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Abstract—The explosion of artificial intelligence and machine-
learning algorithms, connected to the exponential growth of the
exchanged data, is driving a search for novel application-specific
hardware accelerators. Among the many, the photonics field ap-
pears to be in the perfect spotlight for this global data explosion,
thanks to its almost infinite bandwidth capacity associated with
limited energy consumption. In this review, we will overview the
major advantages that photonics has over electronics for hardware
accelerators, followed by a comparison between the major architec-
tures implemented on Photonics Integrated Circuits (PIC) for both
the linear and nonlinear parts of Neural Networks. By the end,
we will highlight the main driving forces for the next generation
of photonic accelerators, as well as the main limits that must be
overcome.

Index Terms—Matrix-vector multiplication, photonics, PICs,
silicon photonics, tensor core.

I. INTRODUCTION

THE latest decade has seen the exponential growth of Ma-
chine Learning (ML) as one of the main branches of the

Artificial Intelligence field [1], [2]. At the core of this branch,
there is the assumption that a machine can learn to perform
any task if a training algorithm is applied. While historically
the concept of ML can be tracked back from the ’50s [3], [4],
just in recent decades the concept has started to attract more and
more interest [5], thanks to the improvement of the mathematical
approaches (such as back-propagation [6]), and computation
capabilities, that allowed to run complex ML algorithms.

To implement ML applications, several algorithms and cir-
cuits have been proposed [7]. One approach relies on mimicking
the human brain structure, which has led to several implemen-
tations, where Neural Networks (NNs) have become the most
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popular (Fig. 1), thanks to its flexibility and scalability [8], [9]. A
NN is formed by a sequence of interconnected layers of neurons,
whose inputs are the output of all the neurons of the previous
layer (Fig. 1(a)). The output of a single neuron is the result of
the scaled linear summation of the input passed by an activation
(nonlinear) function (Fig. 1(b)). In this framework, a whole layer
can be seen as matrix multiplication, followed by the activation
function, allowing for a more straightforward implementation
on hardware. The values used to scale the inputs (the W matrix)
are the learning parameters that the NN needs to compute using
the selected method (i.e. back-propagation). By so, for each NN,
we can see two separate steps: the training one, where all the
parameters are computed using training algorithms and dataset,
and the second one, called inference or classification, where
the NN is used over a novel set of data input. Research on NN
has brought other implementations for each layer, based on the
application and/or input. For example, convolution layers are
widely used in the image and video context, where a certain
trainable filter is applied to a portion of a 2D input [10]. More
and more complex tasks can be performed by NN by adding more
and more layers implementing Deep Neural Networks (DNNs)
for Deep Learning.

After the initial creation of the ML concept, followed by a
winter phase due to the lack of hardware [4], ML has raised again
following the exponential increase of computer performance,
creating an environment where DNN can have tens of layers
and millions of parameters. One example that has shown all
the potential of this approach is called DALL · E2, one of
the most advanced text-to-image DNN, with over 3.5 billion
parameters [11].

Such large and extended networks raise an enormous demand
in terms of computational power [12], challenging current hard-
ware technologies in terms of operation per second, latency, and
power consumption. The flexibility and scalability of digital
electronics have allowed the creation of a framework where
NNs can be coded, tested, and used [13]. As the NN became
larger and larger, the digital approach started to look for novel
solutions to keep pace and deliver enough performance levels
to run the NN [14]. Those solutions are based on scaling, by
using interconnected hardware in data centers, or by architecture
changes, for example moving from generic CPU to application-
or numerical- specific ones, such as FPGA, GPU, or ASIC,
called Tensor Core [15], [16], [17]. However, some of the limi-
tations still exist, due to more physical reasons, such as energy
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Fig. 1. Breaking down of a Fully-Connected Neural Network. (a) Example of a NN having one hidden layer. (b) Every single neuron receives the input signals
from all the previous layer neurons, scaled by a factor w, performing their summation and passing through an activation function. (c) This single neuron can be
generalized by including the whole layer, employing a matrix representation.

consumption and latency [18]. For these reasons, research has
started to look for novel technologies that can provide a better
hardware accelerator for NNs. Optics (and photonics) have been
raised as an alternative approach for hardware implementation
of NN, thanks to its speed-of-light latency and low energy
consumption [19], [20], [21], [22], [23]. Moreover, Silicon
Photonics has started to become a reliable and diffuse technol-
ogy, allowing the implementation of Photonic Neural Network
(PNN) hardware accelerator at the chip scale, to better fit the
needs of final users [24], [25], [26].

In this paper, we will review why and how silicon photonics
chips have addressed the challenge of providing a hardware
accelerator for PNN. After an initial part on electronics limi-
tations and photons potential in this field, we will look into the
main implementations of Photonic Tensor Core (PTC), either
based on coherent interference or WDM/MDM approaches. We
will address the limitations and scalability of such solutions,
focusing on the most challenging part related to the activation
function. We will conclude with a discussion of what the near
and long-term future look like for such PNNs.

II. ELECTRONICS VS. PHOTONICS

Digital electronics has been the hardware foundation that
allowed the growth of NNs since it can provide flexibility,
scalability, and fast delivery times. Even if the Von Neumann
architecture is not the best one for NN applications [27], it has
provided the right framework to develop NNs in their early stage.
Moreover, the diffusion of programming languages for software
development, and the following NN-specific libraries, has per-
mitted the spread of NN applications since the ’90 [5]. The
continuous improvement in computer performances (in terms
of processors, memory, and network) thanks to the development
of smaller and more dense CMOS transistors [28], has permitted
to keep pace with the increasing complexity of NNs.

However, in the last decade, the complexity, layer density,
and datasets size have evolved to a scale that a single CPU
cannot handle, neither for inference nor training [29]. The
main limitations come from the size of the NN, which could
require millions of parameters, and so the memory size and
throughput become important bottlenecks, as well as the lim-
ited capability of CPU to perform float multiplication and
summation, that are required for every neural layer, as shown

before. All these aspects have pushed also the energy con-
sumption related to the NN [30], for both training and in-
ference, posing an additional challenge from the hardware
perspective.

To overcome such limitations, several paths and solutions
have been explored and adopted, from both software and hard-
ware sides. From the software and theoretical side, several
strategies and optimizations have been proposed. For example,
model compression allows the reduction of the number and size
of weights, and by so reducing the need to transfer them from
the processing unit to the memory and vice versa [31], [32],
[33]. Many studies have shown how the whole system’s power
consumption can be easily dominated by the access cost per
bit to off-chip DRAM memory [34]. Some of these strategies
include weight quantization [35], connection pruning [36], low
rank approximation [37], and low bit weights [38]. From the
hardware side, there have been two main shifts: the first takes
advantage of the computation parallelization, and the second
push for more application-specific hardware, in particular on
the math unit. By using multiple systems in a balanced scheme,
it is possible to parallelize the layer computation over differ-
ent systems, and so assure a more high throughput, even for
DNN [39]. Today’s market presents many data centers and cloud
services that provide these types of schemes, from Google Cloud
to Amazon Web Service [40]. The diffusion and expansion
of those data centers have reached a threshold regarding their
power consumption pace rate [41], [42]. The second approach
works directly on the hardware optimization connected to the
computation part of the NN [43]. Since CPUs provide a limited
amount of resources for math computation, NNs have moved
toward GPUs, which provide faster and more specific hardware
to perform float multiplication and accumulation (MAC), as a
key task for each NN. The main acceleration of GPUs over CPUs
is an increased number of ALU (Arithmetic Logic Unit) cores to
parallelize MAC operations, roughly 1000 vs. 10, respectively.
Following this trend, the use of ASIC and Tensor Processing
Units (TPUs) has grown in recent years, where the actual hard-
ware can implement the required tasks in a heavily optimized
fashion as they are written in the electronic architecture [15],
[16], [17]. TPUs continued the GPU push, reaching about 32,000
cores, but also added reduced memory access by deploying an
systolic array, which uses an approach of featuring an array thus
processing once input vector at the same time [44]. Examples of
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ASIC can be found in many companies, such as Nvidia, Intel,
and Tesla [45], [46], [47].

Even with those optimizations, digital electronic presents im-
portant limitations for NN implementations. For example, speed
is always limited by the clock cycles and transistors’ energy
consumption, as it has been for CPUs, capping the clock to a few
GHz (1–3 GHz). Moreover, the latency in the computation can be
dominant, since float MAC operations still require several cycles
to be performed. For applications where timing and energy
consumption are a concern, such as autonomous driving for
small drones, those limitations pose complex challenges to the
NN engineers.

Optics and photonics have been raised as one of the possibili-
ties to overcome these limitations [19], [48]. The use of photons
instead of electrons allows a virtually infinite bandwidth (>
100 GHz), speed-of-light propagation latency (∼ ns), and almost
zero power consumption, thanks to the lack of RC wire charge
connected to the propagation of electrons [22], [49]. Silicon
Photonics, in particular, is in the right spot to provide the next
generation of hardware accelerators for PNNs [23], thanks to the
important progress that happened in the last decade [50], [51],
[52], such as component density, laser integration, high-speed
(> 100 GHz) modulators and photodetectors, and low propaga-
tion losses. Other benefits that photonics has over digital MAC
accelerators include 1) the ability to perform summation in the
analog domain at full bit precision before ADC quantization
happens; 2) temporal pooling of data such as for convolution
operations by increasing the integration time of the receiver,
which also lower ADC requirements; 3) high-level of fan-out
via copying data passively; 4) energy-free Fourier transforma-
tion via the Fourier Theorem performing a passive FFT by
an optical lens [53] (i.e. also on-chip [54]); 5) the possibility
to process image or lidar input directly as light signals. As
we will see in the next section, several Photonic Integrated
Circuits (PICs) have been presented in this field, showing
the potential of such Photonic Tensor Cores (PTCs) in real
applications.

It has to make clear that photonics brings its challenges too,
from the energy cost of moving back and forth from the digital
domain (from where data come from) to the analog (the optical)
one [55], to the noise management for high bandwidth that limits
the bit resolution at the output. Other aspects are related to the
architecture implementations, as photons require an electrical
system to be controlled and keep operational, making each PIC
strongly related to an FPGA/ASIC that must assure its working
operations [56], [57].

III. PHOTONICS INTEGRATED CIRCUIT FOR NN:
ARCHITECTURES

Several PIC architectures have been proposed over the last
years to perform the Tensor Core tasks for PNNs [58], [59], [60].
Considering the main PTC task, the MAC operation benefits
from the coherent electromagnetic nature of the light, implying
the possibility to perform multiplication by lossless interference,
while the accumulation is performed directly on the photodec-
tor once light signals are collected. Moreover, by allowing

manipulation of light employing nanoscale waveguides, PIC
can integrate a large number of MAC operations on small scale,
employing a high number of inputs, high-speed modulators, and
photodetectors.

To perform the MAC function, several different approaches
have been proposed during the latest years, varying the basic
components elements, as well as the input, the weights, and
the output configurations. Those different architectures show
different performances, in terms of actual speed (measured as
MAC operations per second), footprint, energy consumption,
etc [23].

Here, we will review these approaches integrated into PICs,
as we focus on the main differences among the architectures.
Several figure-of-merits are commonly used to compare differ-
ent PTC, such as MAC operation per second, or footprint [58],
[59]. They come from a system-level perspective, and are easily
comparable among different architectures, even across different
domains. However, for the photonics field, they mainly de-
pend on both the technologies used for modulators (for input
vectors) or the photodiodes (for output vectors) used in each
implementation, which follow the possibilities given by the
foundries and rarely are due to architecture choices [61], [62],
[63]. Following that, it is more interesting to focus on common
limitations, such as the number of controllers that each circuit
requires, the footprint scaling, and the possibility to implement
nonvolatile memory elements, such as Photonic RAM (P-RAM)
components using Phase Change Materials (PCMs) [64], [65], to
further reduce energy consumption. Those figure-of-merits bet-
ter describe the differences between different circuits, showing
that trade-offs must be addressed to evolve into this field.

To start the review, we first divided the PIC into two main
categories, based on the mathematical approaches for the MAC
operation: the first one relies on the singularization, where
the main matrix is divided by the meaning of singular value
decomposition into 3 matrices; the second approach avoids this
decomposition, by implementing schemes that directly reflect
the main matrix.

A. Y = (V tΣU)X

One type of PICs exploits the single value decomposition
(SVD) of matrices where the main weight matrix is divided
into 3 matrices, that can be directly implemented by using
cascaded Mach-Zehnder Interferometers (MZIs). This approach
has its root in a work by Reck et al. in 1994 [66], where they
describe a simple algorithm for the realization of any NxN
unitary matrix multiplication. By using the SVD, the external
matrices V and U are unitary matrices, so the implementation
can be straightforward by using interconnected MZIs, while the
diagonal matrixΣ can be implemented by a series of attenuators,
usually implemented by MZIs too. A more complete description
and discussion were later provided by Miller et al. in 2013 [67].
Some examples of this architecture are shown in Fig. 2

The first experimental implementations were presented for
quantum optics, by Carolan et al. [74], where 15 MZI were
integrated into one single silicon photonic chip. The work was
followed by Riberio et al., demonstrating a 4x4-port universal
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Fig. 2. Examples of Photonic Integrated Circuit for Neural Networks, using Mach-Zehnder Interferometers mesh. (a) Comparison between the original Reck
mesh and the improvement proposed by Clements et al. [68]. (b) Photo of the Optical Interference Unit proposed by Shen et al. [69]. (c) Similar architecture,
showing the actual SVD with central attenuators line, proposed by Demirkiran et al. [70]. (d) Reck mesh implementing complex values for Neural Networks, done
by Zhang et al. [71]. (e) Butterfly solution, exploiting pruning, presented by Feng et al. [72]. (f) Full integrated Neural Network, using MZIs mesh and integrated
activation functions, from Bandyopadhyay et al. [73].

linear circuit [75], and by Annoni et al., presenting a mode
demultiplexer with the same MZIs architecture [76].

A theoretical discussion was presented by Clements et al. in
2016 on the MZI layout [68], shown in Fig. 2(a). The paper
shows a way to implement the same MZI mesh network more
compactly, allowing to reduce of the insertion loss due to the
shorter path length, without any mathematical limitation in the
starting unitary U matrix. To be noticed, this novel approach
reduces the length of the device but does not reduce the number
of components required.

The first implementation of the MZM mesh as a PTC device
for NN comes from Shen et al. in 2017 [69] (Fig. 2(b)). The MZI
mesh was used as part of an Optical Neural Network (ONN) in a
Deep Learning scheme performing vowel recognition. The chip
integrated 56 MZIs, showing good accuracy data and opening
the path for more ONN as a way to improve energy efficiency and
computational speed. From part of this work, a spin-off company
was created and recently started to show its architecture [70]
(Fig. 2(c)). In this case the silicon photonic chip has the same
MZI mesh approach, but it integrates directly all the 3 matrices of
the SVD, together with integrated photodetectors. While the first
work was based on heaters to control the MZIs, this later one
leveraged MEMS, providing a ×100 higher speed. This latter
work shows 8-bit precision and the clear leverage that photonics
can provide to AI accelerators in terms of energy efficiency per
operation (up to 7,500 Inference-per-Second IPS/W ). A step
forward was been done by Zhang et al. as they implemented
a PNN with complex values, using the original Reck MZI
scheme [71] (Fig. 2(d)).

While all these implementations allow having a full matrix,
and so to implement a fully connected neural layer, a recent
trend following the electronic approach is exploring pruning as
a technique to reduce the number of connections between layers.
One example in the photonic field has been presented by Feng
et al. [72], shown in Fig. 2(e). In this case, the matrices V and

U are substituted with projection and transform units, that have
a large reduction of the number of MZI [33]. The authors show
that, despite the reduction in the number of MZI, the PNN was
capable to perform digit recognition over MNIST dataset with
an accuracy of over 94%.

The last implementation that we present in this overview
comes from Bandyopadhyay et al. where they present a full
Neural Network chip [73] (Fig. 2(f)). The chip presents input
modulators to encode the input, 3 matrix multiplication unit
using the MZI mesh, interleaved by 2 nonlinear layers. The
nonlinear function will be discussed in a later section. Even
in this complex chip, it is possible to perform in-situ training,
showing how a silicon photonic chip can cover all the tasks
required by a NN. The authors use heaters to control the MZIs but
provide alternatives for future higher-speed implementations.

The use of MZI mesh comes with several advantages, like
the ideality of the MZI response (even without perfect compo-
nents [77]), the coherent scheme that requires just one single
laser, and the speed of reconfigurability allowed by the pull-
down p-n junction configuration of the MZI (reaching GHz
bandwidth), or MEMS (reaching sub-µs speed [78]). Thanks
to the reliability of the configuration and the single laser source,
this approach already showed promising results and startups hit
the market with solutions based on it. Moreover, even the bit
resolution achieved takes advantage of this advanced state-of-
the-art, reaching a high bit resolution, up to 10 b.

On the other side, this configuration comes with some lim-
its, mainly due to the higher complexity behind SVD and the
footprint required to fulfill this operation. Dividing the matrix
requires a pre-computational step, as well as more components
integrated into the PIC, increasing the complexity of the whole
architecture.

In terms of component scaling and technologies, the MZM
can present limitations and opportunities [60]. In the Reck
scheme, the number of MZI needed to implement one of the
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Fig. 3. Scaling comparison between the original Reck scheme [66], and the
one proposed by Feng et al. [72], that uses pruning to reduce the connections [33].

two unitary matrices is N(N − 1), where N is the number of
inputs, resulting in a scaling law of O(N2). In particular, for
each MZI 2 phase controls are needed (one for one input, and
one for one of the arms). By pruning, the MZI required can
be reduced to Nlog2(N), under certain conditions, resulting in
an important reduction of the controllers needed, as shown in
Fig. 3. However, to use the scheme proposed by Feng et al., the
number of inputs should be a power of 2, or the optical power
unbalanced must be addressed with more MZIs.

Some of the downsides of the approach using MZI mesh
can be identified in the single MZI element. For example, MZI
requires precise control of the phase of each path, making the
phase actuator a key element in the performances, as well as
being sensitive to the fabrication variability on each waveguide.
Several groups analyzed the actual errors and noise due to the
phase mismatch to better calibrate the impact on the NN. On the
other side, some groups implemented on-chip training, forcing
the same NN to calibrate itself on these errors [79], [80], [81].

Other limitations that come from the use of the MZI are
the lack of parallelism and P-RAM elements. First, by using
MZI, the calibration is wavelength dependent, making more
challenging the implementation of a WDM-based scheme on
the same MZI mesh. This lack of parallelism could limit the
possibility of the architecture, relying just on the speed of the
input modulators and output photodetectors. The second element
is the complex integration of P-RAM components in the mesh.
Those components are one of the keys for an energy-efficient
PNN chip, as the PCM material they are based on, can store
the weight values in a non-volatile fashion, reducing further the
operation-over-energy figure of merit [82]. However, most of the
PCM materials have an impact on both amplitude and phase,
making the control of one MZI more challenging. Moreover,
due to the bi-level nature of the PCM, multiple strips might be
required to match the offset due to fabrication phase mismatch.

B. Y = MX

Another approach to performing the matrix multiplication
is the direct mapping of the M matrix into the PIC, by ex-
ploiting one of the degrees of freedom that photonics has,

such as wavelength, modes, or polarization. The most common
is Wavelength-division multiplexing (WDM), where different
scaled wavelength sources are combined to obtain an equivalent
dot product at the photodetectors.

Initial architectures come from the optical computing field,
where several researchers were emulating the digital logic
functions of electronics [90], [91]. The first implementation
in a full WDM scheme was presented by Yang et al. in
2012 [83] (Fig. 4(a)). In this work, the matrix values are mapped
one-by-one on the microring resonators grid, exploiting the
MUX/DEMUX scheme for WDM lasers, where the input vector
is encoded into the amplitude of the same lasers. The photode-
tectors at each output provide the summation of the different
wavelength signals. As most of the schemes in this section,
mapping the matrix M , the complexity of the circuit scales with
the size of the matrix itself, so O(N2) for a square matrix of
sizeN , but it can support rectangular matrices, as well as branch
pruning to reduce the scaling factor.

A step forward was made by Tait et al. in 2014, describing
the “broadcast and weight” approach for the optical neural
network [85], later implemented in 2017 [92] (Fig. 4(c)), that
achieves an efficiency of 180fJ per Synaptic operation. The
architecture shows the broadcast of all the input to all the
microring resonator weight banks, whose outputs are fed into
the input by an amplitude modulator. The weighting is per-
formed by tuning the microring resonators to the input wave-
lengths, archiving both positive and negative values thanks to
the balanced photodetectors. This approach permits obtaining
an optical neural network that has been demonstrated useful for
many applications [93]. Other implementations have exploited
the tunability of add-drop microring resonators as weights to
perform the multiplication as attenuation of the incoming light
beam [86] (Fig. 4(d)), reaching up to 9 b resolution [94]. The use
of microrings allows for an important footprint reduction (using
SiPh, microring could be downsized to a 10 µm radius) while
having high-speed reconfiguration thanks to the internal p-i-n
junction, that nowadays could reach a bandwidth of more than
25 GHz. Moreover, thanks to the add-drop configuration, the
architecture could have both positive and negative sign weights
in the matrix, without the need for post-processing to correct
the data. The main disadvantage is coming from the control
perspective, as microring tends to be a sensitive element towards
noise sources, such as temperature variation, stress, and so on.
By so, besides the modulation controlling the p-i-n junction,
another signal must be applied to the heater to assure a perfect
alignment between the microring’s resonance and the laser’s
wavelength, doubling the number of controls, and limiting the
speed for a fine reconfiguration to few kHz. Moreover, due
to this high integration and need for resonance stabilization,
integration of P-RAM elements in the ring itself is challenging
due to the double n− k impact of the material and the finite
number of states, making this architecture not directly suitable
for low-energy applications, such as edge computing.

Another approach exploits tunable couplers between rows and
columns of an optical waveguide grid, presented by Feldmann
et al. in 2021 [84] (Fig. 4(b)). Each wavelength coming from a
Comb laser source is modulated and fed into a certain row. The
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Fig. 4. Architecture and PICs using WDM to implement the Matrix-Vector Multiplication. (a) First architecture proposed by Yang et al. [83], where the one-to-one
matrix mapping is clearly visible. (b) Architecture exploiting cross-bar attenuated couplers, presented by Feldmann et al. [84]. (c) First implementation of “broadcast
and weight” approach from Tait et al. [85]. (d) Similar “broadcast and weight” approach, that can perform training and testing of a Hopfield network [86]. (e)
Implementation of WDM matrix multiplication using add-drop microring resonators, implemented by Ma et al. [87]. (f) Recent implementation of the cross-bar
approach, improved by Bragg gratings to reduce the cross-talk [88]. (g) Add-drop PCM microring approach to demonstrate an integrated engine for unsupervised
correlation detection [89].

tunable couplers bend a certain amount of the incoming light
toward the selected column. The photodiode at the end of the col-
umn collects the composition of the different light beams, whose
amplitude is determined by the couplers and the P-RAM element
placed after the coupler. This scheme relies on the simplicity of
the implementation that reduces the number of controllers to the
minimum (equal to the size of the matrix), and implementing
them with PCM allows having almost 0 energy cost, but limits
the speed of reconfiguration. To improve this figure-of-merit,
MEMS actuators can be implemented, at marginal increasing of
energy consumption. A further improvement was presented in
2022 [88], where Bragg gratings are used to reduce the crosstalk
between channels, and so improving the resolution (Fig. 4(f)).

The last architecture was presented by Miscuglio et al. [21],
and later implemented by Ma et al. [87] (Fig. 4(e)). This architec-
ture takes advantage of the add-drop microring as the element to
fan-out the WDM inputs and recombines them after attenuation
is applied in the waveguide link between them. This approach has
the advantage to be able to use PCM (∼s reconfiguration speed),
slow-speed heater-based components (∼kHz), and high-speed
p-i-n junction (∼GHz) to achieve the required attenuation, by
so fulfilling the requirement of both edge computing applications
and cloud one. The number of controls could be high in principle
(up to 3 controllers for each element of the matrix), however, by
relying on the fabrication quality and accepting a reduction of
the resolution, the control could be reduced to just an attenuator
per element of the matrix. Sarwat et al. used the same approach
to demonstrate an integrated engine for unsupervised correlation
detection [89], achieving a total energy consumption of 2.50 mJ
per 1 Million Inputs (Fig. 4(g)).

Similar architectures can be implemented by exploiting mode
or polarization multiplexing or mixing different approaches for

more compact and yet performance implementations. The map-
ping of the weight matrix in a one-to-one fashion allows to have
a higher level of flexibility, and requires less pre-computation,
as it does not require any matrix decomposition. However, the
scaling factor will follow the size of the matrix itself, posing
an important limitation due to the high number of components
required, and the control electronics circuits they require, such
as DACs, current source, and so on.

IV. ARCHITECTURES COMPARISON

As seen, many different architectures could be used to imple-
ment MVM for neural networks, as summarized in Table I. In the
table, actual Figure-of-Merit MAC/s nor MAC/J is not reported,
as for all the architectures, it will mainly rely on the inputs mod-
ulator and output photodiodes, whose characteristics are coming
from the fabrication process rather than the component used to
perform the MAC operation. However, in case where weights
must be updated at the same speed of the inputs, the architecture
choice will reduce to the ones that allow an high-speed weight
updates (for example using p-n junctions), to respect to slow or
large footprint ones.

One parameter that influences the choice of architecture is the
chip footprint, based on the size of the component used and the
scaling compared to the matrix. The basic Y = MX architec-
ture takes advantage of the more direct equation, as scaling is
proportional to the matrix size, while the MZM approach suffers
from the decomposition matrices. However, for both approaches,
the scaling followsO(N2), except for the butterfly configuration
used by Feng et al. This last one exploits pruning as a way to
reduce the number of connections, and so the scaling of the
circuit. For the number of controls, the best solutions appear to
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TABLE I
SCALING COMPARISON OF VARIOUS APPROACHES TO PERFORMING MVM AND MAC OPERATIONS USING PHOTONIC CHIP-BASED COMPONENTS. N = SIZE OF

INPUT VECTOR; M = SIZE OUTPUT VECTOR; P-RAM = PHOTONIC RANDOM ACCESS MEMORY, ALLOWING FOR ZERO-STATIC POWER CONSUMPTION, ONCE THE

WEIGHTS ARE SET

be the one based on couplers and coupled microrings, even if
this last one might be affected by the detuning of the microrings
that would limit the Extinction Ratio, and so the bit resolution
achievable by the NN. The architecture based on single add-drop
microrings could either have the same M ×N controllers if
just one tuning method is used (for example employing just
heaters as tuning weight), but each microring needs to integrate
both a trimming method (i.e. heaters) and a high-speed tuning
(i.e. the p-i-n junction) to support high-speed reconfiguration,
doubling the number of controls. The lack of need for tuning
for the coupler architecture comes at the cost of a more complex
input that requires a comb laser, and a WDM mux and demux
external to the chip for the output, increasing the complexity of
the overall system, but allowing for GHz operations exploiting
existing modulators and photodetectors.

Bit resolution shows a strong point for the architectures based
on MZM, for mainly two reasons: the more straightforward
capability of controlling the phase difference in the MZM,
resulting in a larger ER, and so larger bit resolution; the advanced
stage of the products based on this technology that already
reached the market, so having passed the optimization process.
Different types of modulations, for example based on Electro-
Adsorption Modulators [95] or MEMS, can provide a higher
ER in a compact way, allowing a high bit resolution also for
other architecture with different speeds (sub-MHz to GHz) and
limited energy consumption [78]. Moreover, techniques such as
coherent detection have been proposed [94], capable to reach
9-bit resolution with WDM MRR architecture.

The last piece of confrontation is regarding the possibility to
implement P-RAM on the circuits [64], [65], [82], [96], [97],
by using PCMs for example [98]. In a larger view, as more and
more MVM circuits will be used to implement NNs, having the
possibility to integrate photonic memory elements would have
a crucial benefit in terms of energy efficiency, as it reduces the
power needed to tune the weight as well as the energy required
to access external memory elements in DRAM [29]. That would
allow targeting edge computing applications, rather than just
cloud applications in data centers, where power consumption
is a priority to extend the lifespan of those devices. Up to our
knowledge, just two architectures allow the integration of the
PCMs, placing those materials either in the couplers or between
coupled rings. The architecture based on MZM could benefit
in case a phase-only PCM would be presented, as most of the
materials are now affecting adsorption too, such as GSST [99],
GSSe [98], or GST [100]. Integration of PCMs into microring

resonator might be challenging for the same reason, adding also
a problem of cross-heating interference, as the tuning element
could affect the phase of the material, resulting in an unwanted
switching.

V. NONLINEARITIES

The last piece to turn a PIC circuit performing MVM into a NN
is by providing a nonlinear activation function. In many of the
NNs we have seen before, this activation function was performed
by a CPU or GPU, once the optical signal is transformed into
a digital one. This conversion allows several advantages, like
performing mathematical complex functions (including cali-
bration), as well as having the flexibility to change the actual
activation function based on the goals of the NN. However, it
presents several drawbacks: one is the slow speed associated
with this procedure, linked with the long latency, that nullify the
major advantages of implementing a photonic neural networks.
The power involved is also a major drawback: it has been demon-
strated that ADCs are the first contributes in the energy cost of the
system, especially for high speed ones [55], [105]. Moreover, to
perform the following neural layer, all the digitized signals must
converted back into optical analog domain, requiring additional
modulation energy.

To overcome these limitations, and so keep the high band-
width and low latency provided by the optical domain, many
researchers have explored different solutions. One of the major
paths is the exploiting of material nonlinearities on-chip, which
can be exploited by high-power optical signals under certain
conditions. While this path comes from a long tradition of
exploring nonlinearities in silicon or silicon nitride waveguide
(for generating single photons [106], four-wave mixing [107],
or comb generation [108]), the cost of dealing with high power
signals limit the possibility of implementation into large and
deep optical neural network at the moment.

By so, other architectures have been explored to implement
such solutions, that use, completely or partially, an electrical-
optical domain change, while keeping the signal in the analog
domain. Here, we list the major ones, based on the approach
used.

A. Full O/E/O Conversion

The first implementation we present is the complete conver-
sion of the optical signal into an electrical one, that would latter
pilots a novel optical signal. One implementation presented by
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Fig. 5. Circuits and architectures implementing the activation function on-chip. (a) Ashtian et al. show a full O/E/O domain change to pilot a MRR as nonlinear
response [101]. (b) Tait et al. use a similar approach to pilot an add-drop microrings bank, using balanced photodetectors [102]. (c) Experimental implementation of
arbitrary activation function by tapping part of the optical output power [103]. (d) Shi et al. present the use of a short SiGe photodetetors to implement a nonlinear
transfer function between optical power input and output [104]. (e) Implementation used by Bandyopadhyay et al., where just a tap of the optical output is used to
modulate itself in nonlinear way by a MRR [73].

Ashtian et al. [101] (Fig. 5(a)), and similarly by Tait et al. [102]
(Fig. 5(b)), implements the activation function by modulating
the wavelength resonance of a microring resonator, that is fed
from an external CW laser source that can be directly sent
into the following neural layer. The 2 implementations have
some differences: Ashtian et al. implement the summation by
combining the current of the photodetectors, directly connected
to the modulator and inputs. Moreover, a stage of amplification
is placed to match the voltage levels between the sum of the
photocurrents and the p-n junction of the microring resonator.
Using this scheme, there is no need for WDM multiplexing,
and low latency is assure (down to 570 ps per classification).
On the other hand, Tait et al. use a WDM scheme in loop-back
with differential photodetectors to tune directly the microring
resonators. This scheme presents some limitations and oppor-
tunities, in particular, can be sensitive to fabrication differences
between photodetectors pairs, unbalancing the actual response
of the microring and adding parasitic capacitance. This fully
O/E/O approach, where a complete domain change, from optical
to electrical and back to optical is used, takes advantage of
the full bandwidth of the components as the signals stay in
the analog domain. However, the O/E/O approach adds noise
sources, in particular due to the photodetectors and amplifi-
cation stage [109]. To reduce the actual noise, one proposed

solution is using modulators that require a lower VπL, to reduce
or completely avoid the amplification stage. Heterogeneously
integrated devices, such as ITO-based modulators [110], [111],
or ITO-graphene device [112], can reduce the VπL by orders
of magnitude, reducing drastically the need for amplification
stages, and so the noise introduced by them. With the imple-
mentation of these novel materials, this approach can be scaled
several times, as the optical propagation losses are not limitation.

B. Nonlinear Adsorption Devices

Another architecture to implement a nonlinearity is by design
a custom nonlinear device, so providing a nonlinear function
between the optical input and output. A solution based on
SiGe photodetector has been proposed by Shi et al. [104],
leveraging the short structure of the SiGe to limit the maximum
optical power output from the component, by so implementing
a nonlinear transfer function (Fig. 5(d)). This solution has the
advantages to permit the monitoring of the power while pre-
serving the latency of the optical circuit, maintaining the large
optical bandwidth. Similar approaches have been explored by
other groups, to find the best material to perform this function
both on the detection and modulation side, aiming for a better
energy-efficient way [110], [113]. This type of approach has
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the potential to leverage on the different types of material that
can be used, limited by the compatibility with the SiPh CMOS
process. The main drawback can be identified in the scaling
limitations: since the input power must meet a certain criteria to
activate the nonlinear function (mW-level) and the propagation
is still affected by dB/cm losses, a large NN with several con-
secutive layers, or a high loss PIC would not be suitable for this
approach, unless other adjustments (like on-chip amplification
stage) would be adopted.

C. Light Splitting and Detection

Another approach has been used by Moayedi et al. [103], and
Bandyopadhyay et al. [73], shown respectively in Fig. 5(c)–(e).
In this case, the linear part of the NN is based on the MZI mesh,
and the nonlinear function is activated by just part of the light
power of the output waveguide (splitting), which is detected and
the signal used to modulate the amplitude of the remaining part
of the optical signal. This allows feeding the whole network with
the same optical input signals, reducing the need to have more
lasers or input couplers. However, the network will add layers of
modulation on top of each other, making the same scheme more
sensitive to noise and not directly suitable for WDM expansions.
Following the same approach, Xu et al. [114] propose a similar
scheme. In this case the NL part is implemented using a MZI,
where one of the arm is controlled by a optical memory-based
feedback circuit, using a PCM material as nonvolatile element.
The light-splitting-and-detection has some clear advantages as
the modulation is directly on the same optical signal, with a
clear advantage in terms of speed and latency. However, the tap
requires an electrical circuit capable of reading low currents from
the photodetectors and translate into proper signals, limiting
the actual bandwidth to few GHz, and posing limitation in the
energy consumption as well, determine by the Transimpedance
amplifiers (TIA). Moreover, the continuous splitting layer after
layer increases the insertion loss of the overall photonic circuit,
putting more pressure on the performances of the latter activation
functions in terms of minimum optical power detection.

In all cases, the activation function is encoded at the hardware
level, resulting in a fixed size of the number of inputs, layers, and
outputs, and so fixing the scalability and limiting parallelization.
Schemes that can be used to subdivide the matrix into smaller
ones to fit large MVM on smaller hardware cannot be used
with hardware activation functions, as the nonlinear function
is applied a-priori, and so it does not allow for a temporal
multiplexing summation. By so, the research may investigate
schemes that allow an actual flexible implementation of the
nonlinear function, by exploiting more programmable photonic
circuits or optical buffer for example, at a cost of increasing the
latency, that has to count for all the signals to be accumulated
before performing the activation function. Energy consumption
is also a concern for the activation function. The All-Optical
scheme must provide enough optical power for each layer,
creating the need for optical on-chip amplifiers, while the other
schemes must take into account the consumption of high-speed
TIAs (tens of mW per each TIA [115]), but with the possibility to
tune the amplification stage to reach different types of activation

functions. Mixing the approaches (all-optical for first layers
when the optical power is not a concern, using the others for
the following layers) might result in a good trade-off between
energy efficiency and complexity.

VI. DISCUSSION

In all this review, it has been clear that photonics has a great
opportunity to be the hardware accelerator for NN applications,
as the increasing number of machine learning applications is
driving the actual hardware to its limit. Integrated photonics,
and Silicon Photonics (SiPh) as the main actor, have several
advantages and directions that could drive the implementation
of fast and reliable Photonic Neural Networks (PNNs). The
research and progress that have been done in the last decades
for mainly telecom purposes have now a new shine in another
field. Among them, we can see the main driving forces:
� Components: SiPh can now show several components that

are over the possibilities of any electrical counterpart in
terms of speed and energy efficiency. Modulators up to 100
GHz [51], and photodetectors that can reach over 200 GHz
have been presented [116], while CMOS foundries are
more and more implementing SiPh lines, with state-of-
the-art components in their PDKs. Note that all these
components come from another field (telecom mainly), but
their impact can be further beyond the initial field, resulting
in a reduced initial cost.

� Emerging Materials and Devices: The research over new
materials and new devices has brought several innovations
in recent years [97], [117]. Among many, ITO has shown
the most potential, especially in terms of energy efficiency
and footprint, being 1000x smaller than Si EOM, and
10,000x smaller than Lithium Niobate [110], [111], [112],
[118], [119], [120] with similar performances. Beyond
ITO, two-dimensional material-based solutions may yet
play a role in future semiconductor chips and tensor core
processors; for instance, the accumulation operation can
be performed simply and incoherently using a photode-
tector as discussed above. The detector’s figure of merit,
the gain-bandwidth-product, falls into either sensitive-but-
slow or into fast-but-non-sensitive quadrants [121]. Recent
developments on slot-based 2D material detectors show
to overcome the transient-time and RC-delay time limita-
tions offering sensitive and fast detectors while offering a
minuscule footprint. Furthermore, PN-junction-based 2D
detectors have demonstrated promising performance while
not requiring a bias, thus saving power and wire-routing
complexity [122], [123].

� I/O: One of the limitations that slowed down the expansion
of SiPh was the actual coupling in/out of the chip, an
essential piece considering also the lack of integrated light
sources. SiPh has now advanced packaging tools to provide
small form factor chips, with laser sources on-chip [124].
Moreover, the expansion of the materials used has brought
new devices, such as P-RAM [82], [98], to be integrated,
reducing the dependency on external digital electronic
memories, one of the bottlenecks of electronics. The next
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steps will focus on inter-chip communications, as well as
intra-chip ones.

� Domain Crossings: Photonic-based tensor core processors
are analog in nature and hence may require digital to
analog and vise versa domain crossings. Above 5 GHz baud
rates and 8-bit resolution DACs and ADCs become quite
expensive to operate [55]. If the PTC application allows
processing data in the optical domain (from an optical
input, such as for intra data-center, for example), then a
photonic PIC-based DAC would be beneficial [125]. This
could include also energy harvesting, such as recapturing
optical nonlinearities [126], nanoscale RF antennas or solar
cells [127].

� Architectures: As seen, several architectures have been pro-
posed and demonstrated. While a clear winner is still to be
found, all of them can push towards several improvements
to further expand their performances [23]. On one side,
parallelization exploiting other degrees of freedom can fur-
ther push the performances. On the other side, techniques
such as pruning or others can be implemented on-chip as
well, making room for improvements in the overall system.
There may also be options to learn from emerging architec-
tures such as hybrid (electronic-photonic) network-on-chip
approaches that allocate interconnect technology between
local (electronic) and distant (optical) requirements, which
may also allow for some degree of network reconfiguration
for demand optimization [128], [129].

However, photonics has still to improve some aspects to
become a viable solution for deep learning and machine intel-
ligence. Adding a nonlinear activation function in the optical
domain is challenging, and more efficient all-optical nonlineari-
ties need to be explored, yet, electro-optical nonlinearity devices
are promising, as shown, despite some architectural overhead,
such footprint, accumulation detectors, and ADCs. Analog-to-
digital and digital-to-analog conversions must be taken into
account too: domain crossings (i.e. DAC & ADCs) constitute
the majority power consumption for heterogeneous photonic-
electronic machine intelligence accelerators [55]. However,
emerging monolithic integration solutions (e.g. Global Foundry
45 nm, GF45SPLCO [130]) hold great promise to minimized
communication overhead. Furthermore, emerging packaging
solutions including stacking multiple BEOLs [131], [132], in-
tegrating plurality of chiplets onto the same interposer, with
world-record pin pitches of 10 µm [133], will enable extremely
tight integrated heterogeneous PNN-CMOS ASIC solution with
unprecedented performance. The upcoming SRC JUMP2.0 Cen-
ter for Heterogeneous Integration of Micro Electronic Systems
(CHIMES) will explore the latter in detail. By last, laser inte-
gration must become a standard in the SiPh process, allowing
high energy-efficient (>5%) lasers to be implemented on-chip,
exploring integration [124], or Photonic Wire Bonding [134].

VII. CONCLUSION

In this paper, we review the main aspects that enable inte-
grated photonic technologies to become a key resource for the
current and next generation of hardware accelerators for Neural

Networks. We review the main advantages that photonics has
compared to electronics, in terms of power efficiency, latency,
and bandwidth. The main architectures that have been used so far
to implement linear and nonlinear operations on PIC have been
shown, highlighting the pros and cons of each one of them, and
outlining a comparison among them. We finally discuss among
the main drive forces that will boost the photonic approach in
the next years.

Considering all those aspects, photonics will still play an
important role in the research for the next generation of hardware
accelerators. As more and more computational power is required
and considering energy efficiency a key factor, photonics will be
in the spotlight in the near and long-term future.
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