, especially those related with optical spectroscopy, such
as dual comb spectroscopy, or expansion or densification of these type of combs
through non-linear processes.

Albert A. Ruth received the M.Sc. degree in physics from the TU Darmstadt
and University of Göttingen, Göttingen, Germany, in 1989, the Ph.D. degree
in molecular laser spectroscopy having from the Max Planck Institute for
Biophysical Chemistry, Göttingen, in 1992, and the Habilitation degree from
the Technical University of Berlin, Berlin, Germany, in 2001, for work on
molecules in supersonic jets. Between 1992 and 1999, he was a Postdoctoral
Fellowship in Greece, Ireland and Germany. . He is currently a Professor with
Physics Department, University College Cork, Cork, Ireland, and a Member of
the Environmental Research Institute, Cork. His research interests include devel-
opment and application of cavity-enhanced absorption methods for applications
in atmospheric trace gas sensing and environmental monitoring. In the last 20
years, he has successfully developed the IBB-CEAS methodologies for a wide
variety of applications in air pollution and environmental research.

Prince M. Anandarajah (Senior Member, IEEE) received the B.Eng. degree
in electronic engineering from the University of Nigeria, Nigeria, Nsukka,
in 1992, and the M.Eng. and Ph.D. degrees with Dublin City University, in
1998 and 2003, respectively. Subsequently, he was an Instructor/Maintenance
Engineer with the Nigerian College of Aviation Technology, Zaria, Nigeria.
He is currently a Lecturer with the School of Electronic Engineering, DCU, a
Principal Investigator of Science Foundation Ireland and Enterprise Ireland, and
the Director of the Photonics Systems and Sensing Laboratory. He has authored
or co-authored more than 250 articles in internationally peer reviewed journals
and conferences and is also a holder of seven international patents. His main
research interests include elastic optical networks, photonic sensing, spectrally
efficient modulation formats, and radio-over-fibre distribution systems. He is
also a Founder of Pilot Photonics (a spin-off company).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


