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Abstract—In recent years the PON research community has
focused on future systems targeting 100 Gb/s/λ and beyond, with
digital signal processing seen as a key enabling technology. Spec-
trally efficient 4-level pulse amplitude modulation (PAM4) is seen
as a cost-effective solution that exploits the ready availability of
cheaper, low-bandwidth devices, and Semiconductor Optical Am-
plifiers (SOA) are being investigated as receiver preamplifiers to
compensate PAM4’s high signal-to-noise ratio requirements and
meet the demanding 29 dB PON loss budget. However, SOA gain
saturation-induced patterning distortion is a concern in the context
of PON burst-mode signalling, and the 19.5 dB loud-soft packet
dynamic range expected by the most recent ITU-T 50G standards.
In this article we propose a recurrent neural network equalisation
technique based on gated recurrent units (GRU-RNN) to not only
mitigate SOA patterning affecting loud packet bursts, but to also
exploit their remarkable effectiveness at compensating non-linear
impairments to unlock the SOA gain saturated regime. Using such
an equaliser we demonstrate > 28 dB system dynamic range
in 100 Gb/s PAM4 system by using SOA gain compression in
conjunction with GRU-RNN equalisation. We find that our pro-
posed GRU-RNN has similar equalisation capabilities as non-linear
Volterra, fully connected neural network, and long short-term
memory based equalisers, but observe that feedback-based RNN
equalisers are more suited to the varying levels of impairment
inherent to PON burst-mode signalling due to their low input
tap requirements. Recognising issues surrounding hardware im-
plementation of RNNs, we investigate a multi-symbol equalisation
scheme to lower the feedback latency requirements of our proposed
GRU-RNN. Finally, we compare equaliser complexities and perfor-
mances according to trainable parameters and real valued multipli-
cation operations, finding that the proposed GRU-RNN equaliser is
more efficient than those based on Volterra, fully connected neural
networks or long short-term memory units proposed elsewhere.

Index Terms—Digital signal processing, four-level pulse
amplitude modulation, machine learning, optical fiber
communications, passive optical network, semiconductor optical
amplifier.

I. INTRODUCTION

THE ITU-T Higher Speed Passive Optical Network (HS-
PON) recommendations were published in September
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2021, and outline industry requirements for next generation
50G Passive Optical Network (PON) [1], [2]. In a first for a
PON standard, HS-PON will embrace the paradigm of Digital
Signal Processing (DSP) to overcome the severe fiber dispersion
impairment that will be encountered at this line rate. Meanwhile,
the research community is already looking beyond this to future
PON targeting single-channel 100 Gb/s and beyond using vari-
ous technologies such as coherent detection [3] and flexible-rate
PON [4], [5], as well as investigating how DSP could enable
high-speed, intensity modulation with direct detection (IM/DD)
systems. However, any future IM/DD solution will need to meet
the challenging 29 dB PON optical loss budget necessary to
support existing fiber infrastructure already installed by network
operators.

In this article we summarise and extend our work in [6], where
we explore a potential 100 Gb/s upstream IM/DD PON solu-
tion based on 50 Gbaud, 4-level Pulse Amplitude Modulation
(PAM4). Compared to non-return-to-zero (NRZ) modulation,
PAM4 is an attractive solution due to its reduced electro-optic
bandwidth requirements, albeit at the cost of reduced receiver
sensitivity. In order to boost sensitivity and achieve the 29 dB op-
tical loss budget, Semiconductor Optical Amplifiers (SOAs) can
be used as receiver preamplifiers, and have gained widespread
interest for IM/DD PON since they are readily integrable, can
operate in the C- and O-bands, and are relatively low-cost [7],
[8]. However, the impact of SOA non-linearities such as the gain
saturation-induced patterning effect is a concern, especially in
PON upstream transmission due to the large loud-soft packet
Dynamic Range (DR) inherent to PON burst-mode signalling.
The 19.5 dB DR specified by HS-PON could therefore pose
issues for realising 100G PAM4 in a scenario using an SOA
preamplifier, due to PAM4’s stringent linearity requirements.

Machine learning (ML) -based equalisation techniques have
been proposed to compensate expected fiber dispersion and
device impairments, including SOA preamplifier for future
PON scenarios [9], [10], [11]. Work has previously focused
on achieving the 29 dB optical loss budget, such as in [12]
where recurrent neural networks are used in conjunction with
an SOA preamplifier to realise a 30 dB loss budget for 100 Gb/s
PAM4. However, the implications of the challenging 19.5 DR
requirement have also drawn the attention of researchers using
non-ML techniques, as in [13] where the authors investigate
a look-up table pre-compensation technique on the transmitter
side, and [7] which implements a non-linear Volterra equaliser
(VNLE) to overcome SOA non-linearities and achieve 18 dB
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DR for 100 Gb/s PAM4. In this work, we will use VNLE as a
performance and complexity benchmark, since it is a popular al-
ternative to ML-based equalisers in IM/DD systems and widely
researched [14], [15], [16].

Previously, we proposed a recurrent neural network (RNN)
equaliser architecture based on Gated Recurrent Units (GRUs)
to extend the SOA input power dynamic range, and achieved
over 28 dB for 100 Gb/s PAM4 [17]. The GRU-RNN equaliser
achieved near complete recovery of modulated signals suffer-
ing from severe SOA patterning distortion while using only
3 symbol-spaced taps. The effectiveness of this GRU-RNN
equaliser suggested an intriguing possibility which we explored
in [6]: if such equalisers can enable the SOA to operate in gain
saturation with tolerable patterning impairments, can we exploit
the associated SOA gain suppression to reduce the input optical
DR to the following photo-receiver? This could be particularly
advantageous given the challenges of designing 50 Gbaud-,
high dynamic range-capable burst mode receivers (BMRx) with
sufficient linearity to support PAM4 modulation. The state of
the art was recently presented at ECOC22, with the presentation
of the first demonstration of 100 Gb/s PAM4 linear BMRx
which achieves 15.4 dB dynamic range [18]. Exploiting SOA
gain suppression in conjunction with our proposed GRU-based
equaliser could potentially enable significant DR gains using
such a BMRx in the future.

But to realise any potential gains in DR performance, GRU-
RNN equalisation must be shown to be robust to multiple system
impairments. Stringent component budgets will likely see 25G
optics being utilised in future PON standards, and fiber disper-
sion will be a serious obstacle for 100 Gb/s PAM4. Therefore
in [6] and here we investigate GRU-RNN equaliser performance
against a combination of SOA patterning, fiber dispersion up
to 91.8 ps/nm, and 25G bandwidth limitation. Exploiting SOA
gain suppression, the optical dynamic range is reduced to such an
extent that we realise 28 dB system dynamic range in continuous
mode using just two Rx electrical gain settings, with the further
introduction of some electrical saturation effects.

It is cost-effective to place expensive DSP at the optical line
terminal rather than at the multiple locations of individual PON
subscribers. However this requires OLT equalisation to be able
to deal with varying levels of distortion on a packet-by-packet
basis, and in the case of an SOA preamplifier this manifests
as different levels of non-linear patterning distortion among
loud and soft bursts. The proposed GRU-RNN equaliser using
only 3 input taps therefore has an efficiency advantage over
equalisation methods which rely on large numbers of taps to
deal with severe impairment, such as the feed forward equaliser
(FFE), since the excess taps required to compensate loud bursts
are wasted on less severe soft-burst impairments. However, there
exist difficulties around the implementation of an RNN-based
equaliser in hardware, specifically the timing requirements of
the RNN feedback mechanism, as noted in [12], [19]. Parallel
multi-symbol output schemes for neural network-based equalis-
ers have been investigated in [20], and also implemented on Field
Programmable Gate Arrays (FPGA) in [12], [19], [21], with the
authors of [19] realising NNE based on long short-term memory
(LSTM) with competitive complexity for coherent transmission.

Fig. 1. The measured gain curve of the SOA device under investigation as
PON OLT preamplifier is shown; the input saturation power is found to be
−8 dBm.

Here we investigate such multi-symbol techniques and their
impact on overall system DR and equaliser complexity in a PON
context. Further, we test the limits of this method and whether
the more complex feedback mechanism of LSTM-RNN offers
greater performance than our GRU-RNN.

Section II discusses the origins and implication of SOA gain
saturation for 100 Gb/s PAM4, as well as outlining the oppor-
tunity of exploiting SOA gain compression to boost achievable
DR. Section III gives an overview of the non-linear equalis-
ers being investigated: GRU-, LSTM-RNN, and multi-symbol
equalisation methods, as well as introducing VNLE which is
used as a conventional non-linear benchmark. The experimental
setup for emulating 100 Gb/s PAM4 upstream PON transmission
is detailed in Section IV, while results are presented in Section
V, with a final discussion on equaliser complexity included in
Section VI.

II. SOA PREAMPLIFIER FOR 100G PON

To meet the HS-PON 29 dB optical loss budget using 100 Gb/s
PAM4, SOA preamplifiers combined with photodiodes have
been proposed for the OLT [7]. However, the 19.5 dB PON
dynamic range requirement will mean SOA preamplifiers po-
tentially operating in the gain-saturated regime of the SOA for
high-power, loud bursts, leading to non-linear pattern-dependent
distortions of the modulated signal, known as patterning.

The optical input power at which the gain of an SOA decreases
by 3 dB is known as the SOA’s input saturation power, Pin, sat,
and for inputs greater than this the SOA operates in its non-linear,
gain-saturated regime. Fig. 1 shows the measured gain curve for
the SOA (Model: CIP SOA-S) used in this work. The 19.5 dB
DR requirement is superimposed on this, starting at −22 dBm
which is the system receiver sensitivity (see Section V), and
ending at−2.5 dBm> Pin, sat. Since the input saturation power
of this device is measured to be −8 dBm, loud packets will be
unable to avoid severe SOA patterning which ultimately limits
the achievable DR performance. Fig. 2 clearly illustrates the
detrimental effect this patterning has on a 100 Gb/s PAM4 signal.
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Fig. 2. (a) Normalised 50 Gbaud PAM4 symbol distributions and (b) eye
diagram are shown for an SOA input power of −15 dBm; (c) and (d) illustrate
the effect of severe gain saturation-induced patterning effect on such signals at
an SOA input power of 0 dBm.

The origin of SOA gain-saturation-induced patterning can be
understood by considering the carrier dynamics in the device
active region [22], [23]. The carrier population available for
stimulated emission is directly related to the gain of an SOA,
and so carrier population can be seen as a proxy for gain.

Gain saturation can occur when the rate of stimulated emis-
sion in the active region due to input optical power is such that the
rate of injected carriers due to the SOA bias current is insufficient
to maintain the current steady-state carrier population density,
resulting in a lower population density being established. Since
the SOA gain is directly related to the carrier population density
in the active region, increasing the input optical power, and
thus the rate of stimulated emission, beyond a critical value
Pin, sat will lead to gain saturation. Crucially, when the SOA
is operating in the gain saturation regime and the modulation
baud rate approaches the carrier recovery rate, defined as 1/τc
where τc is the spontaneous carrier lifetime, a steady-state carrier
density cannot be achieved, resulting in the gain seen by a
given data symbol becoming strongly pattern-dependent on the
symbols preceding it [23]. The extent of the patterning effect,
i.e. how many past symbols the current symbol gain depends
on, is related to the magnitude of the stimulated emission. This
means we expect patterning to increase in severity with increased
SOA input power, especially at the high baud rates required for
100 Gb/s PAM4. These patterning effects are clearly evident
in Fig. 2(c) and (d), where the SOA is operating far into its
non-linear gain saturated regime.

However, as we will show in this work, a PON system em-
ploying the GRU-RNN equaliser described in Section III can
recover signals from severe SOA patterning effects, and so the
SOA gain-saturation can be exploited to compress the optical
dynamic range between the SOA input, and its output to the Rx.
This DR compression is clearly illustrated in Fig. 4(b), where
the system DR of 28 dB is reduced to 14 dB at the photoreceiver
input. Such a scheme could potentially allow DR requirements to
be relaxed for the PON burst-mode electronics used to equalise
packet powers at the OLT.

III. MACHINE LEARNING AND NON-LINEAR EQUALISATION

TECHNIQUES

Neural Network Equalisers (NNEs) have been proposed as
a solution to SOA non-linearities for future PON systems [9],
[11], while Volterra equalisers are a competitive alternative,
which are also non-linear [7], [16]. However, these mostly
focus on achieving the optical loss budget set out in HS-PON,
and DR considerations are not discussed. Here we discuss the
merits of RNN-based equalisers over more traditional VNLE
and fully connected neural network equalisers (FC-NNE), in
terms of PON system DR and effectiveness against varying SOA
patterning impairment.

A. Neural Network Equalisation for SOA Patterning

The Feedforward Equaliser (FFE) is the most well-known
equalisation technique, widely used to compensate bandwidth
limitations and lesser fiber dispersion. However, FFE perfor-
mance is limited due to it being a linear equaliser governed by
the equation:

ŷt = w · xt

Where the equalised sample ŷt is simply a weighted sum of
ni input samples, xt, at time t, and optimised tap weights w.
Due to their linear design, FFEs are unsuitable for non-linear
impairments such as SOA patterning. However, FC-NNEs offer
a non-linear alternative, and can be seen as a non-linear extension
of the FFE, with FC-NNE layer equation given by:

at = ϕ (W · xt + b)

Where xt ∈ Rni is a vector of ni input samples at time t, W ∈
Rnh×ni , b ∈ Rnh are the trainable weights and bias terms for
thenh FC units in the layer,ϕ is a non-linear activation function,
and a ∈ Rnh is the output of the NNE neuron / layer. This output
is either fed to another layer, or is the final equalised output of
the FC-NNE. The number of trainable parameters Nparam and
real valued multiplication (RVM) operations NRVM involved
in each NNE considered in this work will be used as complexity
metrics in Section VI. To calculate these values for a single FC
layer in a NNE, we use the equations below:

Nparams = nh × (ni + 1)

NRVM = nh × ni

The total values for each equaliser considered in this work are
calculated and reported in Table I.

A drawback of both FFEs and FC-NNEs, is that the number
of equaliser input taps needs to be calibrated according to the
impairment being considered, and specifically that impairment’s
temporal characteristics. In [17], we showed the strong correla-
tion between the number of input taps and FC-NNE performance
compensating a range of gain-saturated SOA input powers, while
the FC-NNE structure (number of neurons, hidden layers) was
kept constant. From this it was clear that sufficient input taps
are needed to unlock the non-linear equalisation capabilities of
FC-NNE, with up to 40 taps being required to overcome severe
SOA patterning distortion at +5 dBm input power.
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Fig. 3. Schematics of (a) the proposed GRU-RNN equaliser implementing 4-output multi-symbol equalisation and showing reduced RNN feedback timing
requirements; (b) a single GRU unit showing how input and feedback information is controlled using gating mechanisms; and (c) similarly for a single LSTM unit,
which has a memory cell state ct which it can selectively update using input and feedback information.

This is a concern in the context of PON, since to equalise
variable levels of signal distortion among burst packets (loud,
soft, and everything in between), any proposed equaliser must
be capable of equalising the worst-case scenario, which will
require the most number of taps. However, for less stressed
packets in PON systems, i.e. the majority, these additional taps
will be surplus to requirements, and along with their associated
multiplications will represent wasted energy and latency.

B. Volterra Non-Linear Equaliser as an Alternative

The Volterra equaliser architecture is widely seen as an alter-
native to machine learning based techniques. It can be thought
of as a “super” polynomial fit to an equalisation problem, where
subsets of the input taps, specified by the memory depth of the
equaliser (m1,m2,m3), are combined in all possible permuta-
tions up to some arbitrary order. Due to the exponential scaling
of VNLE kernels, i.e. trainable parameters, in practice these
equalisers are normally restricted to order 3. Note that memory
depth m1 corresponds to the number of VNLE input taps.

However, the issue discussed for FC-NNE in PON is also
valid for VNLE. This is because its non-linear modelling ability
is based on second and third order combinations of its input taps,
and the number of kernels therefore scales exponentially with
the increased higher order VNLE memory depth required for
worst case loud packets in PON.

The equation which defines a 3rd order VNLE with memory
depths mi = 2li + 1 is given below:

y(n) = b+

l1∑

j1=−l1

k1(j1)x(n− j1)

+

l2∑

j1=−l2

l2∑

j2=j1

k2(j1, j2)x(n− j1)x(n− j2)

+

l3∑

j1=−l3

l3∑

j2=j1

l3∑

j3=j2

k3(j1, j2, j3)

× x(n− j1)x(n− j2)x(n− j3)

Where b is a constant bias term, k1, k2, k3 are the first, second,
and third order kernels respectively, andx(n), y(n) represent the
nth input sample and equalised output of the VNLE respectively.

The complexity metrics, i.e. number of parameters / kernels and
RVMs, can be calculated for such a VNLE using the following
equations:

Nkernels = m1 +
m2(m2 + 1)

2
+

m3(m3 + 1)(m3 + 2)

6

NRVM = m1 +m2(m2 + 1) +
m3(m3 + 1)(m3 + 2)

2

From these, and the VNLE defining equation above, it is clear
that the calculation of a single ith order term, requires i RVM
operations. Also evident is the exponential kernel scaling for
2nd and 3rd order terms. More details on VNLE principles and
operation can be found in [14], [15].

C. Advantages of Recurrent Neural Networks

However, it is possible to make the number of taps required by
an NNE agnostic to the degree of impairment. This is done using
neural networks that incorporate feedback mechanisms, known
as Recurrent Neural Networks (RNNs), which are designed to
process time-series data [24]. In contrast to FC-NNEs whose
equalisation performance is related to their input taps, RNN
equalisers can effectively leverage their feedback mechanism to
mitigate a range of non-linear inter-symbol interference extend-
ing beyond their immediate input taps. This makes it possible to
compensate a variety of non-linear impairments using as little
as 3 symbol spaced equaliser taps, as demonstrated in this work
and in [6].

The simplest recurrent neural network (RNN) is defined by
the layer equation:

ht = ϕ (W · xt + U · ht−1 + b)

This differs from the FC layer equation by the feedback term
U · ht−1, which is the recurrent weight matrix U acting on the
previous layer output ht−1. RNN equalisers based on this simple
recurrent layer have been used to equalise SOA non-linearities
to improve Rx sensitivity to meet the PON optical loss budget
with reduced equaliser tap numbers in [12].

However, within the ML community simple RNNs such as
these are known to be unstable and difficult to train for long-term
memory effects. For this reason, here and in [6] we propose using
an RNN equaliser based on Gated Recurrent Units (GRUs) [25],
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Fig. 4. (a) Experimental setup emulating upstream transmission in 100G PAM4 PON in continuous mode using an SOA preamplifier; (b) the effect of SOA
gain compression on input dynamic range to the SOA due to gain saturation; (c) graph showing the differential output from the photoreceiver amplifier with the
gain-switch point indicated along with 3% Total Harmonic Distortion threshold; and (d) eye diagrams of 100G PAM4 signals showing the effects of (1) Rx electrical
gain saturation, (2) 25 GHz bandwidth limitation, and (3) combination of SOA patterning effect and Rx electrical gain saturation.

due to their superior training and inference stabilities while
mitigating severe SOA patterning effects.

GRU-RNN equalisers implement a “gated” version of feed-
back mechanism, which is superior to that of standard recurrent
units. GRU operation is defined by the equations:

zt = σ (Wz · xt + Uz · ht−1 + bz)

rt = σ (Wr · xt + Ur · ht−1 + br)

ĥt = ϕ (Wh · xt + Uh · (rt ◦ ht−1) + bh)

ht = zt ◦ ĥt + (1− zt) ◦ ht−1

WhereW ∈ Rnh×ni ,U ∈ Rnh×nh , b ∈ Rnh are learned param-
eter matrices and bias vectors, σ is the sigmoid function, ◦ is the
Hadamard product, and non-linear activation ϕ, which is set to
tanh() in this work. The update and reset “gating” operation
outputs are zt and rt which are constrained to values between
0 and 1 due to the sigmoid activation. They control the flow
of information from the input xt and feedback ht−1 taps to the
candidate state, ĥt, and final output ht, as illustrated in Fig. 3(b).
This enables a GRU-RNN to determine the relevant feedback
and input state information for the current symbol equalisation.
The number of parameters and RVMs involved in a single GRU
layer is calculated using the equations below:

NGRU,params = 3nh × (ni + nh + 1)

NGRU,RVM = 3nh × (ni + nh + 1)

An alternative, more complex RNN unit is the long short-term
memory unit, or LSTM [26], which has been investigated for
equalising fiber dispersion in [10], [20]. The equations governing

LSTM operation are similar to those of the GRU, and are given
below:

ft = σ (Wf · xt + Uf · ht−1 + bf )

it = σ (Wi · xt + Ui · ht−1 + bi)

ot = σ (Wo · xt + Uo · ht−1 + bo)

c̃t = tanh (Wc · xt + Uc · ht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ tanh (ct)

LSTMs also use “gated” calculations but further incorporate a
“cell” state, ct, which serves as an explicit form of network
memory. This cell state can be selectively updated by the net-
work with each calculation step, using the input, output, and
forget gates: it, ot, ft, as well as a candidate cell state c̃t, as in
Fig. 3(c). Here, we investigate whether LSTM-RNN has an in-
herent performance advantage over GRU-RNN due to its explicit
memory cell, for compensating SOA patterning effect in the
context of 100 Gb/s PAM4 PON scenario. LSTM units involve
more parameters and multiplication operations than GRUs, and
this is reflected in the layer equations for Nparams and NRVM

shown below:

NLSTM,params = 4nh × (ni + nh + 1)

NLSTM,RVM = nh × (4ni + 4nh + 3)

The ability of RNN-based equalisers to implement feedback
effectively is achieved using the backpropagation-through-time
(BPtT) training algorithm [27], which is used in conjunction with
the gradient descent optimisation algorithm Adam [28]. BPtT
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works by “unrolling” an RNN along its feedback connection and
then backpropagating the error calculated through a loss function
along these feedback connections, effectively backwards in time.
By tuning the hyperparameter controlling the number of times
to unroll the RNN along its feedback, we can optimise the
network’s “memory”, i.e. ability to address ISI outside its im-
mediate input taps. Therefore, such a GRU-RNN can be trained
to overcome varying levels of SOA patterning effect without
changing its input structure, in contrast to the FC-NNE described
in the previous section. However, this advantage of RNN does
further compromise already long neural network training times,
with the BPtT algorithm being especially memory intensive.
How to train such an equaliser on a packet-by-packet basis in
PON is an important research question outside the scope of
the current article, although a potential solution may be to load
pre-trained weights to the equaliser as required.

D. Multi-Symbol Equalisation

While RNN feedback structures remove the dependence of
equaliser performance on input taps, this advantage comes with
difficulties related to hardware (ASIC, FPGA) implementation.
The feedback loops in RNN equalisers impose strict timing
requirements, with the output of an RNN network layer ht−1

required to propagate around the feedback loop in time to act as
input for the calculation of ht in the next calculation cycle. As
noted in [12], this limits DSP throughput, unlike in feedforward
based equalisers such as FC-NNEs and FFEs which can exploit
pipeline digital implementation [21]. Multi-symbol equalisation
techniques, such as that investigated in [20], offer a way of
alleviating this issue. This technique involves altering an RNN
equaliser’s structure to carry out parallel equalisation of multiple
symbols in the same calculation cycle, as shown in Fig. 3(a).
Whereas before, the output layer of such an equaliser consisted
of a single FC neuron with linear activation, we now increase the
output layer size ton-FC neurons, so that each equaliser calcula-
tion cycle will output n equalised samples. The feedback timing
requirements are therefore reduced by a factor of 1/n, thus
potentially relaxing the hardware implementation requirements.
Fig. 3(a) shows the structure of a GRU-RNN with 4 parallel out-
puts, referred to herein as GRU-PAR4. In future, we will append
-PARn to an equaliser’s name to indicate n parallel outputs.

Given an RNN-PARn equaliser, can it match the performance
of the original single output version of itself? If yes, then key
complexity metrics such as real RVM operations per equalised
symbol can be improved thanks to this built-in parallelism.
Therefore, according to this metric RNN-PARn could have
overall better computational efficiency than single-output RNN
equalisers, and even more efficient again than FC-NNE and
VNLE. In the context of PON and variable impairment levels
amongst burst packets, this sharing of equalisation calculations
among symbols is even more persuasive, since less calculations
per symbol corresponds to less calculations “wasted” on less
stressed, soft packets.

But how robust are different RNNs to increasing levels of
parallelisation? Once again, is the more complex LSTM-RNN
better suited to implement multi-symbol equalisation for

SOA patterning compensation? Is GRU-RNN equaliser size
(i.e. number of units, hidden layers) a factor in supporting
multi-symbol equalisation? These questions are discussed in
Sections V and VI.

IV. EXPERIMENTAL SETUP

Fig. 4(a) shows the experimental setup used to emulate an
upstream 100G PON scenario in continuous mode. Although
external or directly modulated lasers are preferred for upstream
PON transmission, an ideal high-power Tx is realised in the
C-band using an EDFA booster amplifier in conjunction with a
Mach Zehnder modulator, in order to isolate the SOA preampli-
fier and Rx impairments for study. This is driven by a differential
output DAC operating at 100 GSa/s, generating a 50 Gbd PAM4
signal with 6 dB extinction ratio. Linear pre-compensation cor-
rects for system bandwidth limitations up to 33 GHz.

The optical distribution network in a PON is responsible
for introducing loss through passive splitters as well as fiber
dispersion impairment up to 20 km transmission distance [1].
A Variable Optical Attenuator (VOA) emulates network losses,
allowing both loud and soft signal packets to be simulated
in continuous-mode, with SOA input power varying between
−26 and +6 dBm. The experiment was carried out in the
C-band using a 1550 nm laser since appropriate O-band
devices were unavailable, however SOA operating principles
are fundamentally unchanged between C- and O-band, and
therefore patterning effects could still be studied. Fiber
dispersion up to and beyond 81.6 ps/nm was emulated using
standard single mode fiber with dispersion parameter 17 ps/(nm
· km) at 1550 nm. This exceeds the 70 ps/nm dispersion expected
for 20 km transmission in the O-band using the upper-bound
dispersion parameter value of 3.5 ps/(nm · km) [29], with the
caveat of disparate dispersion slope.

The OLT comprises an SOA preamplifier (Model: CIP SOA-
S) kept at constant bias and a commercial photoreceiver with
integrated adjustable conversion gain. The SOA preamplifier
and photoreceiver characteristics are shown in Fig. 4(b) and (c).
Fig. 1 shows the measured gain curve for the SOA-S used in
these experiments at 100 mA drive current. In the context of the
imagined OLT Rx configuration, to support the 19.5 dB dynamic
range required by the ITU-T 50G standards, the SOA will need
to be driven into saturation by loud packets. This is due to the
sensitivity of the Rx configuration being −22 dBm, while the
SOA input saturation power is −8 dBm. This compresses the
system optical power DR from 28 dB to 14 dB at the SOA
output, as shown in Fig. 4(b), but introduces patterning effects
above the SOA saturation input power of −8 dBm, as evidenced
in the eye diagrams in Fig. 4(d), eye 3, which are later equalised
using NNEs.

This optical DR compression is such, that in this experiment
we use only two Rx gain settings at the photoreceiver to cover
the entire 28 dB system DR. The Rx gain is changed from
low to high setting at −15 dBm input to the SOA OLT as
shown in Fig. 4(c). The photoreceiver differential electrical
output is also shown, representing the amplitude swing between
the PAM4 outer symbols. The Rx has linear response (< 3%
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Fig. 5. Graphs showing bit error ratio (BER) performance for linear feedforward (FFE), non-linear feedforward (VNLE, FC-NNE), and non-linear feedback
(FFE+DFE, GRU-RNN, LSTM-RNN) equalisation algorithms in 100 Gb/s PAM4 (a) back-to-back, and (b) transmission experiments. Rx sensitivity and dynamic
range performances are inferred from these and other BER graphs.

THD - Total Harmonic Distortion) up to a differential output
swing of 450 mV, and the eye diagram 1 in Fig. 4(d) shows
clear degradation due to Rx electrical saturation at −15 dBm
input to the SOA. After receiver gain switch from 750 V/W to
125 V/W, the signal in eye diagram 2 shows no evidence of such
degradation at −12 dBm input.

Waveforms are captured using a 100 GSa/s real time scope
with 33 GHz bandwidth, while a 4th-order Bessel filter is
applied digitally to imitate 25G class opto-electronics. Offline
processing is then carried out, before DSP using 1 sample per
symbol is applied and final error analysis occurs.

In this work, equaliser training is carried out with a single
pseudo random quaternary sequence (PRQS14) waveform [30],
while multiple PRQS15 waveforms are used as test data and
for BER estimation. Overfitting is a well studied phenomenon
for NNEs [31], and performance overestimation is avoided by
using independent PRQS-15, -14, and -13, patterns to generate
the PAM4 symbols for testing, training, and validation respec-
tively. Further, equaliser performance is monitored on these
three datasets for signs of performance divergence which would
indicate overfitting, but which was not observed. Each of the
NNEs are trained using Adam optimisation for 1000 epochs
using the early stopping method, meaning training is halted once
performance improvement on the validation dataset stalls. This
ensures parity among FC-NNE, GRU-RNN, and LSTM-RNN
optimisation, while also ensuring excessive training does not
lead to overfitting to the training data.

V. RESULTS

In this work, we use the Hard Decision Forward Error Cor-
rection (HD-FEC) limit of 3.8× 10−3 bit error ratio (BER) for
determining system sensitivity and achievable dynamic range
(DR). BER is calculated using the counting method, and for
each BER data point reported here, ∼130 k symbols are used to

estimate the error rate. The RNN equaliser structures evaluated
here consist of a single hidden layer of 6 GRU, or LSTM units,
followed by an output layer of n- FC units with linear activation
which calculate the final n equalised samples. A larger version
of GRU-RNN with 16 GRU units in the hidden layer is reported
only in Fig. 8. The FC-NNE considered has two hidden layers
of 9 and 4 FC units respectively using tanh() activation and
single linearly activated FC as output. FC-NNE input taps is
optimised for severely impaired high input power packets in
our setup. The VNLE reported here and in Figs. 5 and 7 has
memory depth structure (41T, 13, 7), where the 41T input taps
were chosen to mirror that of the FC-NNE, and the 2nd and 3rd
order memory depths are optimised using brute force search.
Table I outlines selected VNLE and NNE equaliser structures
used in this work, as well as their associated complexity in
terms of trainable parameters and RVM operations per equalised
symbol.

Fig. 5(a) shows the 100 Gb/s PAM4 system back-to-back
(B2B) performance for FFE, NNE-FC, VNLE, GRU-RNN,
and LSTM-RNN. The optical preamplified Rx sensitivity is
measured to be −22 dBm at the HD-FEC BER threshold when
using equalisation. Assuming +8 dBm launch power at ONU,
this corresponds to a total system loss budget of 30 dB, which
exceeds the 29 dB outlined in HS-PON.

The combined non-linearities of the SOA preamplifier and
Rx electrical amplifier result in the distinctive “W” performance
curve seen in Fig. 5(a), when no equalisation is applied. At the
gain switch point of −15 dBm, the BER exceeds the HD-FEC
limit due to Rx electrical non-linearities for high gain setting, as
the Rx is operating well above the 3% Total Harmonic Distortion
operating point, as seen in Fig. 4(c) and eye diagram 1 in
Fig. 4(d). For SOA input powers above the SOA input saturation
power of −8 dBm, the BER again exceeds HD-FEC as the
SOA becomes gain saturated and the patterning effect begins to
distort the signal significantly. The DR without equalisation is
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Fig. 6. The strong dependence of B2B FC-NNE performance on the
equaliser’s number of input taps is shown, as well as the additional performance
advantage a non-linear FC-NNE has over the linear FFE, resulting in an observed
6.5 dB dynamic range improvement.

Fig. 7. Achievable dynamic range of the Volterra, FC-NNE, GRU-RNN, and
LSTM-RNN equalisers are shown to be similar when compared over a range of
dispersion values, with no equaliser showing clear performance advantage.

discontinuous between the two gain regimes, and it is therefore
clear from Fig. 5(a) that equalisation is required to approach
19.5 dB.

The performances of FFE and FC-NNE are also shown in
Fig. 5(a), with each equaliser’s tap numbers chosen to maximise
performance. The maximum achievable B2B dynamic range of
the linear FFE is measured to be 20.5 dB, which is greater
than the target 19.5 dB, but with only 1 dB tolerance. Fig.
5(b) shows this achievable DR is reduced to only 11 dB when
considering 81.6 ps/nm dispersion impairment, categorically
ruling out linear equalisation as a solution for 100 Gbit/s PAM4
in this context. The FC-NNE using 40 symbol spaced (T) taps
achieves 27 dB DR, corresponding to a 6.5 dB increase in
DR over optimal FFE, reflecting the non-linear nature of the
SOA patterning impairment, and corresponding equalisation
capabilities of FC-NNE.

Optimal FC-NNE input taps were determined using Fig. 6,
where FC-NNE layer structure is kept constant while input taps
are varied, and a strong correlation between input taps and B2B
DR performance for both FFE, and FC-NNE is observed. Both
equalisers achieve the −22 dBm receiver sensitivity reported

above regardless of input tap number, and gains in DR due to
increased input taps are achieved in the non-linear SOA regime
above Pin, sat = −8 dBm. Therefore, it can be inferred that
the increasing tap number requirements are due to the increas-
ing severity of SOA patterning distortion for high SOA input
powers. Beyond 40 taps, there is no improvement in FC-NNE
performance, which approaches GRU-RNN performance. This
suggests 40 tap FC-NNE is sufficient for the maximum extent of
SOA patterning seen at+6 dBm SOA input power. Figs. 5(b) and
7 show the 40 tap FC-NNE matches the GRU-RNN equaliser DR
up to 81.6 ps/nm dispersion, suggesting that FC-NNE learning
capacity matches that of the GRU-RNN, but with a strong
dependence on number of input taps.

Also shown in Fig. 5(a) is an FFE combined with decision
feedback equaliser (DFE) using 3 decision feedback taps. It
achieves 18.5 dB dynamic range B2B, which is reduced to
12 dB with 81.6 ps/nm dispersion impairment. No apparent
performance advantage is seen by including the 3 feedback taps,
and simply increasing FFE tap number to 40 outperforms the
FFE+DFE B2B DR.

The VNLE considered in this work has 41T taps and structure
(41T, 13, 7), for fair comparison with the FC-NNE. Fig. 5(a)
shows it matches the performance to the FC-NNE, achieving
∼ 27 dB DR for B2B, and falls slightly short of the GRU-RNN
performance. In the transmission case shown in Fig. 5(b), the
VNLE has the same performance as the FC-NNE, while Fig.
7 shows it also follows closely the same performance trend as
the proposed GRU-RNN. From these results it is clear that the
VNLE can emulate the non-linear modelling capabilities of the
different NNEs when applied to SOA patterning and dispersion
impairments, but does not exceed them in terms of performance.

The GRU-RNN equaliser using only 3 symbol spaced input
taps and with structure (6GRU, 1FC) achieves an impressive
> 28 dB B2B DR, and > 25 dB DR with up to 81.6 ps/nm
dispersion, greatly exceeding the 19.5 dB outlined in HS-PON.
This clearly illustrates the power of the GRU-based feedback
mechanism to overcome SOA patterning impairment, while
simultaneously avoiding the complexity bottleneck of excessive
input taps required by the FC-NNE solution to achieve the
same result. The proposed GRU-RNN is also clearly robust
to multiple impairments, as Fig. 5 demonstrates it overcoming
25G bandwidth limitations, fiber dispersion, and combinations
of SOA saturation and Rx electrical saturation. This suggest
that GRU-RNN equalisers could be suitable to exploit SOA gain
suppression in a system setting, to achieve extremely large > 28
dB system dynamic range. It is worth noting that in contrast to
our work in [17], the GRU-RNN equaliser does not fully recover
optimum BER at high SOA input powers, due to the fact that Rx
electrical saturation impairment is also present at these powers,
as seen in Fig. 4(c).

The more complex LSTM-RNN can only match the GRU-
RNN DR performance in B2B and transmission experiments but
cannot exceed it, as seen in Fig. 7, which also shows the FC-NNE
had similar performance over all dispersion values considered.
There appears to be no inherent advantage associated with
the explicit memory “cell” state of LSTM units, and therefore
LSTM-RNN does not offer any advantage over the less complex
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Fig. 8. Graph showing GRU-RNN high dynamic range performance can be
sustained when implementing multi-symbol output technique, at the cost of
larger network size.

GRU feedback mechanism in the context of 100 Gb/s PAM4 and
the SOA patterning impairment considered here. Fig. 7 suggests
that the equalisation capacities of each of FC-NNE, GRU-RNN,
and LSTM-RNN are similar, although the GRU-RNN is less
complex, with simpler feedback mechanism than LSTM-RNN,
and less required input taps than FC-NNE.

Multi-Symbol Equalisation

Fig. 8 shows the achievable DR for B2B and 81.6 ps/nm
dispersion cases for increasing numbers of parallel outputs.
The equalisers considered are the GRU-RNN and LSTM-RNN
as before, in addition to a larger version of the GRU-RNN
which uses 16 GRU units in the hidden layer. As the number
of parallel outputs is increased to 6 for small GRU-RNN, DR
performance drops off by 3 dB for B2B case, and 8 dB with
81.6 ps/nm dispersion. The LSTM-RNN does not improve upon
the GRU-RNN parallel performance, and so we conclude that
the added complexity of LSTM feedback and cell state memory
does not correspond to increased parallel performance.

Similarly, the larger GRU-RNN does not show significant
performance gains in the B2B equalisation task up to 6-parallel
output symbols, despite having increased learning capacity due
to it having ∼ 5 times the number of parameters and RVMs (see
Table I). However, in the transmission case the large GRU-RNN
achieves> 22 dB DR for up to 8 parallel outputs, outperforming
the smaller GRU-RNN by ∼ 7 dB.

While 8 parallel outputs may not sufficiently lower the RNN
feedback frequency for real-time implementation on existing
hardware, these results indicate that the multi-symbol equalisa-
tion technique is viable even for relatively small RNN equalisers
compensating severe impairments such as SOA patterning and
fiber dispersion. Additionally, evidence here and in the literature
suggests that the technique can be extended beyond the 8 parallel
outputs considered, with [19] successfully implementing an
LSTM based equaliser on FPGA with 61 parallel outputs, and
270 MHz clock frequency.

VI. COMPLEXITY ANALYSIS

Table I compares equaliser DR performance for B2B and
transmission experiments in terms of the complexity metrics:

trained parameters and RVM operations per symbol. The impli-
cations of the FC-NNE dependence on large numbers of taps to
compensate the SOA preamplifer patterning effect can be clearly
seen in Table I. The increase in FC-NNE input taps from 11 to
40 allows the equaliser to achieve 27 dB DR performance, and
approach the performance of GRU-RNN, however this comes at
the cost of an 170% increase in trainable parameters, and 187%
increase in RVM operations per equalised symbol. Meanwhile,
the VNLE 1st, 2nd, and 3rd order terms contribute 41, 91, and 84
kernels respectively, for a total of 217 including bias term. This
is appreciably less than the FC-NNE but still greater than that of
the GRU-RNN. However, the VNLE requires 475 RVMs, more
than the FC-NNE, and significantly more than the GRU-RNN,
underlining the importance of the VNLE kernel equation in
Section III which exhibits exponential growth with respect to
2nd and 3rd order memory depths.

The GRU-RNN (small) uses only 3 symbol-spaced taps, and
has reduced complexity and thus increased efficiency com-
pared to the 40 tap FC-NNE. It uses only 187 parameters, and
186 RVM operations per equalised symbol to achieve 28 and
25 dB DR performance for B2B and 81.6 ps/nm dispersion
scenarios respectively. Additionally, the LSTM-RNN equaliser
offers no tangible benefit over the GRU-RNN in terms of DR
performance, while using ∼ 1.3 times the number of trainable
parameters and RVM operations.

As discussed, the hardware implementation of RNN equalis-
ers will be extremely challenging at 100G PAM4 data rate due
to issues related to recurrent feedback mechanism latency. By
implementing parallel outputs, we relax these timing require-
ments, and Table I highlights the reduction in RVM operations
per symbol associated with this technique. There is an increase
in total GRU-RNN parameters from the original value of 187 to
262 when implementing GRU-PAR4 equaliser, but the number
of multiplication operations per equalised symbol drops from
186 to just 64.5, a reduction of 65%. This represents a significant
increase in equalisation efficiency over that of FC-NNE, which
would be especially important for burst-mode PON where the
majority of burst-packets will not require the full equalisation
capabilities of the GRU-RNN or FC-NNE which are designed
around the worst-case, loud burst-packet.

The large GRU-RNN with 16 GRU units in its hidden layer
has increased learning capacity over the smaller GRU-RNN
considered, and as such can support > 22 dB DR for up to 8
parallel outputs. This would alleviate the latency issues faced
when trying to implement such a GRU-RNN equaliser in hard-
ware, but comes at the cost of significant increases in parameters
and thus equaliser memory footprint, with GRU-PAR8 using
1432 parameters and needing 178 multiplication operations per
equalised symbol.

VII. CONCLUSION

We achieve large 28 dB PON optical dynamic range using
100 Gb/s PAM4 system with SOA preamplifier, which is de-
signed to emulate a future PAM4 PON scenario in continuous
mode. A GRU-RNN equaliser using only 3 symbol-spaced input
taps is proposed to recover modulated data signals from the
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TABLE I
COMPARISON OF NON-LINEAR EQUALISER DR PERFORMANCE, PARAMETERS, AND REAL VALUED MULTIPLICATION OPERATIONS

extreme patterning effect present in high-power, loud packets
received at the OLT. This allows us to operate the SOA in
its non-linear, gain-saturated regime which we exploit at the
system level to reduce optical dynamic range from 28 dB at the
SOA input, to just 14 dB incident on the photoreceiver; which is
within reach of current state of the art LBMRx technology. The
GRU-RNN is shown to be robust to a combination of device and
fiber impairments, including up to 91.8 ps/nm fiber dispersion,
SOA patterning, 25G bandwidth restriction, and electrical Rx
saturation effects. The performance of VNLE, conventional
FC-NNE using 40 input taps, and LSTM-RNN equaliser with
sophisticated explicit memory cell state, are shown to match
that of the GRU-RNN for up to 81.6 ps/nm of dispersion, but
do not offer any DR performance advantage in the experimental
scenario realised here.

Multi-symbol equalisation techniques are investigated for
GRU-, and LSTM-RNN as a means to alleviate the strict timing
requirements of RNN equalisers for future hardware implemen-
tations. Both types of RNN achieve > 25 dB B2B DR for 4
parallel symbol output, and no significant advantage is observed
using LSTM over GRU units. However increasing the number
of gated units in the GRU-RNN from 6 to 16 allows for up
to 8 parallel symbol outputs with transmission performance
approaching the B2B performance of a single output GRU-RNN
equaliser.

GRU-RNN requires significantly less input taps than a FC-
NNE or VNLE, and uses a simpler feedback mechanism than
the LSTM-RNN, resulting in it needing less multiplication op-
erations per equalised symbol and hence greater computational
efficiency. Based on our results, we believe that GRU-RNN

architecture is well placed amongst neural network equaliser
solutions to support the equalisation requirements of future, high
DR, 100G PON.
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