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Abstract—In this work, we demonstrate the offline FPGA real-
ization of both recurrent and feedforward neural network (NN)-
based equalizers for nonlinearity compensation in coherent opti-
cal transmission systems. First, we present a realization pipeline
showing the conversion of the models from Python libraries to the
FPGA chip synthesis and implementation. Then, we review the
main alternatives for the hardware implementation of nonlinear
activation functions. The main results are divided into three parts:
a performance comparison, an analysis of how activation functions
are implemented, and a report on the complexity of the hardware.
The performance in Q-factor is presented for the cases of bidi-
rectional long-short-term memory coupled with convolutional NN
(biLSTM + CNN) equalizer, CNN equalizer, and standard 1-StpS
digital back-propagation (DBP) for the simulation and experiment
propagation of a single channel dual-polarization (SC-DP) 16QAM
at 34 GBd along 17 x 70 km of LEAF. The biLSTM+CNN equal-
izer provides a similar result to DBP and a 1.7 dB Q-factor gain
compared with the chromatic dispersion compensation baseline in
the experimental dataset. After that, we assess the Q-factor and the
impact of hardware utilization when approximating the activation
functions of NN using Taylor series, piecewise linear, and look-up
table (LUT) approximations. We also show how to mitigate the
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approximation errors with extra training and provide some insights
into possible gradient problems in the LUT approximation. Finally,
to evaluate the complexity of hardware implementation to achieve
200G and 400G throughput, fixed-point NN-based equalizers with
approximated activation functions are developed and implemented
in an FPGA.

Index Terms—Artificial intelligence, coherent detection,
computational complexity, FPGA, neural network hardware,
nonlinear equalizer, recurrent neural networks.

1. INTRODUCTION

VER the previous couple of decades, the race to find var-
O ious compensation methods to mitigate the nonlinearities
of the fiber and components has produced several noticeable
high-performance solutions [1], [2], [3], [4], [5], [6], [7]. How-
ever, due to the high complexity of the proposed solutions, only
a few published studies [8], [9], [10], [11] have been conducted
to implement these solutions in hardware, e.g., in a field pro-
grammable gate array (FPGA) or application-specific integrated
circuit (ASIC) Recently, machine learning (ML)-based tech-
niques have started to penetrate more and more into different
digital signal processing (DSP) applications. Therefore, it is nat-
ural now to consider how nonlinear equalizers may be designed,
addressing NN-based setups while simultaneously taking into
account the issues of flexibility and computational complexity.

A significant number of novel artificial neural networks (NN)-
based DSP methods have been developed as a result of research
on NN for optical channel equalization: these methods can often
provide better performance than that rendered by “conventional”
DSP approaches while maintaining competitive computational
complexity in terms of the real multipliers number [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21]. However, such
investigations typically deal with the software level. In turn, we
stress that a few important extra steps are needed to perform a
true evaluation of an NN-DSP device at the hardware level and
that this creates some new problems and challenges.

In coherent digital optical transceivers, an FPGA is often used
as a prototype to assess the performance of an ASIC [22]. Asare-
sult, it is desirable that the NN-based equalizers are implemented
in the FPGA to assess the practicability of algorithms used in
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real-time systems. At this early stage, the FPGA implementation
of the NN-based equalizers can also be based on offline pro-
cessing [23]. In this article, we outline the procedures required
to move both recurrent and feedforward NN-based equalizers
(to be deployed in coherent long-haul optical systems) from the
software level (Python) to the FPGA realization. Note that our
approach can be applied to all NN architectures for channel
equalization, so the aforementioned NN architectures are taken
just to exemplify the case. However, it should be noted that our
research is also important for the other fields in ML applications,
as FPGA-based accelerators have been increasingly attracting
interest due to their high performance, energy efficiency, fast
development cycle, and reconfiguration capability [24]. Further-
more, the driving force behind the deployment of FPGAs is their
cloud services applications [25], [26].

In this article, we make a step forward in assessing the
viability of NN-based equalizers for industrial applications
by benchmarking: i) their performance versus the 1-step-per-
span (StpS) digital back-propagation (DBP) using 2.3 sam-
ples/symbol (Sa/symbol) in experiments, and ii) their compu-
tational complexity by comparing an FPGA implementation
against the full electronic chromatic dispersion compensation
(CDC) block in the time domain implementation (used, e.g.,
in standard DSP chain [27]) that needs much fewer resources
than the 1-StpS DBP. In addition, for the first time, to the best
of our knowledge, we present the FPGA implementation of
an NN-based equalizer that employs the bidirectional recurrent
layer with long-short-term memory(LSTM) cells (biLSTM). By
transmitting a 34 GBd single-channel, dual-polarization (SC-
DP) 16QAM signal over 17 x 70 km of large-effective area
fiber (LEAF) (both simulated and experimental cases), we report
~2 1.7 dB Q-factor improvement over a standard DSP chain while
requiring only ~2.5 times more FPGA resources than the im-
plementation of the CDC block to achieve a 400 G transmission.

This article is organized as follows. Section II reviews the
previous implementations of NN structures in FPGA, with a
special focus on their application for the optical channel equal-
ization task. Section III describes the steps taken to create the
NN-based equalizer, from software to hardware. In this section,
we introduce the 4 steps in our realization pipeline using the
Xilinx tools for high-level synthesis (Vitis HLS) and hardware
synthesis (Vivado). Section IV presents a complete study on the
realization of nonlinear activation functions in hardware using
the three most common approximators: the Taylor approximator,
the piecewise linear (PWL) approximator, and the look-up table
(LUT) approximator. In this section, the drawbacks of using
each of these approximation techniques for performance and
complexity are shown. Section V describes the experimental and
simulated setups used and the performance in terms of Q-factor
for both simulation and experimental datasets. This section also
talks about how well different approaches to approximating the
activation functions work and how much hardware they use.
Finally, we report the computational complexity (utilization),
latency, and throughput for all NN strategies studied in our
manuscript versus respective quantities of the CDC block when
using all available resources on the FPGA under investigation
(VCK190 [28]) and when using only LUT and flip-flops (FF)
to simulate a realization closer to the ASIC. The last section
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concludes our paper with a summary of our approach, the results
achieved, and some open questions in this field.

II. FPGA DESIGNS FOR ML-BASED EQUALIZATION IN
OPTICAL TRANSMISSION

The FPGA is a programmable and reprogrammable integrated
circuit that is suitable for resource-constrained embedded appli-
cations, as it provides more energy-efficient computation when
performing NN on the edge compared to the GPU [29], [30].
FPGA implementations have been investigated for different
types of NN, for both feedforward [29], [31], [32] and recurrent
NNs (RNN), including LSTM [30], [33], [34], [35]. As NNs can
be used in numerous areas, the FPGA design for NN has been
intensively researched in different applications: signal process-
ing [36], industrial control applications [37], drive systems [38],
and telecommunication equalization [26], [39], [40], [41], [42],
[43], [44], [45].

Among the very first works discussing the NN-based equaliz-
ersin FPGA, Yen etal. [26] proposed the functional link artificial
NN (FLANN) for nonlinear channel equalizers in both software
simulation and hardware implementation in FPGA, considering
the quadrature phase shift keying (QPSK) modulation. The
FLANN was claimed to have a simpler architecture and higher
computational speed in hardware compared to the multi-layer
perceptron (MLP). Performance comparison was carried out to
compare FLANN with the linear least-mean squares equalizer
(LMSE). FLANN provided a better symbol error rate than
LMSE. However, with parallel processing, FLANN required
more logic cells and more area of the chip. To reduce this, the
number of data bits in the decimal fraction should be reduced
with a trade-off in system performance. Subsequently, the non-
linear channel equalizer based on the NN radial basis function
(RBF) with a three-layer structure implemented on FPGA, was
investigated in [44]. The results indicated that the bit error rate
(BER) performance in the software simulation and that of the
Bayesian equalizer, which is a near-optimal method of a channel
equalizer, were similar. However, the hardware implementation
showed worse results due to the binary value representation on
the hardware. To approach the BER of the original RBF NN
structure, an increase in the number of bits was recommended.

In more recent works, the convolutional NN (CNN) and
binary CNN-based decision schemes for millimeter-wave (mm-
wave) radio-over-fiber (RoF) optical communications were pre-
sented [45]. Such NN structures outperformed the MLP!-based
equalizer in terms of complexity, but still achieved the BER
performance within the forward error correction (FEC) limit
when tested with the 60 GHz mm-wave RoF system. The FPGA-
based CNN and binary CNN hardware accelerators with inner
parallel optimization were implemented to verify the capabil-
ity of the FPGA compared to the GPU. Their results showed
that the FPGA-based hardware can significantly reduce latency,
cost, and power consumption while demonstrating comparable
performance.

The studies of the implementation of FPGA-based optical
equalizers based on NN have recently gained additional

!Note that in [45], the MLP is referred to as the fully-connected NN (FCNN).
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attention, but mainly for direct detection systems [39], [41],
[42]. In [39], the MLP-based equalizer contained two hidden
layers with 33 and 14 neurons, respectively, to equalize the
50 Gb/s passive optical networks (PONs) link. The authors
implemented an 8-bit fixed point deep NNs in an FPGA
and showed that deep NNs with embedded parallelization
successfully reduced the required hardware resources. The
authors have extended their work and reported, in detail,
in [40], the impact of fixed-point resolution on receiver
sensitivity and the utilization of hardware resources in the
FPGA implementation of DNN equalizers for PON systems.

The parallel output RNN-based equalizer was proposed
in [41]. This parallel RNN is superior to the parallel MLP demon-
strated by [39] in terms of BER, as was shown for the 100 Gbps/A
PON. However, the feedback loop structure in the RNN caused
hardware implementation challenges, as the output of the nth
time step has to propagate back in the loop and appear at the
input before the neuron begins to process the n + 1th input. As
a result, the authors of that reference only evaluated the parallel
MLP. In [42], the time-interleaved parallel pruned MLP-based
equalizer for 100 Gbps PAM-4 links was implemented on an
FPGA. The NN structure has three layers, and the hidden layer
contains 51 neurons. The reported weight pruning algorithm,
in this article, is a novel pruning algorithm based on weighting
probability to reduce computational complexity while maintain-
ing performance. They reported that a single pruned NN-based
equalizer achieved over 55% resource reduction compared to
the NN before pruning. Furthermore, up to 40% of resource
utilization was reduced for 4- and 8-channel equalization.

However, work on the FPGA implementation of NN-based
equalizers in the case of coherent detection optical systems is
still mostly missing. We mention only [43], where the authors
demonstrated the mitigation of optical fiber non-linearity ina 16-
QAM self-coherent real-time system at 40 Gb/s using a FPGA
implementing the sparse K-means++ algorithm instead of an
NN. In this case, the authors reported a 3 dB Q-factor improve-
ment with respect to linear equalization only after transmission
along 50 km of optical fiber using a launch power close to the
optimal value of 14 dBm. In contrast to the case considered in this
article, the tested scenario was a single-span short-reach system.

In our work, we describe and detail the next step in the imple-
mentation of NN equalizers: For the first time, the offline FPGA
implementation” of an NN equalizer employing the recurrent
layer (biLSTM), as well as a deep CNN structure, is presented
and evaluated in the experimental data for a high-speed coherent
optical transmission system.

III. NEURAL NETWORK EQUALIZERS DESIGNING PIPELINE:
FroM PYTHON TO FPGA

In this section, we look at the design tools and process
steps that were used to implement the NN in an FPGA. In

20ffline FPGA implementation refers to the process of designing and con-
figuring an FPGA before it is deployed in a target system. In this article, we
simulate “offline” the constraints affecting an FPGA when taking into account
the NN simulation and tested on the VCK190 board with some sample data that
were saved in the FPGA’s memory just to verify that the model (bitstream file)
was working according to its design.
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subsection III-A, corresponding to Step 01 in Fig. 3, the NN
architectures studied in this work are presented and the details
of the training phase are depicted. In subsection III-B, specific
attention is devoted to the C++ model (Step 02 in Fig. 3) and
the high-level synthesis (HLS) process (Step 03 in Fig. 3) used
to generate a description of the NN in VHDL (Very High-Speed
Integrated Circuit Hardware Description Language). We also
explain the motivation behind the use of the HLS method. In
addition, we discuss some important considerations for using
HLS, intending to support future research activities that involve
this method. Then, in subsection III-C, we look at the physical
implementation aspects of the design flow, performed there by
using the Vivado design suite as shown in Step 04 of Fig. 3,
which produces the final results related to the FPGA hardware.

A. Neural Network Architectures and Python Training Process

The two NN architectures for the equalizers investigated in
our work are depicted in Fig. 1(a) and (b) for the biLSTM-based
equalizer and the deep CNN-based equalizer, respectively. The
shape of both architectures is similar, but the nature of the math-
ematical operations in each case is different: biLSTM contains
recursive connections, as can be seen in Fig. 2 for the LSTM
cell structure, whereas deep CNN is a feedforward network. In
Fig. 2, the dashed line indicates that the recursive connections
due to the equations of a forward pass of an LSTM cell with a
time step ¢ are given as:

iy = o(Wixy + Uihy—1 + b;),
fi =Wz, +Ushi—1 + by),
o = o(Woxy + Uyhi—1 + b,),
¢t = ¢(Wexy + Uchi—1 + be)

= fiOci—1+1 O ¢,
he =04 @ ¢(cr), (D

where ¢ is usually the “tanh” activation function, o is usu-
ally the sigmoid activation function, z; € R™ is the n,;-
dimensional input vector at time ¢, nj, is the number of
hidden units, W € R™»*™ and U € R™*"" representing
the trainable weight matrices, and b € R™" is the bias vec-
tor. i; € (0,1)™, f; € (0,1)", 0, € (0,1)", ¢ € (—1,1)"",
¢t € R™ and hy € (—1,1)™ denote input gate, forget gate,
output gate, cell input, cell state, and hidden state vectors, respec-
tively. The ® symbol represents the element-wise (Hadamard)
multiplication.

The equation of 1D-convolutional layer can be formularized
as:

n; Nk

n=1 j=1

where ylf denotes the output, or a feature map, of a convolutional
layer built by the filter f in the i-th input element, 7, is the kernel
size, n; is the size of the input vector, 2°™ represents the raw input
data, kjf denotes the j-th trainable convolution kernel of the filter

f and b7 is the bias of the filter f.
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Fig. 1.  Structures of NN-based equalizers taking 81 symbols as input to recover 61 symbols in parallel at the output: (a) the recurrent equalizer using a bidirectional
LSTM layer containing 35 hidden units, and (b) the feedforward equalizer using a 1D-convolutional layer consisting of 70 filters (ny, = ny, = 35).
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The NN-based equalizer is applied after the standard DSP
chain.? In both the biLSTM and deep CNN equalizers, a total
of 81 symbols are used as input. The input vector x; consists of
four features from four real values (X7, Xq, Y7, and Yq) from x
and y polarizations: X7 + j X and Y7 + jYq, respectively. The
time domain depth is an additional dimension that characterizes
the system’s memory. Consequently, the input shape can be
represented as (Batch size, Memory, 4). The window memory
of 81 symbols as input allows us to simultaneously retrieve 61
symbols at the equalizer’s output. By recovering 61 symbols in
parallel at the equalizer output, we allow the FPGA realization
to have a higher throughput, which is one of the main desirable
design features we are looking for when building a DSP block
for coherent transmission systems. It is worth noting that the
NN output layer in this scenario recovers the X polarization,
as the CDC block is applied independently to each polariza-
tion. However, in future research and implementation, the NN’s
output layer can also be modified to recover both polarizations
simultaneously. In Fig. 1(a), the hidden layer consists of a
biLSTM layer with nj, = 35 hidden units. The number of hidden
units is actually the dimension of the hidden state or the output of
the hidden layer. The LSTM structure in this case is bidirectional.
Therefore, one LSTM layer takes the input in a forward “time”
direction and another LSTM layer takes the input in a reverse
“time” direction, with small arrows in Fig. 1(a) between the
LSTM hidden units indicating the directions of the input fed in
the LSTM layers. In Fig. 1(b), the hidden layer is made up of a
CNN layer with 70 filters (ny, = ny, = 35), with zero padding
applied to retain the shape and the kernel size ny, = ng, = 11.
The output layer in both designs is a convolutional layer with
ny = 2 filters, a kernel size nj, = 21, and no padding. Concat
blockis a concatenation block. For the biLSTM, the bidirectional
layer from Tensorflow already includes the concatenation. The
concatenation is to combine the outputs of the forward and
backward LSTMs. For the deep CNN, the concatenation is
to combine the outputs of each filter of the CNN. Based on
a grid search analysis, these parameters were chosen to meet
the hardware limitations, throughput requirements, and optical
performance required for this FPGA realization. The activation
functions for both hidden layers were hyperbolic tangent (tanh),
and the output layer is linear.

Focusing now on the biLSTM+CNN architecture imple-
mented in this article, the mean square error (MSE) loss es-
timator and the classical Adam algorithm for the stochastic
optimization step [46] were used when training the weights and
bias of the NN. The training hyperparameters (mini-batch size
equal to 2001 and learning rate equal to 0.0005) were found using
the Bayesian optimization procedure described in [20]. The NN
training was carried out by backpropagation for 30000 epochs
with a fixed set of hyperparameters*. The BER is evaluated after
each training epoch. For training, we used a fixed dataset with

3Hence, the time recovery and other typical DSP blocks for coherent trans-
mission are already handled, and the sampling rate of 1 sample per symbol is
already in place.

4For applying the model to other launch power values, we used transfer
learning [47], which allowed us to utilize less than 5 epochs to adjust the NN
weights to the other launch powers.

3801

220 symbols, and, at every epoch, we picked 2'® random input
symbols from this dataset. For the testing and validation, we used
a never-before-seen dataset with 2'8 symbols. Both NN models
were trained, validated, and tested using the same datasets. The
weights were saved at the epoch at which the BER measured
using the validation dataset was the lowest (early stopping).

B. C++ Implementation of Neural Networks and the
High-Level Synthesis Method to Generate VHDL

The HLS method provides a design flow in which the desired
function, i.e., an NN in the case considered, can be specified in
C++ and then automatically converted to VHDL. Note that the
NN implementation in C++ is coded from scratch. This strategy
is preferred because it separates the FPGA technology-specific
implementation features, such as clocks and logic cell topology,
from the NN’s functionality. Working at a higher level of abstrac-
tion, the intended functionality can be the focus of attention and
be described more easily in fewer lines of code [48].

In addition, functional verification in C++ is much faster than
functional simulation in VHDL. This makes it easy to test and
debug the design. At this point, it is important to remember that
the functions described will run on hardware. HLS supports a
substantial range of C++ syntax, but not all, because some cannot
be implemented in an FPGA or ASIC. In this case, memory
allocation is a key part of writing the C++ code that needs to
be properly assessed. In the FPGA, the memory allocations
are static and are assigned during the mapping phase of the
physical design flow. Dynamic memory allocations found in
many C++ standard library functions cannot be supported and
must be avoided or replaced with structures optimized for the
implementation in an FPGA by using the libraries provided
by the HLS tool supplier, in our case, Xilinx. Also, Operating
System (OS) functions such as file read/write and date/time
cannot be implemented in the FPGA; all data transmitted into
and out of the FPGA must use input/output ports.

Consequently, two versions of the C++ codes were gener-
ated. The first is called here the test bench, while the second
is the function to be implemented in FPGA. The test bench
function reads the previously saved signal inputs and weights
learned in Python and converts them to a fixed-point format
(int32). These values are then incorporated into the function
that describes the equalizers investigated in this study. The
function is the C++ translation of the Python NN equalization
architecture, using fixed-point arithmetic operations. After the
equalization, the outputs of the function (the signal that has
been equalized) are delivered to the test bench code that checks
the MSE. We did not study the impact of further reducing the
quantization accuracy, since this would require some further
work to overcome the quantization error caused by both the
input signal and the weights. We chose the int32 format be-
cause, by using it, we can take advantage of simplified integer
arithmetic while observing no significant performance reduction
compared to the floating-point BER evaluated in Python. Note
that INT32 is the quantization format for input and weights
in this article, and different types of quantization are studied
in [49].
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Here, it is important to highlight details on the implementation
of the convolutions and the LSTM cells in our C++ code.
For the convolution implementation, we used the conventional
method for convolution, which consists of a series of for loops
that can be partialized, as detailed in Ref. [50]. In the case of
the LSTM cell, 1, whose implementation is depicted in Fig. 2,
our approach adhered to the methods outlined in Ref. [51]. In
summary, the input data h,_;, z;, and weight matrix W are
read, and the systolic array technique is used to do the matrix
multiplication. Its output is temporarily stored in global memory
on the chip. Then, the activation function module (e.g., Taylor
approximation, PWL approximation, or LUT approximation)
receives the input data from the temporary result buffer and
obtains the output vectors 4, f, o, and g, as shown in 1. Each
gate’s output is also buffered and saved in the chip’s global
memory. Next, we implemented the element-wise computation
module, which reads the data of 4, f, o and g from the buffer,
completes the element-wise computation, as shown in Fig. 2 and
then obtains the output h; and cell state ¢;, which will be used
in the next time step. After all required time steps have been
completed, the final output is written back to the host memory.

However, when using the HLS, even though the conversion to
VHDL is automated, some design intervention is still necessary,
and engineering decisions must be taken to achieve the desired
performance. HLS supports a set of directives, or pragmas, that
can be used to modify the behavior of the HLS C++-synthesis
stage to facilitate these interventions [52]. By utilizing pragmas,
in order to discover the best implementation, it is useful to
investigate several design structures without re-coding them.
Although there are a variety of different pragmas, we have pri-
marily utilized those pertaining to pipelines, loops, and arrays.

Pipelines allow the parallel execution of operations within a
function, lowering the number of clock cycles between com-
mencing loop iterations; these clock cycles are referred to as
the Iteration Interval (II). Each loop iteration does not need to
end before the next one begins, i.e., the iterations can overlap.
The number of pipeline stages can be controlled by setting the
value of II using the HLS pipeline pragma. Setting the II to 1,
as is done in this project, enables each cycle to begin with a new
iteration.

Loops can be unrolled and flattened. By default, loops within
a function remain rolled, which means that the loop body is
executed sequentially, utilizing a single set of logic resources.
The minimum loop delay is then equal to the number of loop
iterations. Unrolling generates several copies of the loop body
logic, enabling parallel execution and reduced latency at the
expense of additional size. Loops can be entirely or partially
unrolled, resulting in either one copy of the loop body every
iteration for optimum throughput or fewer copies for reduced
area cost. Flattening transforms a hierarchy of nested loops
into a single loop, which eliminates a clock cycle delay while
traveling between higher and lower nested loops and can help
with better optimization of the loop logic. Given this, the loops
in the feedforward NN layers can be flattened; however, the
loops in the recurrent NN layers cannot be flattened due to
their memory dependence and imperfect loops. Therefore, for
the implementation of the recurrent NN layer, we shall only
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flatten the loops relating to the matrix multiplication that occurs
internally within each LSTM cell.

Arrays can be partitioned and reshaped. HLS will implement
arrays in the C++ code as memory blocks in the VHDL de-
scription. This can cause a restriction in the design concurrency
as FPGA memory blocks only have 2 access ports, which, if
the designer has also used the previously mentioned unroll and
pipeline pragmas, will need to be shared between all instances
of the loop body. By reshaping and partitioning the array, the
size, and the number of these memory blocks can be controlled.
To enable the successful flattening of the loops in each NN
architecture, the non-equalized signal (input signal) and the
weights of the NN architecture are partitioned here. The final
stage of the HLS step is to export the generated VHDL and
derived constraints for use in the physical design step.

Here, we emphasize that NNs are an excellent candidate
for exploiting the benefits of HLS, as their nested architecture
consisting of multiple layers and several multiply/accumulate
functions can make good use of the loop and pipeline directives
to investigate the trade-off between area and latency to meet the
design requirements.

C. Vivado and the Synthesis Step to the FPGA Realization

The area and timing reports generated by the HLS stage are
still simply estimates of the final design performance based on
the technology-specific data libraries for each FPGA; the actual
performance cannot be determined until the physical implemen-
tation is complete. In our work, the Vivado Design suite from
Xilinx is utilized. The physical implementation is performed
by Vivado in three steps: technology mapping, placement and
routing, and timing analysis.

Technology Mapping: Within this step, the VHDL source code
is translated into primitive logic gates and boolean equations,
followed by mapping these gates onto FPGA customizable logic
blocks containing D-type FFs (DFFs) and RAM-based LUTs
or more specialized functional cells, such as DSPs. During the
technology mapping, the design is optimized and unnecessary
logic is eliminated. Note that the detailed explanation of the
FPGA components can be found in Appendix A.

The next two steps constitute an iterative process executed
automatically by the tool based on design constraints, such as
a clock frequency. These limitations can be inherited from the
HLS stage or defined in Vivado. The Vivado tool imposes sets
of restrictions through established optimization strategies, which
are discussed in detail in the vendor user manuals [53], and which
the user can apply depending on the design goals. The optimal
technique is determined by balancing computer runtime and
outcomes. In [54] we can find all potential pairings of synthesis
and optimization procedures in Vivado using a high-speed pulse
width modulation circuit as a target design, as well as a com-
prehensive evaluation of the runtime versus performance of the
different Vivado optimization methodologies. Since the goal of
our work was to increase throughput, we did not look at solutions
that would reduce chip size, power, or runtime. Therefore, the
Vivado configuration called ‘“Performance ExtraTimingOpt” is
adopted in our work, since it effectively optimizes throughput
by reducing timing slack [54].
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Placement and Routing: This stage positions the logic blocks
developed during the mapping phase, onto the specified ele-
ments of the FPGA cell array, and configures the signal routing
channels between them. The placement algorithm starts from a
random seed position and then moves functions to the cell array
based on the degree of congestion for the parts of the die and
the fanout of the driving function.

Time Analysis: This stage compares the design with the
applied timing constraints to determine whether the overall
performance requirement has been met. Timing analysis, in
particular, requires a grasp of the FPGA structure and how the
design has been mapped onto the array. It may be necessary
to return to the HLS phase to apply more directives or adjust
the function architecture to achieve timing closure. The time
for a data (signal) to travel between two points is determined
by a variety of factors, including DFF switching time, setup
requirements (the time at which the signal must arrive at the
destination before the capturing clock edge), logic and routing
path delays, and clock edge uncertainty due to jitter and clock
path skew. Here, it is pertinent to define the negative timing
slack.

The negative timing slack indicates that the total delay in the
data path between two DFFs is greater than the requested clock
period. In this negative slack case, the NN has many nested loops,
as discussed in the previous section; unrolling these loops would
lead to a larger design consuming more logic area, but leaving
large loops, i.e., the loops with a high number of iterations, can
produce long logic multiplexer paths as the inputs to the loop
logic are selected. Using Vivado timing analysis reports and
annotated netlist viewer, we can identify which paths can be
the cause of the failed paths. In this case, the solution was to
return to the C++ source and reorder the nested loops so that the
outer loop, which was not unrolled, had fewer iterations; this
approach reduced the size of the logic chain in the multiplexer
path. In this article, we have also decreased the clock frequency
for each of the designed blocks to guarantee that a zero negative
timing slack was achieved in all FPGA designs.

IV. THE NONLINEAR ACTIVATION FUNCTION
IMPLEMENTATION: HIGH ACCURACY AND LOWER COMPLEXITY

In this section, we address the implementation of NNs’ non-
linear activation function, one of the crucial components in the
design of NN in hardware. In contrast to the hardware realization
of the NN’s weights and inputs, where we can readily pro-
ceed from the float to fixed-point representation, the activation
functions’ realization in hardware is not straightforward. In an
LSTM cell, the sigmoid and tanh functions are deployed as
activation functions, and they are computationally expensive.
Both functions contain exponential functions, making it difficult
to implement them on resource-constrained hardware and re-
quiring alarge chip area [55]. Therefore, function approximation
techniques are required in place of the exact functions to realize
them in the FPGA, and to reduce the overall computational
complexity [55], [56], [57], [58]. In this article, we focus on
approximating the sigmoid and tanh. We consider three different
methods for the approximation: Taylor series expansion, PWL,
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Fig.4. Diagram of the input/output of approximated activation functions based

on the logic box implemented in FPGA.

and LUT. As shown in Fig. 4, to implement the approximated
activation functions on the FPGA, the FF,° LUT,® and DSP
slices are used to build the logic box,” which takes the value
x and coefficients to return y. The coefficients are stored in the
memory as input. The coefficients define the Taylor and PWL
approximations, while in the LUT approximation, they represent
the quantization levels list. g is the output of the approximated
activation functions, while y represents the actual output of the
float-precision activation function. The difference between ¢ and
vy is the approximation error.
The expression for the tanh function via exponential is:

T —T
tanh g = S 3)

et +e "

while that for the sigmoid function reads as:

o(x) !

T @

A. Taylor Approximation Approach

In the Taylor series approximation, the higher the degree of
an approximating polynomial n, the better the approximation.
The tanh Taylor series reads as:

o 922n(92n _ 1\RB n
tanh z = 7;) ((2n)l)2x2"1, where |x| < g
23 22° 177 622°
=r——4+ — - — — .., 5
3 15 315 2835

where Bs,, denotes the Bernoulli number [59], —a; < = < ay,
and a; is the boundary of the approximation region: when x is not
within [—a¢, a;], the approximation error is essential. Therefore,
it is important to choose the value of a; that maximizes perfor-
mance. Empirically, the slight difference in the value of a; can
noticeably affect the performance. When x is outside the Taylor

SFF is a basic digital storage element in an FPGA, used to store the value of a
digital signal and can be used in conjunction with LUTSs to implement sequential
logic, such as state machines and counters.

SLUT is a basic building block of an FPGA used to implement equations
built from Boolean logic functions, such as AND, OR, and XOR, or to store
pre-calculated values for use in arithmetic or other operations.

"FPGA uses LUTs, FF and DSP slices together to implement the digital logic,
memory, and computation required by the intended applications. LUTs, FFs, and
DSPs are all programmable, meaning that the user can reprogram the FPGA’s
logic, memory, and computation elements to suit different applications.
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Taylor series approximation of tanh (a)—(b) and sigmoid functions

series approximation region, we set the value of tanh z to —1 or
1, according to the following expression:

1, ifx > ay,
3 5 7 5919 .
tanhy ={ o — L+ 22 — 1 4 820 if g, <z < ay,
~1, if v < —ay.

(6)
The plots for the different order Taylor approximations are given
in Fig. 5(a) and (b). The value of a; is the result of the grid search,
which maximizes the performance of our NN-based equalizer
without re-training.
The Taylor series for the sigmoid function is:

1 1
o(x) = B + §tanh g
1 n xz  ad x® 1727 n 31zY
2 4 48 480 80640 @ 1451520

(N

where —a, < z < a, and a, is the point where the Taylor series
approximation of the sigmoid starts to diverge. Similarly to tanh,
the values of the sigmoid approximation in regions less than —a,,
and greater than a,, are set to 0 and 1, respectively, as follows:

1, ifz > ag,
_J 1,z x| x5 1727 31z° e
o(x)=4 5+%—T5 1% — 30610 T Tasis0- i —o <T<do,
ife < —ag.
0, fax<

®)
The Taylor approximation plots corresponding to (8), when the
highest order of the polynomial is 3 and 9, are given in Fig. 5(c)
and (d).

We evaluate the performance (in terms of Q-factor) when the
approximation for both tanh and sigmoid functions is carried
out simultaneously, with different orders of the approximating
polynomial up to 9™ order. The values of a; and a, are chosen
by using the grid search, aiming to maximize the Q-factor when
replacing the exact activation functions with their Taylor series
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approximation without re-training the weights. The Taylor series
approximation reduces the computational cost and time required
to compute the activation function considerably, compared to the
processing using the original function [57].

B. Piecewise Linear Approximation Approach

The PWL approximation, introduced in [60], is a combination
of linear segments that approximates the activation or nonlinear
function [56], [61]. Increasing the number of linear segments to
represent the nonlinear function allows us to achieve better ac-
curacy. The PWL approximation is a promising method to reach
a higher processing speed since it consumes fewer resources on
FPGAS® compared to the Taylor approximation: to reach higher
accuracy, the Taylor approach fits the nonlinear function with
high-order expressions, which results in the consumption of
resources, while the PWL can reach the same level of accuracy
with the use of more segments, but without employing high-
order operations [56].

In this article, we compare the performance of our NN-based
equalizers when applying 3-, 5-, 7-, and 9-segment PWL ap-
proximations to both tanh and sigmoid.® The expressions for the
PWL used in this article are included in Table III in Appendix B.
The corresponding plots for the equations mentioned in Table III
with 3 and 9 segments are depicted in Fig. 6(a) and (b) for tanh,
and Fig. 6(c) and (d) for sigmoid. Note that we use grid search
to find the coefficients for each expression, aiming to maximize
the performance in terms of Q-factor, after the actual activation
functions are replaced by the approximations over the trained
weights, instead of minimizing the difference/areas between the
exact function and the approximation curves. It is carried out

8[62] shows that the implementation of PWL can be further optimized to have
zero multipliers by simplifying the shift and addition operations.

9Note that when the number of segments is lower than 3 segments that used
to represent sigmoid or tanh in the biLSTM cell, the biLSTM model in our case
is not able to learn to mitigate the approximation errors.



FREIRE et al.: IMPLEMENTING NEURAL NETWORK-BASED EQUALIZERS IN A COHERENT OPTICAL TRANSMISSION SYSTEM

—— Tanh
LUT (4 bits)

0.5

-1.0

-6 -4 -2 0 2 4 6
X
Fig. 7. LUT approximation of tanh function with the number of bits equal
to 4.

because, in our case, minimizing the difference/areas between
the curves noticeably degrades the Q-factor performance of the
NN equalizer when the NN predicts the output with the replaced
approximated activation functions.

C. Lookup Table Approximation Approach

The LUT approximation is a commonly used method for the
activation functions’ hardware implementation [63]. The LUT
approximates the function with a limited number of uniformly
distributed points. This approach offers a high-performance
design, and the fastest implementation compared to other meth-
ods. At the same time, a large amount of memory is required
to store the LUT on the hardware [64], [65]. The chip area
requirements for the LUT approximation grow exponentially
with the required approximation accuracy [65]. The number of
bits used to represent values in the LUT directly affects the
approximation error and the required memory size. An example
of the LUT approximation of tanh with the number of bits equal
to 4 is presented in Fig. 7.

The LUT approach is similar to traditional quantization, in
which full precision values are assigned to uniform quantization
levels, i.e. the value = is mapped to £ which is the closest value of
x in the quantization level list [66]. The LUT stores the values of
the quantization levels (&) and their corresponding f (%), in our
case tanh(z) or (). The difference between the exact value
f () (the blue curve in Fig. 7) and the approximation f (&) (the
red curve in Fig. 7) introduces the approximation errors.

We investigate the Q-factor performance of our model for the
LUT representation of activation functions when the number of
bits used ranges from 2 to 16.

D. Reducing Approximation Error Through the Learning Via
Stochastic Gradient Descent

Once the activation functions are replaced by the approx-
imation, the NN performance can drastically drop. However,
training the model with approximated activation functions can
enhance the performance because the model learns to reduce the
approximation error. Stochastic gradient descent (SGD) is the
training approach that we apply in this article. The training can
be undertaken from scratch, which means that the NN is trained
when the activation functions are replaced by approximations
from the beginning without any pre-assigned weights. Another
approach to training is to use the weights of the model pre-trained
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with the true activation functions, then re-train the model after
the replacement of the approximations to learn the approxima-
tion errors. The latter results in a considerably shorter training
time. We report the results of the second method because, in our
tests, training from scratch takes significantly longer to converge
and sometimes can provide even worse results. It is worth noting
that another available training approach is to only train the
coefficients of the Taylor and PWL equations without re-training
the NN weights; however, in our case, the performance was not
acceptable when using a low number of segments in PWL and
training with this approach.

To train the NN with the approximation of the activation
function via the SGD, the gradient of the approximation function
must be computed. For the Taylor approximation, the Taylor
series gradient is calculated with respect to the Taylor series
approximation (6) for tanh and (7). Fig. 8(a) shows an example of
the derivative of the tanh approximation using the Taylor series
with the highest order of 9; the gradient (red curve) is not smooth
due to the polynomial nature of the Taylor series. This fact can
limit the training ability, especially when training from scratch,
asnoted in Section V-C. Concerning the PWL, the gradient is the
slope of the expressions from Table III (in the Appendix section).
Fig. 8(b) depicts the gradient of the PWL approximation with
9 segments. Note that due to the non-differentiability of LUT,
it is challenging to learn the LUT-approximated model [66].
In this article, to train the LUT, we generate LUTs for the
gradient of both sigmoid and tanh for each interval of the LUT
approximations. Fig. 8(c) shows the gradient of the tanh LUT
with 4 bits, corresponding to the tanh approximation in Fig. 7.

V. RESULTS AND DISCUSSIONS
A. Experimental and Numerical Setups

We assess the performance of the NN-based equalizers with
reduced complexity by using the data not only from numerical
simulations but also from a real experimental setup, to make our
analysis as complete as possible. The setup used in our experi-
mentis showninFig. 9. At the transmitter, a DP-16QAM 34 GBd
symbol sequence was mapped out of the data bits generated by a
Mersenne Twister algorithm [67]. Then, a digital RRC filter with
0.1 roll-off was applied. The resulting filtered digital samples
were resampled and uploaded to a digital-to-analog converter
(DAC) operating at 88 GSamples/s. The output of the DAC
was amplified by a four-channel electrical amplifier that drove
a dual-polarization IQ Mach-Zehnder modulator, modulating
the continuous waveform carrier produced by an external cavity
laser at the wavelength A = 1.55 ym. The resulting optical signal
was transmitted over 17 x 70 km spans of LEAF. Erbium-doped
fiber amplifiers (EDFAs) are used to compensate for the loss
in each fiber span at their output. The EDFA’s noise figure
was in a 4.5 to 5 dB range. The parameters of the LEAF
are: the attenuation coefficient o = 0.225 dB/km, the chromatic
dispersion coefficient D = 4.2 ps/(nm - km), and the effective
nonlinear coefficient y = 2 (W- km) .

On the Rx side, the optical signal was converted to the electri-
cal domain using an integrated coherent receiver. The resulting
signal was sampled at 80 Gsamples/s with a digital sampling
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Fig. 9. Experimental setup. The input of the NN (shown as the red rectangle
after DSP RX) is the soft output of the regular DSP before the decision unit.

oscilloscope and processed by an offline DSP based on the algo-
rithms described in [68]. First, the bulk accumulated dispersion
was compensated using a frequency domain equalizer, which
was followed by the mitigation of the carrier frequency offset. A
constant-amplitude zero autocorrelation (CAZAC)-based train-
ing sequence was then located in the received frame, and the
equalizer transfer function was estimated from it. Afterward,
the two polarizations were demultiplexed, and the signal was
corrected for clock frequency and phase offsets. The carrier
phase estimation was then carried out with the help of pilot
symbols. Subsequently, the resulting soft symbols were used as
the input for the NN equalizer. Finally, the pre-FEC BER was
evaluated from the signal at the NN output. The performance
of the system was evaluated in terms of the Q-factor, expressed
through the BER as Q = 20 log;o[v/2 erfc ! (2 BER)].
Concerning the simulation, we tried to mimic the experimen-
tal transmission scenario. The propagation of the signal along
the fiber was simulated by solving the Manakov equations using
the split-step Fourier method with a step size of 1 km. At the

receiver, after the full CDC (time domain) and downsampling
to the symbol rate, the received symbols were normalized to the
transmitted ones. The normalization process can be viewed as
its normalization by a constant Kpgp learned using the following
equation:

Kpsp = H}én H/C T (2, 1) — 2 (0,1)|] 9
where the constants K, Kpsp € C and xy,, is the signal in h
or v polarization. Furthermore, the Gaussian noise was added
to the data signal, as to represent the additional transceiver
components-induced distortions present in the experiment. As
a result, the Q-factor level of the simulated data (without NN
equalization) was matched to the experimental one. Note that
the polarization mode dispersion (PMD) is not considered in
the simulation. In the experimental data, PMD was already
compensated by Infinera’s DSP, so we can say that our study
is not influenced by PMD.

Finally, unlike the NN equalizer, which operates with 1
Sa/symbol, the DBP used to benchmark the performance
curves (the implementation described in [2]), operated with
2.3 Sa/symbol (and with 1 StpS with the scheme parameters
optimized for the best performance). Regarding the CDC imple-
mentation, we designed a time-domain equalizer as in [27] with
517 taps in C++. For the realization in hardware, we followed
the same design steps 3 and 4 described in Section III for
the NN implementation. To be more specific, the goal of this
result section is to assess the complexity of NN with respect
to CDC, while guaranteeing a level of nonlinear compensation
comparable to one of the widely used DBP. The CDC benchmark
is the most important because our primary goal is to show the
readiness of NN with respect to the already available algorithm
in commercial transponders. In contrast, none of the existing
DBP versions has reached the hardware level of implementation.
In this context, this article shows that the NN-based equalizer
achieves a performance similar to that obtained with the DBP [2]
while approaching the complexity of the CDC block.

B. Quality of Transmission: Improvement Study

Fig. 10 summarizes the performance of the NN-based equal-
izers compared to 1 StpS DBP and CDC over different launch



FREIRE et al.: IMPLEMENTING NEURAL NETWORK-BASED EQUALIZERS IN A COHERENT OPTICAL TRANSMISSION SYSTEM

Q-Factor [dB]

2 —8- Deep CNN eq.
—e— biLSTM eq.
—+—DBP 1 StpS

—a— CDC (Regular DSP)

0 T T T T I I I
-4 -3 -2 -1 0 1 2 3 4

Launch power [dBm]

(a) Simulation.

Fig. 10.

3807

Q-Factor [dB]

—8- Deep CNN eq.
—o— biLSTM eq.
—+—DBP 1 StpS
—a— CDC (Regular DSP)

-4 -3 -2 -1 0 1 2 3 4
Launch power [dBm]

(b) Experiment.

Q-factor versus launch power for (a) simulation and (b) experiment corresponding to the transmission of an SC-DP 16QAM 34 GBd signal along

17 x 70 km of LEAF. The difference between the time domain CDC and the biLSTM equalizer’s results is marked with red arrows. The case of the floating-point
models’ accuracy for the different types of NN equalizers (described in the legends), together with the 1StpS DBP and CDC performance curves.

powers for simulated and experimental data. The results refer-
ring to the simulated data are given in Fig. 10(a). The biLSTM
equalizer shows approximately the same performance as a 1 StpS
DBP while improving the optimal power from —1 dBm to 2 dBm
and the Q-factor by 1.3 dB with respect to the CDC. Regarding
deep CNN, it performs worse than the biLSTM and the 1-StpS
DBP; the optimal power is improved from —1 dBm to 1 dBm
and the Q-factor increases by 0.8 dB compared to the CDC.
On the other hand, with the experimental data,'® we observe
in Fig. 10(b) that the biLSTM outperforms the 1-StpS DBP,
especially in the noise-dominated region. For the 1-StpS DBP
case with the experimental data, the Q-factor increases by 1.3 dB
in the simulation and by 1.5 dB in the experiment. Compared to
simulation, NN-based equalizers in the experiment also lead to a
higher gain for the Q-factor; when having CDC as a baseline, the
gain improves from 1.3 dB (simulation) to 1.7 dB (experiment)
in the case of biLSTM equalizers, and from 0.8 dB (simulation)
to 1 dB (experiment) for the deep CNN. The optimal power
also shifts from 0 dBm to 1 dBm in both cases. This shows that
the NN has the potential to reduce the effects of both the Kerr
nonlinearity and the component-induced corruptions which can
be the effects of the transceivers (ADC/DAC or drive amplifier)
and other effects that are not considered in the simulation such
as some polarization mismatch, connector loss, different fiber
parameters along the fiber, for both Tx and Rx sides.

In fact, all component impairments in the simulations were
modeled with white noise (to represent the non-considered
impairments from a real transmission and the non-ideal
transceivers), so the equalizer could not mitigate them determin-
istically, whereas in the experimental case, our equalizer could
enhance the Q-factor slightly further. Numerically, this can be
observed by the fact that there is a 3 dB enhancement of the
optimal launch power compared to the CDC in the simulation
and only 1 dB in the experiment. This can be explained because,
in the experiment, other effects apart from the Kerr effects were

10The Q-factor obtained with the Python model and the FPGA implementation
were virtually identical because we did not consider quantization.

also compensated more in the linear regime, so a higher Q-factor
was achieved but with a lower launch power. However, the
maximum Q-factor after equalization in the simulation (5.24 dB
at 2 dBm) is lower than the one achieved in the experiment for
the same launch power (5.54 dB at 2 dBm). Hence, more linear
impairments than nonlinear ones are recovered in the experi-
ment, resulting in a smaller improvement in launch power. In
particular, the biLSTM equalizer beats the deep CNN equalizer
because the biLSTM is a recurrent-based NN that benefits from
temporal sequential data learning [69], [70].

C. Nonlinear Activation Function: Performance Versus
Complexity Investigation

Now, having obtained the Q-factor benchmarks for the NN-
based equalizers, we move on to the investigation of perfor-
mance, studying different approximation techniques for nonlin-
ear activation functions: Taylor series, PWL, and LUT. Fig. 11
depicts the Q-factor in the optimal power after equalization
for three scenarios: the original NN without approximation,
the NN with approximation (without re-training), and the NN
with approximation (with re-training). Note that training the
NN from scratch when replacing exact activation functions with
approximations takes a considerably longer time to converge
than retraining the original NN after replacing floating-point
activation functions with their approximations. The training
from scratch with the Taylor and LUT activations approximation
even results in lower eventual performance. Therefore, in this
figure, we only report the results of the retraining approach.
Fig. 11(a) and (b), corresponding to the Taylor series and PWL,
respectively, reveal the same trend. Without training, as the
complexity of the approximation increases, the NN equalizer
performs clearly better. However, with training, our increasing
complexity barely improves the performance: the NN is able
to adjust its parameters to mitigate the approximation error and
provides comparable performance to the NN without approxi-
mations. The Q-factor versus complexity (order) of approxima-
tion plots, Fig. 11, highlight the remarkable performance gain
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Fig. 11.  Q-factor versus complexity in terms of polynomial order for the Taylor approximation, pane (a), for the number of segments for PWL approximation,

(b), and for the number of bits for the LUT, (c).

in all considered approaches when we re-train the model with
activation functions replaced by the approximation, and we see
that training can mitigate the errors from the approximation.
This means that even the low-order approximations, such as the
simplest PWL with three segments, can still yield results nearly
identical to those rendered by the original activation functions.
Fig. 11(c) shows the performance of the LUT approximation.
When replacing the activation functions with LUT without
re-training, a certain number of bits is needed to provide an
acceptable Q-factor level!! For example, the minimum number
of bits needed to provide a Q-factor greater than zero is 7 bits; 9
bits are needed to provide performance comparable to the model
without approximation. On the other hand, when re-training the
NN after the approximation, the Q-factor for the lower number
of bits (from 3 to 7 bits) considerably increases. In this case, the
non-differentiability makes the training challenging and limits
the performance reachable in training, but the improvement is
still noticeable when the number of bits is between 3 and 7.
Fig. 12 shows the convergence speed of the three approximation
techniques. It can be seen that the learning of Taylor and PWL
is similar, whereas the re-training of LUT approximation is
more difficult. Although the LUT gradient, Fig. 8(c), and the
PWL gradient in Fig. 8(b) seem interchangeable, the forward
propagation of the LUT approximation is still discrete, which
means that with the lower number of bits we create a large
gap between each quantized level. Thus, small changes that
the gradient makes to update the weights might not change the
quantization level to the next value. This means that the loss
region is the same as it was in the last NN training interaction
(trapped in a local minimum). Notably, in [71] a similar cir-
cumstance was observed; the previous reference also pointed to
the instability of the training that can occur with a quantized
activation function. In the case of PWL, the learning is more
stable due to the continuity of the function’s approximation, as

Note that in this study, we followed the LUT implementation from Ref. [63],
[64] which presented the LUT with equal x-error intervals. The alternative
approach (activation functions with equal y-error intervals) can be used, but
in our case, there is only a slight improvement in the Q-factor when the number
of bits is greater than 5 and with the re-training, the performance is very close
to the x-interval approach.
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Fig. 12.  Convergence study of the re-training to mitigate the approximation
errors of Taylor series (3rd order), PWL (3 segments), and LUT (npi = 7)
approximations.

each weight update generates a new loss value and a distinct
point in the forward propagation.

In addition, as anticipated, we observe that when quantizing
the LUT below 4 bits, no acceptable Q-factor can be reached
even after the re-training. The reason for this is that when we
quantize the activation function, unlike when we quantize the
weights, we are limited in our ability to represent the modulation
of the equalized signal. In our situation, we use 16QAM, which
requires at least 4 bits to represent a constellation data point.
Howeyver, as we see, even 4 bits are insufficient in this case to
preserve all the essential features for the equalization process
when using the quantization of the activation function.

When more bits are used, a better Q-factor can be achieved;
however, more memory is then required to represent the quanti-
zation. It is worth noticing that when the number of bits is greater
than 10, the Q-factor no longer improves in both scenarios (with
and without re-training).

The amount of resources required (in terms of LUT, FF, and
DSP slices) in the FPGA when using the approximations for
tanh, is compared to that when applying the actual tanh activation
function in Fig. 13. This figure depicts the resources used to build
the logic behind the functionality of each approximation. Note
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that the coefficients and values used in each panel of Fig. 4, are
considered an input of the implemented box, which is accessed
by the FPGA memory. The implementation complexity of the
actual float activation functions is significantly higher than that
of the approximations. In the Taylor series approximations,
Fig. 13(a), the number of FF and LUT used to implement the
approximations is drastically reduced compared to the original
activation functions; to be more specific, when the highest order
of the polynomial is 9, the number of FF required decreases by
6.7 times, and the number of LUT required is three times smaller.
In terms of DSP slices, the 9th order approximation requires
6 DSP slices fewer than the original functions. As the approx-
imation becomes simpler, the implementation requires fewer
resources, as expected. For the PWL approximation, no usage
of DSP slices is required for the implementation. Like in the
Taylor series approximation, the number of FF and LUT required
decreases noticeably. Compared to the original float-precision
activation function, the PWL with 9 segments requires 2.8 times
less LUT, and 13 times less FF. As the complexity decreases
according to the number of segments, fewer resources are
needed. Turning to the LUT approximation, it does not require
any of the DSP slices as well, and the number of LUT and FF
decreases by a factor of 80 and 775, respectively. Regardless of
the number of bits in the quantized activation function, approx-
imately the same amount of resources is required to implement
the logic of the LUT approximation (see Fig. 13(c)). The LUT
approximation approach is an algorithm based on evaluating the
closest value in the LUT from a certain input and determining
the memory address index that corresponds to that closest value
to retrieve the information. As the number of bits increases,
a larger memory is needed to store the LUT approximation
points, which are a quantized version of the function. However,
we do not account for this memory usage in our study because
this is considered one of the inputs to our implemented box.

In conclusion, when performance, memory, and resources are
considered, the PWL emerges as a viable candidate for hardware
implementation, particularly, the 3-segment PWL variant with
re-training. When the model learns to reduce approximation
errors, the Q-factor of 3-segment PWL can reach a level com-
parable to that of the original activation functions; in addition,
there is no need for DSP slices, resulting in more efficient use
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Tanh implementation complexity in terms of LUT, FF, and DSP slices for the Taylor series, PWL, and LUT approximations after the Xilinx realization

of resources than the Taylor approximation. With this, the RAM
usage in the PWL is efficient because only a few coefficients
of the approximation must be saved, whereas the LUT, which
brings about difficulties during the re-training process, requires
that all values of each quantization level be saved, resulting in
an exponential increase in memory usage as the number of bits
increases.

D. Computational Complexity Analysis for NN Equalizers
Versus CDC, Implemented in Different Platforms

1) Standard FPGA Implementation (With DSP Slices):
Fig. 14(a)—(c) show the real implementation and chip areas used
for biLSTM, deep CNN equalizers, and CDC, respectively, on
the state-of-the-art EK-VCK190-G-ED Xilinx FPGA chip [28]
VCK190 kit features an AMD Xilinx Versal ACAP VC1902-2.'?
The device has 1968 DSP engines, 1799680 FFs, 899840 LUTs,
and 400 Al engines. In this article, the Al engines are not used,
as the HLS tool used in this work does not support the Al cores.
The Al engines in the Versal Al Core FPGA are specialized units
optimized for machine learning workloads and are not directly
exposed to the programmer via the Vitis HLS tool'*. This chip is
partitioned into 40 clock regions, with the blue areas in Fig. 14
representing the used chip resources. Table I summarizes the
most important information on the VCK 190 implementation of
the biLSTM, deep CNN equalizers, and the CDC, in terms of
latency, clock frequency [28], resources required, the utilization
of the resources, and throughput. The achieved throughput (T,)
can be calculated as follows:

T, = clock X logy(QAM) X Ny, (10)

where clock is the clock frequency, QAM is the modulation
format, log, (QAM) is the number of bits per symbol, and 720y,
is the number of parallel symbols we recover in the output; in
our case, ngy = 61.

2Note that “C” identifies it as a core series device and “—2” indicates the
middle-speed grade.

13Pre-built Al libraries and IPs such as the Xilinx Deep Learning Processor
(xDNN) library, which is optimized for DNNs, can be used for running on the
FPGA’s Al Engines. Note that the Vitis HLS tool can be used in conjunction
with the xDNN library to target Al cores resources on Xilinx FPGAs [72], but
this is outside our current scope.
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(a) biLSTM eq.

(b) Deep CNN eq.
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Fig. 14.  Implementation in the EK-VCK190-G-ED Xilinx FPGA [28] of the (a) biLSTM eq., (b) Deep CNN eq., (c) CDC block - Time Domain.
TABLE I
VCK190 [28] IMPLEMENTATION
Clock e . 0 N° FPGAs N° FPGAs

Type L?te")cy Frequency BRAM  SRL S?_SP LUT  FF [lg]shlf/iﬁ; /(F?] T('g;",ltgh/p‘;t ]\; zgg’és for 400G for 400G

He (MHz) 1ees ol or [dual-carrier] [56GBd]
biLSTM+CNN 33.4 270 164 109 1260 113532 224386 64.0/12.6/12.5 66 2.6 53 7.2
Deep CNN 19.9 244 0 125 582 118477 379829 29.6/13.2/21.1 60 1.4 2.7 3.7
CDC 1.1 524 0 1 1072 10441 5640 54.5/1.2/0.3 127 1.2 2.3 3.1

Three important conclusions can be drawn from that figure.
First, although the biLSTM renders a higher Q-factor improve-
ment, due to the equalizer’s recurrent structure its feedback
loop connections cause a bottleneck in the design, resulting in
higher latency (33 pus) and lower clock frequency (270 MHz).
On the other hand, deep CNN and CDC can be parallelized more
efficiently. The parallelizability brings about a reduction in their
latency to 19.9 us for the deep CNN, and 1.1 ps for the CDC. Due
to the fact that the CDC has one filter, whereas the deep CNN has
70 filters, the parallelization is easier in the CDC implementation
because of hardware restrictions, resulting in an operating fre-
quency of 524 MHz for the CDC case, and 244 MHz for the deep
CNN case. Fig. 14(c) clearly shows the CDC parallelization. A
long latency increases the time required to process each time
step, leading to slower overall processing times and reducing
the speed of the network. This can be problematic in real-time
applications where a fast response is necessary. To mitigate the
impact of long latency, design optimization techniques can be
applied to reduce the latency and increase the performance, such
as reducing the size of the memory blocks, using more efficient
algorithms, and implementing pipelining. In this article, due to
our offline processing consideration, all the input is already in
the memory, and the request of the sequence with 81 symbols
as inputs is created so that the functioning of the NN-based
equalizer parallelization works.

Second, regarding the FPGA utilization, the biLSTM equal-
izer is the only one using Block Random Access Memory
(BRAM)'* to store future/past recurrent states, while both CNN

4BRAM is a type of memory in FPGAs that is used to store large amounts of
data, typically used in FPGA designs to implement memory-intensive functions
such as image and video processing, buffers, and large arrays. Unlike other
memory elements in an FPGA, BRAM is a dedicated memory that is separate
from the FPGA’s general-purpose FFs and LUTs.

and CDC do not need such blocks. BRAM is used to store the
hidden states of an LSTM, which can then be fed back into the
network at the next time step to maintain its memory, while in
the case of the feedforward structures, the special LUTs are used
to store the coefficients. The structure of the system of an LSTM
cell is shown in Fig. 2, and the buffer used in the implementation
was synthesized as BRAMs as global memory on the chip [51].
Note that the number shown in the tables is the number of
BRAM blocks, which was the automatic result reported after
the Synthesis step (Vivado). By using BRAM, the hidden state
information can be stored in a dedicated memory block, separate
from the other resources in the FPGA. This can lead to improved
performance, as memory accesses are optimized and dedicated
resources are used for memory storage. However, the size of the
BRAM blocks and the memory requirements for the recurrent
connections should be carefully considered when designing an
LSTM on an FPGA. The available BRAM resources may be
limited, and it may be necessary to trade off memory size for
performance, depending on the requirements of the specific
LSTM design. The SRL (Shift Register Look Up Table) in
Tables I and II is a mode available in FPGAs whereby the
LUT-RAM is configured as a shift register structure. This is
more efficient, as it requires fewer cells and less routing than
using individual DFFs to build shift registers. For the usage of
DSP slices, LUT, and FF in each equalizer type, the biLSTM
requires 64% DSP slices and 13% of LUT and FF, the deep
CNN uses 30% DSP slices, 13% of LUT and 21% of FF, and
the CDC needs 54% DSP slices and 1% of LUT and FF.

Third, in terms of throughput, the clock frequency is the
maximum that each implementation can handle to comply with
a zero-negative slack design. In this sense, the total throughput
for the 16QAM modulation format is 66 G, 60 G, and 127 G,
for the biLSTM, deep CNN, and CDC block, respectively.
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TABLE II
IMPLEMENTATION WHERE ALL MULTIPLICATIONS ARE DONE USING LUT AND FF

Clock o . N° FPGAs _ N° FPGAs
Type L*(“e“)cy Frequency BRAM SRL LUT  FF Ut[‘lliﬁ“T“/’;F(?) {ggig}}p ‘;t 1\; il:)(ggs for 400G for 400G
He (MHz) Sl or [dual-carrier]  [56GBd]
BILSTM{CNN __ 39.2 234 164 163 566070 249763  62.9/13.9 57 30 6.0 8.1
Deep CNN 17 245 0 162 300426 399868  33.4/22.3 60 15 3.0 4.1
cpC B 246 0 | 418534 24968 46.5/1.4 60 2.1 42 5.7

Lastly, regarding the calculation of the number of equivalent
FPGAs for a certain target throughput (T'¢,rget) from an exper-
iment, we have considered the following equation:

Ttarget

Ta

where T, is the throughput achieved after the NN design
pipeline, and Uy is the maximum utilization after the NN design
pipeline (both reported in Table I). In the CNN+biLSTM case,
for example, because the experiment was 16QAM single carrier
transmission at both 34 GB per pol, the target throughput is 272
Gbit/200 G. So, considering the maximum utilization of 64%
and the throughput achieved of 65.9Gbit by the NN equalizer,
Nrpca would be equal to 2.6 FPGAs.

In fact, we considered the FPGA estimation for three different
cases:

1) 200G scenario: which is the scenario of the experiment in
this paper - 16QAM single carrier configurations at both
34GBd per pol (resulting in 272Gbit/200 G).
400G scenario: considering a dual carrier transmission
instead of a single carrier. In this case, we just need to
scale the resources of 200G by a factor of 2.
400G scenario: considering a 16QAM single carrier con-
figurations with higher symbol rate equal to 56GBd per
pol (resulting in 448Gbit, with 12% FEC overhead). In
this case, we simply multiply the 200G resources by
562 /342 = 2.71 because, given the increased symbol rate,
the resources will grow approximately quadratically with
the increase in symbol rate since our implementations
were in the time domain.

For case 1, we observe that 200G transmission can be achieved
using an equivalent FPGA that has the same capacity as
3FPGAs (VCK190)in the case of biLSTM, ~2 FPGAsin adeep
CNN case, and ~ 1 FPGAs for CDC. For case 2, 400G with dual
carrier transmission can be achieved using an equivalent FPGA
that has the same capacity as ~ 5 FPGAs (VCK190) in the case
of biLSTM, ~ 3 FPGAs in adeep CNN case, and ~ 2 FPGAs for
CDC. Finally, in case 3, because of the increase in symbol rate,
much more hardware was needed. For the 400G with 56Gbd
transmission case, we would need an equivalent FPGA that has
the same capacity as ~ 7 FPGAs (VCK190) in the case of
biLSTM, ~ 4 FPGAs in a deep CNN case, and ~ 3 FPGAs
for CDC. In all three cases, biLSTM used approximately 2.5
times more FPGA than required by the CDC implementation.

2) ASIC Equivalent Implementation (no DSP Slices): Unlike
FPGAs, ASICs are application specific, and their digital circuitry
contains permanently connected gates and FF in silicon; there-
fore, in ASIC design, there is no configurable block (such as DSP

* Uy, an

Nrpga =

2)

3)

~
~

~
~

blocks). In this subsection, we evaluate the approximations of the
resource requirements and the performance in terms of through-
put, clock frequency, and latency of the ASIC implementation by
considering the VCK190 implementation without the usage of
DSP slices. Table II contains information for the implementation
of the biLSTM, the deep CNN, and the CDC equalizer on the
FPGA with only LUT and FF. The biLSTM and CDC have a
noticeably higher latency: 5.8 us and 1.2 s higher, respectively,
compared to implementation with DSP slices detailed in Table I.
The lower clock frequency is also observed: 234 MHz for biL-
STM and 246 MHz for the CDC, resulting in a lower throughput:
57G for biLSTM and 60G for the CDC. The degradation in
throughput, latency, and clock frequency highlights the fact that
DSP slices speed up the execution of signal processing functions.
Especially in the CDC, when we allow implementation with
DSP slices, the number of LUT and FF used is 40 times and
4.4 times less, respectively. Therefore, we can clearly see the
degradation of performance in terms of the throughput of the
CDC when the DSP slices are not used. However, in the case of
deep CNN, the latency decreases by 2 us, the clock frequency
increases by 1 MHz, and the throughput remains unchanged. We
can observe that in the deep CNN implementation with the DSP
slices in Table I, the number of DSP slices used is only about
half that for the other two equalizers, and the number of LUT
and FF is highest. Therefore, our removal of DSP slices did not
affect the deep CNN because the processing time for LUT and
FF was already the bottleneck in the previous implementation.
Here, it is essential to recall that the clock frequency, which is
essential to establishing the throughput, is chosen to guarantee
zero negative timing slack. In this regard, since the routing and
mapping are performed automatically by the Vivado platform,
we can observe that when restricting the software from using
the DSP slices, longer paths are generated during the synthesis
in the biLSTM and CDC cases. The longer paths cause the
clock frequency to decrease to achieve the zero-negative slack
level. In contrast, the deep CNN’s paths when deploying the
DSP slices are already long due to the logic implementation
and synthesis, and, therefore, there is no significant varia-
tion in clock frequency after removing the DSP slice in that
case.

Regarding the utilization of LUT and FF: the biLSTM uses
62.9% of LUT and 13.9% of FF, the deep CNN uses 33.4% of
LUT and 22.3% of FF, and the CDC uses 46.5% of LUT and
1.4% of FF. The utilization of LUT for all three equalizers is
considerably increased compared to the previous case (standard
FPGA implementation). As the number of LUTs and FFs in-
creases, the equivalent number of FPGAs used to represent the
biLSTM and the CDC equalization also grows.
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For the same three cases we have discussed previously, we
could observe the following. For case 1, 200G transmission can
be achieved using an equivalent FPGA that has the same capacity
as ~ 3 FPGAs (VCK190) in the case of biLSTM, ~ 2 FPGAs
in a deep CNN case, and ~ 2 FPGAs for CDC. For case 2,
400G with dual carrier transmission can be achieved using an
equivalent FPGA that has the same capacity as ~ 6 FPGAs
(VCK190) in the case of biLSTM, ~ 3 FPGAs in a deep CNN
case, and ~ 4 FPGAs for CDC. Eventually, in case 3 with a 16
QAM 56Gbd transmission, we would need an equivalent FPGA
that has the same capacity as ~ 8§ FPGAs (VCK190) in the case
of biLSTM, ~ 4 FPGAs in a deep CNN case, and ~ 6 FPGAs
for CDC. In all three cases, biLSTM used approximately 1.5
times more FPGA than required by the CDC implementation.

Finally, we note that in this study, we established the approxi-
mate resources and performance of the equalizers implemented
on ASIC by excluding the DSP slices. However, this is still not
an optimized realization: in ASIC implementation, the number
of resources used needs to be further optimized to reduce the
utilization, increase the clock frequency, and enable high-speed
processing.

VI. CONCLUSION AND OPEN CHALLENGES

In this article, we carry out a detailed study of the design of
NN-based optical equalizers, addressing the steps from Python
realization to FPGA implementation. To approach the real hard-
ware implementation of NN-based equalizers, we investigated
three approximation approaches (Taylor, piecewise linear, and
lookup table) for nonlinear activation functions, aiming at re-
ducing the computational complexity. The complexity, perfor-
mance, and resources required for the approximations have been
evaluated. We then examined the biLSTM equalizer implemen-
tation on the FPGA, assessing the complexity reduction due to
the implementation using fixed-point arithmetic and nonlinear
activation function approximations. Our realization showed that
the biLSTM requires only ~ 2.5 times more FPGA resources
than the CDC implemented in the time domain, while still
outperforming the 1-StpS DBP in Q-factor. The approximate
utilization of ASIC when using only FF and LUT to implement
the logic of such DSP blocks for channel equalization were
also considered. The results obtained for the ASIC estimation
showed a drop in throughput for the biLSTM equalizer, due to the
challenges in route design to achieve zero negative slack using
higher than 234 Mhz clock frequencies. The latter indicates that,
for future applications, much more effort is still required in this
direction.

‘We consider this article to be yet another piece of evidence that
the deployment of NN-based equalizers in commercial applica-
tions might become a reality. Indeed, it is already quite clear that
the NN-based equalizers can provide significant performance
improvements when implemented on top of the existing DSP
algorithms. The NN can even replace some DSP chain parts,
such as the CDC block. Moreover, as we evaluated in this article,
the real-time hardware implementation of NNs is already an
attainable reality. Unfortunately, the complexity of the proposed
implementation is still too high for NN equalization deployment

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 12, JUNE 15, 2023

in commercial optical coherent transponders. Additionally, one
of the most critical aspects of the DSP block of a coherent
transponder is its power efficiency. Since power efficiency is
a direct consequence of the complexity, further investigations
focusing on the reduction of NN’s complexity (when those
are specifically implemented in hardware) are important. These
investigations should address several areas, including the sim-
plification methods for NN structures, such as pruning, weight
sharing, quantization, and the respective hardware implementa-
tion aspects.

To reduce complexity, approaches concentrating on different
transmission scenarios and, consequently, adopting different
DSP systems, may be envisioned. Core and regional optical
networks are characterized by quite long optical links, where
optical signals experience noticeable nonlinear distortions and
the accumulated chromatic dispersion is large enough. Access
and metro optical networks are characterized by short propaga-
tion distances, in which the predominant transmission effects are
typically the ASE noise and limited optical power at the RX input
(e.g., in the point-to-multipoint solutions). An important stand-
point from the industry is how the implemented NN (particularly,
the simplification and complexity reduction strategies) varies
with the change of transmission scenario. If the low-complexity
implementation of a given NN works well in one situation but
not in another, this can pose a serious difficulty, as we often
cannot afford to produce a unique chip for every circumstance.
It is desirable that the NN after pruning and quantization is
still capable to equalize versatile transmission setups (working,
e.g., for different fiber types, span lengths, launch powers,
etc.)

Finally, we list the unresolved questions that were not inves-
tigated in our work but can be crucial for further research.

e Power consumption evaluation of reduced-complexity NN

equalizers.

e How to realize a NN that can work for multiple transmis-
sion scenarios with no or very limited retraining.

e Parallelization of the recurrent NN structures study.

® Implementation in the FPGA of more robust quantization
levels moving from int32, as presented in this manuscript,
to int8 or less, if possible, by using heterogeneous quanti-
zation together with quantization-aware training [73].

e Further flexibility analysis to avoid the need to retrain
the hardware NN implementation, e.g., the hardware tests
of domain adaptation/randomization and transfer learn-
ing [47], [74].

APPENDIX A
FPGA NOTATION

Offline FPGA implementation refers to the process of de-
signing and configuring an FPGA before it is deployed in a
target system. This typically involves using specialized software
tools to design, simulate, and verify the digital logic that will be
implemented on the FPGA. The final design is then converted
into a format that can be loaded onto the FPGA, such as a
bitstream file.
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TABLE III

PWL APPROXIMATION EQUATIONS OF SIGMOID AND TANH FOR 3, 5, 7 AND 9 SEGMENTS

Functions
No. of segments tanh sigmoid
Equation Condition Equation Condition
1 z>1.1 1 T > 2.2
3 0.90909x -l1l<z<11 0.22727z + 0.5 —22<x<22
—1 z< -1.1 0 z < —2.2
1 x> 17 1 T > 2.6
0.41666x 4 0.29166 05 <z< 1.7 0.17223x + 0.55219 08<x<26
5 T —05<z<0.5 0.23747x 4+ 0.5 —08<z<08
0.41666x — 0.29166 -1.7<2z<-05 0.17223x + 0.44781 —26<z<-038
-1 < —-1.7 0 z < —2.6
1 x>18 1 z>3
0.285z + 0.48699 11<2<18 0.12363x + 0.62909 1l4<2<3
0.57214x + 0.17114 04<z<11 0.18701x + 0.54036 08<z<14
7 a —04<zx<04 0.23747x 4+ 0.5 —08<z<08
0.57214x — 0.17114 -11<z<-04 0.18701x + 0.45964 —14<z<-08
0.285z — 0.48699 -18<z<—1.1 0.12363x + 0.37091 —3<z<L 14
—1 < —1.8 0 z< -3
1 Tz >22 1 T > 3.4
0.14331x + 0.68417 1l4<x<22 0.08514x + 0.71051 2<x<34
0.3381x + 0.412 09<z<14 0.12644x + 0.62791 15<x<2
0.269382x + 0.09185 03<z<09 0.182242x + 0.09185 08<x<15
9 T -03<z<0.3 0.23747x 4 0.5 —-08<x<0.8
0.269382x — 0.09185 —09<xz<-0.3 0.08514x + 0.45585 —-15<z<-08
0.3381z — 0.412 —-1l4<z<-09 0.12644x + 0.37209 —2<x<—15
0.14331x — 0.68417 —22<z<-14 0.182242x + 0.28949 —34<z< =2
-1 r < =22 0 z < —-34

A D-type Flip-Flop (DFF) is a type of sequential logic element
that is commonly deployed in digital systems as they are simple.
DFFs can be found in digital state machines, shift registers,
counters, and other digital circuits that require memory storage.
They are often used to store the value of a digital signal and can
be used with other logic elements, such as AND and OR gates,
to build more complex digital systems.

BRAM (Block Random Access Memory) is a type of memory
available in FPGAs that is used to store data. Unlike other
memory elements in an FPGA, BRAM is dedicated memory
that is separate from the FPGA’s general-purpose flip-flops and
LUTs. BRAM is used to store large amounts of data, typically
used in FPGA designs to implement memory-intensive functions
such as image and video processing, buffers, and large arrays.

RAM-based LUT (LUT RAM) or distributed RAM is some-
times called in the user guides as the RAM used to store the
logic function equations. LUT RAM can also be configured to
be used as user storage with a similar function to BRAM.

Digital Signal Processing (DSP) Blocks or Slices: Digital
Signal Processing (DSP) blocks or slices are specialized compo-
nents within an FPGA that are designed specifically for process-
ing digital signals. They contain dedicated hardware resources
such as multipliers, adders, accumulators, and registers that can
perform complex mathematical operations at high speeds. They
are optimized for efficient use of resources and can perform
operations in parallel, which enables high-speed processing of
large volumes of data. Additionally, DSP blocks are typically
designed to support fixed-point and floating-point arithmetic,

and they can be configured to support various data widths and
precision. They can also be combined with other components
within an FPGA to create complex signal processing pipelines.

APPENDIX B
PWL EQUATIONS

The equations of the PWL approximations of sigmoid and
tanh can be found in Table III for 3, 5, 7, and 9 segments.
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