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Abstract—We demonstrate a high power (watt-level) self-Raman
Nd:GdVO4 Laguerre-Gaussian (LG) mode laser by employing an
off-axis needle-pumping geometry. The system selectively produces
right- or left-handed LG modes by adjusting the off-axis displace-
ment of the pump beam relative to the laser cavity. The maximum
output power of the generated 1173 nm LG beam (corresponding to
the first-Stokes emission of from the 882 cm-1 Raman shift) reaches
1.2 W for an absorbed pump power of 8.6 W. Furthermore, the
system enables the generation of a watt-level bottle beam, formed
by the coherent superposition of Gaussian and radial LG modes.

Index Terms—Bottle beam, Laguerre-Gaussian mode, off-axis
needle-pumping geometry, self-raman Nd:GdVO4 laser.

I. INTRODUCTION

LAGUERRE-GAUSSIAN (LG) modes [1]–[4] are eigen
modes of the paraxial wave equation in cylindrical co-

ordinates. They possess several unique properties, such as an
annular spatial intensity profile with a central dark spot, unique
handedness, and orbital angular momentum (OAM), �� (where �
is termed a topological charge), owing to their helical wavefront.
Their unique properties have resulted in their use across a wide
range of applications, including optical tweezers/manipulators
which impart orbital motion to trapped particles [5]–[8], quan-
tum/optical telecommunications with high data capacity [9]–
[12], nano/micro-fabrication of helical structures [13]–[15], and
optical vortex laser induced forward transfer (LIFT), a process
in which a single optical vortex pulse is used for nozzle-free

Manuscript received 10 June 2022; revised 20 July 2022; accepted 23 July
2022. Date of publication 27 July 2022; date of current version 3 April 2023.
This work was supported in part by the Kakenhi Grants-in-Aid under Grants
JP16H06507, JP17K19070, and JP18H03884, in part by the Japan Society for the
Promotion of Science (JSPS), and in part by the Japan Science and Technology
Agency (JST) Core Research for Evolutional Science and Technology under
Grant JPMJCR1903. (Corresponding author: Takashige Omatsu.)

Yuanyuan Ma, Katsuhiko Miyamoto, and Takashige Omatsu are with the
Graduate School of Engineering, Chiba University and Molecular Chirality
Research Center, Chiba University, Inage-ku 263-8522, Japan (e-mail: ma
yuanyuan612@gmail.com; k-miyamoto@faculty.chiba-u.jp; omatsu@faculty.
chiba-u.jp).

Haruna Sugahara is with the Graduate School of Engineering, Chiba Univer-
sity, Inage-ku 263-8522, Japan (e-mail: h.sugahara0203@chiba-u.jp).

Andrew J. Lee and Helen M. Pask are with the MQ Photonics Research Centre,
Department of Physics and Astronomy, Macquarie University, Sydney, NSW
2109, Australia (e-mail: alee@sciwrite.com.au; helen.pask@mq.edu.au).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JLT.2022.3194186.

Digital Object Identifier 10.1109/JLT.2022.3194186

printing of pico-liter-scale donor microdots with an extremely
long working distance [16]–[18]. To increase the diversity of
applications for these unique laser beams, it is highly desirable
to generate LG laser outputs having wavelength-versatility.

Stimulated Raman scattering (SRS) [19]–[23] is a well-known
third-order nonlinear process used for wavelength conversion
of laser beams. It is a process which, has the capacity to
convert existing laser wavelengths to other more difficult to
generate wavelengths. One example of such is for the conversion
of common neodymium-based wavelengths at ∼ 1064 nm to
wavelengths in the 1.2 μm region, the so-called ‘water win-
dow’ which are of extreme importance in advanced bio-medical
applications [24]–[27]. Of particular interest is the application
of so-called self-Raman laser crystals such as neodymium ions
doped vanadates [28]–[31] and double tungstates [32]–[35],
which double as both the laser gain medium and the Raman
conversion crystal and enable the development of ultracompact
wavelength-versatile solid-state lasers.

Self-Raman LG mode lasers have previously been constructed
using a variety of approaches, perhaps the most common being
via the use of a cavity mirror with an engineered damage spot
which forces the laser to oscillate on LG modes [36], [37].
However, severe thermal effects can significantly impact the
reliable power scaling of these cavity designs and degrade the
beam quality of the generated LG modes at high pump powers
(M2>2.5 at the absorbed pump power of 6.8 W) [36].

An alternative approach to generating LG modes from a
self-Raman Nd:GdVO4 laser is through the use of a shaped
pump beam which utilizes an axicon lens and an objective
lens [38]. This system design enables the selective generation
of a first-order LG mode with zero-OAM, resulting from the
incoherent superposition of left- and right-handed LG modes.
The system can generate LG mode emission at wavelengths of
either 1108 nm or 1173 nm individually, or 1108 nm and 1173 nm
simultaneously merely by changing the alignment of the laser
cavity output coupler. However, the output powers in [38] were
limited to 49.8 mW and 133.4 mW at the wavelengths of 1108
nm and 1173 nm respectively even at a relatively high pumping
level (absorbed pump power of ∼ 5.7 W).

An off-axis pumping approach has also been well estab-
lished in moderate gain 1 μm lasers [39], [40]. It allows the
effective achievement of spatial intensity matching between
the higher-order mode (vortex mode) and the pumped region,
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thereby resulting in selective generation of the LG0,±1 modes
in end-pumped solid-state laser systems. Also, the astigmatic
thermal lens effects in the gain medium break the cylindrical
symmetry of the cavity, so as to control the handedness of the
generated LG modes.

However, there are no demonstrations of the vortex mode
generation by employing this technique in such CW self-Raman
lasers with extremely low gain and high Q cavity lasers.

The Poincaré sphere, which maps right- and left-handed
circular polarization states onto its north and south poles, is
commonly used to visualize the polarization states of monochro-
matic light. Analogous to this, the equivalent orbital Poincaré
sphere (eOPS) [41]–[43], in which its north and south poles
represent LG modes with OAM=±�h̄, can be used as a means of
visualizing different states of light; that is orbital Poincaré (OP)
modes can be represented as a superposition of the two poles.

The first-order OP modes OP (θ, φ) are expressed by

OP (θ, φ) = LG0,+1 cos θ · e−iφ + LG0,−1sinθ · eiφ, (1)

where LG0,±1 are the orthogonal LG modes with topological
charges of ±1, and θ and φ are the polar and azimuthal angles of
eOPS, respectively. The states of right- and left-handed (LG0,±1)
vortex modes are represented at the two poles.

Recently, we and our co-workers demonstrated a diode-
pumped Pr3+:YLF first-order orbital Poincaré mode laser uti-
lizing an off-axis optical needle pumping geometry, in which a
combination of off-axis pumping configuration and lenses with
strong spherical aberration produced an off-axially-localized
‘hotspot’ with a long confocal length and contained a significant
fraction of the optical energy [44]. This system enabled the
production of a variety of structured modes, such as Hermite-
Gaussian (HG), LG and Herimite-Laguerre-Gaussian (HLG)
modes, each of which could be represented on a first-order
equivalent orbital Poincaré sphere (eOPS). This system also
generated emission even at 523 nm from a laser line which has
low emission cross-section.

In this paper, we report on the first demonstration (to the best
of our knowledge) of a high power (watt-level) continuous-wave
self-Raman Nd:GdVO4 LG mode laser through the application
of the above mentioned off-axis optical needle pumping geom-
etry. This work also includes exotic results that the generated
fundamental and Stokes outputs possess the same handedness.

A maximum LG mode output power of 1.2 W was obtained
for an absorbed pump power of 8.6 W (pump power of 10.1 W),
corresponding to a conversion efficiency of 14.0%. These are the
highest powers (to the best of our knowledge) obtained from an
LG mode self-Raman laser. We demonstrate that the handedness
of the fundamental (1063 nm) and Stokes (1173 nm) vortex
outputs can be controlled through the off-axis displacement of
the pump beam. Furthermore, the system enables the generation
of a versatile range of structured laser modes which can be
mapped on the OPS.

Interestingly, the system, when utilizing an on-axis pumping
arrangement, also produces a watt-level 1173 nm bottle beam
which has a three-dimensional dark core, and is formed by the
coherent superposition of Gaussian and radial LG modes.

II. EXPERIMENTS

Fig. 1(a) is a schematic showing the layout of the experimental
laser system. The self-Raman laser crystal was an a-cut 0.3 at.%
Nd:GdVO4 crystal with an aperture of 3 × 3 mm2 and a length
of 10 mm. It was wrapped with indium foil and mounted in
a water-cooled copper block and its surface temperature was
maintained at 19°C. The plane input facet of the self-Raman
crystal was used as the laser cavity input mirror. It was coated for
high reflectivity (R > 99.99%) across the range 1033-1263 nm
and high transmission (T > 99.933%) for 879 nm. A concave
output coupler (OC) was used with the self-Raman crystal to
form the laser cavity, coated for high reflectivity (R > 99.99%)
for 1063 nm, and 1% transmission at 1173 nm. The laser cavity
length was fixed at 15 mm.

A fiber-coupled 879 nm laser diode (nLight element e03) with
a core diameter of 200 μm and a numerical aperture of 0.22 was
used as the pump source, and its output was collimated and then
focused by two plano-convex lenses (L1, f = 50 mm; L2, f = 25
mm) onto the input facet of the self-Raman laser crystal. These
lenses were oriented so that the convex surfaces of the lenses
were facing to incident pumping beam, and the strong spherical
aberration induced by the two plano-convex lenses produced
a ‘needle-like’ pump beam (with a bright spot diameter of ∼
97 μm and a confocal length of ∼1 mm (in the crystal)). This
is shown in Fig. 1(b). In contrast, in a conventional pumping
geometry, where the convex surfaces of the lens L1 and L2 are
facing each other, a focused spot with a diameter of ∼115 μm
and a confocal length of ∼0.5 mm is produced, as shown in
Fig. 1(c). The absorption efficiency of the pump beam in the
crystal was measured to be ∼ 85%.

The OC of the laser was mounted on a three-dimensional
translation stage to enable off-axis pumping wherein displace-
ments of the OC along the x and y axes altered the spatial
overlap of the pump beam and cavity modes resulting in the
generation of a range of spatial modes, such as HG, LG, and
HLG modes [45]. With this system, the fundamental output
wavelength was 1063 nm and the corresponding Stokes output
occurred at 1173 nm. The spectral output of this system is shown
in Fig. 1(d). The collinear fundamental and Stokes beams were
spatially separated using a transmitting grating (200 lines/mm),
and they were characterized using a laser beam profiler (Spiricon
SP620U).

III. RESULT AND DISCUSSION

When the system was operated using an on-axis pumping con-
figuration (in which all components were aligned collinearly),
the system produced Bessel beam-like fundamental and Stokes
outputs with multiple rings. Interestingly, when focused, the
Stokes output was transformed and exhibited an annular spatial
form with a dark core in the near field, manifesting as a ‘bottle
beam’ with a three-dimensional dark core surrounded by a
bright region along with the propagation direction of the optical
axis.

The experimentally and theoretically modelled spatial form
of this ‘bottle beam’ as it propagates through space is shown in
Fig. 2 . The maximum output power of the Stokes output was
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Fig. 1. (a) Schematic showing the experimental setup for direct generation of structured light beams from a self-Raman Nd: GdVO4 laser. LD: 879 nm fiber-coupled
laser diode; L1: collimating lens ( f = 50 mm); L2: spherical planoconvex lens ( f = 25 mm); HR: high-reflection coating for 1033-1263 nm; OC: output coupler.
(b) Spatial profiles of the ‘needle-like’ pump beam as a function of position inside the crystal. (c) Spatial profiles of the pump beam as a function of position inside
the crystal when using a conventional pump lens arrangement. (d) Normalized laser spectrum measured at the fundamental (1063 nm) and Stokes (1173 nm) fields.

measured to be 0.96 W at an absorbed pump power of 9.8 W
(pump power of 11.5 W).

The generation of ‘bottle beams’ has been demonstrated in
both degenerate and frequency-doubled hemispherical cavities,
in which Gaussian and higher-order transverse modes operate at
the same frequency [46], [47]. The ultrahigh-Q self-Raman laser
in this experiment also facilitates coherent coupling between
Gaussian and several radial LG (� = 0, p � 0) modes leading
to ‘bottle beam’ generation. The ‘bottle beam’ u(r, z) can be

expressed by the following equation,

u (r, z) =
∑
p

apLGp,0 (r) e
i(2p+1)tan−1

(
z

zR

)
(2)

where r and z are the radial and propagation coordinates, p
is the radial index, ap is the relative amplitude of the LGp,0

mode
(∑

p |ap|2 = 1
)

, and zR is the Rayleigh length (zR ∼
63 mm in this experiment). The ‘bottle beam’ is thus produced
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Fig. 2. Plots showing the experimental and theoretically-calculated transverse spatial forms of the generated bottle beam at different longitudinal positions relative
to the Rayleigh length (zR). The output power of the generated bottle beam was then measured to be 0.96 W at an absorbed pump power of 9.8 W.

Fig. 3. Plots of the experimentally-derived spatial intensity profiles of (a)
the fundamental (1063 nm), and (b) the Stokes (1173 nm) outputs in the near-
field. Corresponding far-field patterns of (c) the fundamental and (d) the Stokes
outputs. The absorbed pump power was fixed to be 8.6 W. The fundamental and
Stokes output powers were then measured to be 23 mW and 1.2 W, respectively.

through the coherent coupling of LGp,0 modes with different
Gouy-phase. In fact, simulations, in which a central dark core
with three high-intensity rings appear at the longitudinal position
of z= 0.54 zR, support the experimentally observed bottle beam,
as shown in Fig. 2. The relative amplitudes of LGp,0 modes
with radial indices of p = 0, 2, and 4 were then fixed to be
0.7, 0.49, and 0.52, respectively. This demonstrates a compact
and efficient method, by which watt-level bottle beams with
high beam quality can be generated from a self-Raman laser
configuration combined with an on-axis needle pump beam
arrangement.

When the off-axis displacement of the OC from the optical
axis of the cavity was appropriate (Δx = ±31.5 μm, Δy =
±22.5μm), the fundamental output (1063 nm) exhibited a mixed
mode profile with a central dark core, and was comprised of

Fig. 4. Plot of the power-transfer curve of the Stokes LG output power as a
function of the absorbed pump and pump powers.

several high-order modes; this form was maintained for all input
pump levels. For this fundamental wavelength spatial form, the
1173 nm Stokes output exhibited perfect 1st order LG mode (|�|=
1) properties in both the near and far-fields even at the high pump
levels (absorbed power ∼9.8 W, pump power 11.5 W). This was
due to beam cleanup effects, as reported in prior publications
[45], [48]. The maximum Stokes output power was measured
to be 1.2 W, corresponding to an optical conversion efficiency
of 14.0% and a slope efficiency of 16.7% at an absorbed pump
power of 8.6 W. These values are the highest, to the best of
our knowledge, obtained from a diode-pumped self-Raman, LG
mode laser. It should be noted that the Stokes output rolled over
for absorbed pump powers of > 8.6 W (pump powers of >10.1
W) owing to thermal issues in the self-Raman laser crystal. The
thermal lensing power (focal length) in the system is estimated to
have reached up ∼110 m-1 (∼0.9 cm) at a maximum absorbed
pump level (8.6 W), this being calculated using the model of
Innocenzi, in which the pump beam exhibits a Gaussian spatial
form [49]. Heat loading in the crystal due to the quantum defect
between the pump and Stokes photons was assumed to be∼0.24.
This theoretical analysis of the thermal lensing effects might
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Fig. 5. Plots of experimentally determined spatial intensity profiles (a,b) and corresponding self-interference fringes (c,d) of the fundamental (a,c) and Stokes
(b,d) outputs at the displacement Δx= 31.5μm of OC along x-direction. The spatial intensity profiles (e,f) and corresponding self-interference fringes (g,h) of the
fundamental (e,g) and Stokes (f,h) outputs after shifting the OC at the displacement Δx = -31.5μm of OC along x-direction.

be slightly overestimated, however, it correlates well with the
experimental observations.

A self-referenced and laterally-sheared interferometer was
constructed in order to analyze the wavefronts of the funda-
mental and Stokes outputs, similar to that described elsewhere
[45], [50]. The fundamental and Stokes outputs were found to
possess first-order optical vortex characteristics with � = +1
(-1), as evidenced by a pair of upward (downward) and down-
ward (upward) Y-shaped fringes. Control of the handedness
of the fundamental and Stokes outputs was achieved through
appropriate manipulation of the off-axial displacement of the
OC towards opposite x and y directions, as detailed in our prior
publications [45]. We observed that the Stokes output typically
carried the same handedness as that of the fundamental output,
as shown in Fig. 5(d), (h). This is explained by the fact that in
general, the Raman gain is determined by the spatial intensity
profile of the fundamental output. Therefore, direct OAM trans-
fer of the fundamental output to the Stokes output is inherently
inhibited [36]. In contrast, we believe that our experimental
observations are indicative of the handedness of the fundamental
and Stokes outputs being determined by the off-axis pump-
ing in conjunction with thermal lensing effects breaking the
cavity-symmetry.

Through appropriate off-axis displacements of the OC, we
were able to map the experimentally generated HG and HLG
modes onto various equator and meridian positions of an OPS,
as shown in Fig. 6. For each of these experimentally generated
modes, the output Stokes laser power was in the range 0.9∼1.0
W. It should be noted that while each of the modes mapped onto
the OPS could be faithfully generated, it did require very precise
cavity alignment due to the severe thermal issues manifesting
in the self-Raman laser crystal. We believe that such watt-level
OPS mode sources operating in the 1.2 μm region have potential

Fig. 6. Plots of the spatial intensity profiles of both experimental (right images)
and theoretical modes (left images) generated at a wavelength of 1173 nm,
mapped onto the PS. The numbers indicate the positions of each beam on the
OPS.

for the development of advanced bio-medical technologies and
applications.

IV. CONCLUSION

We have successfully demonstrated, for the first time to the
best of our knowledge, the direct generation of watt-level 1173
nm LG mode emission with � = ±1 from a diode-pumped,
self-Raman Nd:GdVO4 laser utilizing an off-axis optical needle
pumping configuration. Notably, the generated fundamental and
Stokes wavelength outputs carried the same handedness due
to breaking of the cavity-symmetry induced by the off-axis
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pumping. A maximum 1173 nm LG mode output power of 1.2
W was achieved for an absorbed pump power of 8.6 W (pump
power of 10.1 W). Additionally, it was possible to produce a
‘bottle beam’ output with a power of 0.96 W at a wavelength of
1173 nm by using an on-axis pumping geometry. We anticipate
that further power scaling of the system will be possible by
improving the heat management characteristics of the system
and optimization of the pump system. Importantly, we believe
that this work is a significant step towards novel laser sources
which operate in the 1.2 μm ‘water window’ region, which
may enable new, advanced bio-medical applications. We also
anticipate that by combining this laser design with intracavity
sum frequency mixing, wavelength-versatile LG mode lasers in
the visible region will also be developed.
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