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Integrating Cognitive Science
and Systems Biology
This article uses concepts ranging from cognitive science to control theory to discuss how
learning in biological systems is possible outside of, or even without, a brain.

By JEREMY GUNAWARDENA

ABSTRACT | Learning is commonplace in organisms such as

ourselves and even in organisms as far distant as the bee

and the octopus. Such learning is implemented by brains, or

neuronal networks, and has been extensively studied within

ethology, psychology, cognitive science, and neuroscience.

Whether learning also takes place in nonneuronal settings has

remained a matter of sustained controversy, too often domi-

nated by ideological views. In this survey, I will explain how

learning can be rigorously interpreted as a form of information

processing and then explore the evidence for whether learning

also takes place in organismal contexts outside the brain,

such as physiology, development, and individual cells. I will

try to explain why it is important to build bridges in this way

between cognitive science and systems biology, why concepts

and methods from various branches of engineering may be

helpful in this task, and what the eventual impact may be on

how we think about the organism.

KEYWORDS | Active inference; Developmental Origins of

Health and Disease (DOHaD); homeostasis; internal models;

mind as model; mutual information.

I. I N T R O D U C T I O N
Learning may be informally defined, for now, as a

persistent change in behavior in response to the same
stimulus [1]. Humans excel in learning new skills, such as
languages and sports, while other animals, such as dogs,
birds, bees, and octopuses, have their own remarkable
capabilities [2]. There are many forms of learning, some
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of which have been characterized as the basis for scien-
tific studies. Elementary forms of nonassociative learning
in response to a single stimulus include habituation [3]
or its counterpart, sensitization [see Fig. 1(a) and (b)].
More complex forms of conditioning involve the learn-
ing of associations between multiple stimuli. Ivan Pavlov
(1849–1936) discovered early in the 20th century how
a dog could learn to salivate [the conditioned response
(CR)] to the ringing of a bell [the conditioned stimulus
(CS)], factors normally unrelated to each other, by repeat-
edly associating the bell with the presentation of food [the
unconditioned stimulus (US)], which prompts salivation
[the unconditioned response (UR)] as part of the digestive
process Fig. 1(c.1). This kind of classical conditioning often
deals with involuntary reflexes, such as salivation, which
are not under the organism’s intentional control. Some-
what later, building on the work of Edward Thorndike
(1874–1949) and Clark Hull (1884–1952), Burrhus Fred-
erick Skinner (1904–1990) elaborated the carrot and stick
approach that generations of parents had figured out for
themselves into instrumental, or operant, conditioning in
which intentional, goal-directed behaviors are modified
by positive or negative reinforcement [see Fig. 1(d)]. A
YouTube video of Skinner’s pigeons playing ping pong1

gives a vivid sense of the generality and effectiveness of
instrumental conditioning.

These learning concepts originate in behaviorist psychol-
ogy [4]. Learning has been reconsidered within the cogni-
tive science that replaced behaviorism (see Section II), and
I will suggest in Section VI a definition of learning that may
be more appropriate for systems biology.

Learning is a central topic in ethology, psychology,
cognitive science, and neuroscience. In these disciplines,
it is assumed to be implemented by minds, brains, or

1https://www.youtube.com/watch?v=vGazyH6fQQ4
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Fig. 1. Forms of learning. (a) Habituation. Hypothetical

illustration, showing diminishing responses to repeated stimuli

(arrows). For additional properties, see [26]. (b) Sensitization. The

opposite effect to habituation, in which the response increases.

(c) Classical conditioning, adapted from [27, Box 1]. The right-hand

column shows whether or not a CR develops to the indicated CS.

Protocol 1 is the traditional Pavlovian one in which the CS (CS1, blue

bar), such as a tone or a light, is paired with the US (red star),

shown here at a fixed delay from CS onset. IU and IC denote the

US–US interval and the CS duration, respectively. In protocol 2, the

US are presented at random with equal probabilities of occurring

with or without the CS, and a CR does not develop. Protocols 3 and 4

are cue competition schemes involving multiple CSs. Protocol 3 has

two phases: in the first phase, a CR is established to CS1; in the

second phase, the compound stimulus CS1�2 is presented with the

US, but a CR to CS2 does not develop. In protocol 4, CS1 is always

presented as a compound with either CS2 or CS3, and the US occurs

only for CS1�2. A CR develops to CS2 presented in isolation but not

to CS1. In protocol 5, the CS is never paired with the US, but an

inhibitory association still arises (see text). (d) Instrumental

conditioning, showing a Skinner box, in which an organism can be

given pleasant (food) or unpleasant (shock) reinforcement,

depending on its responses (lever) to various stimuli (light and

tone); illustration taken from the Wikipedia entry for Operant

Conditioning Chamber under the CC BY-SA 3.0 license.

neuronal networks, depending on the setting. The question
that I want to discuss here is whether learning is also
relevant in other biological contexts, such as physiology
or development, in which the brain is not the only organ
that is present, or in individual cells, in which there are
no neuronal aspects at all. Our focus will largely be on
mammals like us, with the fascinations of invertebrates,
plants, amoeba, and prokaryotes [5]–[8] largely falling
outside the scope of this limited survey. The questions of
how cognition evolved and how it might be embodied
have also elicited much recent interest [2], [9]–[12], and
the “cognitive lens” offers an inclusive perspective on
many aspects of biology [13]. However, cognition is a
more elusive concept than learning. The latter has both
experimental and theoretical rigor, as we will see, and
more than enough subtlety to keep us busy.

But why should this question of learning be of interest to
readers of the IEEE Proceedings and to systems biologists
like me, whose day job is studying molecular information
processing?

First, and perhaps most significantly, biological learn-
ing, as described above, can now be seen as a form of
information processing, in which the representation within
the organism of the information that has been acquired
forms a model of the environment, from which predictions
are made about future events (see Section II). The idea
of mind as model can be traced back to the philosophy
of Kant and to Helmholtz’s work on perception [14], and
it has acquired broad foundations in modern cognitive
science (see Section III-E). This information processing
formulation abstracts learning from any specific biological
implementation and suggests how it could be relevant to
many different biological contexts or, indeed, to machines.
The interplay between learning by organisms and learning
by machines is long-standing. The deep learning in neural
networks that have been so much in the news of late has
its roots in neuroscience [15]. Nowadays, we have come
full circle; computational learning, information theory, and
control theory have become important tools for analyzing
biological learning.

Second, learning provides a unifying idea, which links
disparate areas and scales of biology, which are not directly
concerned with minds, brains, or neurons. It offers a
conceptual framework and an experimental paradigm for
interpreting biological phenomena and understanding the
organism in a different way. At least, that is one of the
messages that I hope you will take away.

Unifying ideas are a feature of systems biology although
opinions differ as to what this subject is about. It is often
equated with “-omics” and somewhat less often with “mod-
eling.” However, these are methods. What is the question?
I believe that the question is asking how we get from dead
molecules to living organisms. In the wake of the genome
projects, we think that we know most of the molecules,
so the important problem is no longer characterizing the
molecules—which was molecular biology—but asking how
the molecules collectively give rise to the phenomena of
life. This requires thinking differently and asking different
kinds of questions, rather than just using your favorite
hammer. Whether learning takes place elsewhere than
brains is the kind of different question, which may help
us better perceive how living systems emerge out of mole-
cules. The machine metaphor has been the key tactic in
trying to bridge this divide [16], [17], but the classical
machine that transduces energy or matter is not an agent
that changes itself by constructing representations of its
environment. Learning equips a machine with agency in
the form of goals and purposes and thereby captures an
essential feature of life.

Finally, there is a third reason why learning is so inter-
esting. It offers a way to study nature, or the capability to
learn, and nurture, or the environment that is learned, not
in opposition to each other, as is all too often the case, but
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as an integrated process through which organisms function
in the world. We can thereby leave behind us one of the
least productive arguments in biology.

My own route to thinking about learning goes back, in
part, to a lecture by Dennis Bray, in which he described
the extraordinary avoidance behaviors reported by Herbert
Spencer Jennings (1868–1947) in a single-cell protist, the
ciliate Stentor roeseli [18], [19]. Upon repeated irritation,
Stentor works through a hierarchy of increasingly vigorous
avoidance reactions before eventually detaching from its
holdfast and swimming away. This may be seen as a
form of nonassociative learning in which behavior changes
in response to a single stimulus but in a more complex
way than habituation or sensitization: the organism does
something different rather than the same thing in a dif-
ferent way. Dennis and I were not the only ones to be
captivated by such complex learning in a single cell [20],
but I was hugely disappointed to be told by the experts
that Jennings’ experiments could not be reproduced [21].
A closer reading, however, suggested that it was the
attempt at reproduction that was experimentally flawed,
not Jennings’ original work. That was my first exposure to
the sociology of science and the particular problems sur-
rounding learning [22, Chapter 1]. In the case of Jennings’
work, it seemed that the scientific community did not want
to believe that individual cells were capable of complex
learning and preferred to trust a shoddy experiment that
said the right thing to many good experiments that said
the wrong thing. Ideology trumped evidence. This was
troubling, to put it mildly—science is not supposed to
work like politics—and it sparked an unofficial, decade-
long, skunk-works project, which eventually confirmed
that Jennings had been right all along [23]. This drew me
into discussions with cognitive scientists about the broader
aspects of learning [24], and these conversations have
provided much of the background for this article.

If the close encounter with sociology was not warning
enough, there are other minefields in the way of chasing
unifying ideas across different disciplines. We perpetuate
the myth, to the nonscientific public, that science is a
unified approach to understanding the world. The reality,
as we all know, is rather different. Even within biology, dif-
ferent disciplines occupy different conceptual landscapes,
use different experimental paradigms, talk different lan-
guages, often with the same words, and impose stringent
border controls on foreigners. Nobody, least of all me, is
an expert in all the fields across which I want to trespass.
It is particularly challenging for the outsider to adjudicate
arguments within disciplines and the topic of learning
seems to encourage some especially ferocious disputes.
The author Philip Ziegler, in his study of the Black Death,
spoke of “the spectacle of rival historians, each established in
his fortress of specialized knowledge, waiting to destroy the
unwary trespasser” [25]. Such a terrifying prospect is usu-
ally sufficient to keep us in our comfort zones. However,
perhaps, once in a while, it is important to take the risk
and do as Ziegler did, if only to see what happens and have

some fun. I am sure that this will invite bombardment from
various fortresses, but I hope that it will also encourage
others to correct my mistakes and press forward with the
exploration. I must thank Mustafa Khammash and Jörg
Stelling for providing this opportunity. What follows is
really not their fault.

II. L E A R N I N G A S I N F O R M AT I O N
P R O C E S S I N G
A. Learning Is Not Association

The relationship between learning and the forming of
associations is long-standing and apparently well estab-
lished. It seems intuitively plausible that it is the asso-
ciation between a CS and a US, or between an action
and its reinforcement, arising from their close pairing in
time [see Fig. 1(c.1)], which underlies learning during
conditioning. This intuition about the cognitive aspect
of learning has uncanny parallels with what neuroscien-
tists have discovered about learning-dependent changes
in neuronal networks. The synapses that link neurons are
strengthened by long-term potentiation when the firing
of an upstream neuron occurs slightly before the firing
of a downstream neuron. As Donald Hebb (1904–1985)
presciently suggested in the learning rule named after
him, “neurons that fire together, wire together” [28], [29].
(The modern understanding of spike-timing-dependent
plasticity involves both strengthening and weakening of a
synapse depending on which neuron fires first [30].) For
neuroscientists, learning, and the memories that accom-
pany it, are implemented by changes in the strength of
synapses [31]. The cognitive and neuroscientific accounts
of learning both focus on associations, between stimuli and
between neurons, respectively, and have strongly mutually
reinforced each other.

Experiments carried out in the late 1960s showed, how-
ever, that what is learned during conditioning is differ-
ent from an association. Rescorla [32] showed that the
extent of conditioning depends on the relative frequencies,
or probabilities, of the US occurring in the presence or
absence of the CS. When these frequencies are equal, as
in Rescorla’s truly random protocol [see Fig. 1(c.2)], no
learning takes place, despite the continuing association
between CS and US. Cue competition studies with multiple
stimuli revealed other unexpected properties. Kamin [33]
showed with the blocking protocol [see Fig. 1(c.3)] that
an association may not form even though the CS and
US are repeatedly presented together. Wagner et al. [34]
showed that organisms select the stimulus-response to
learn depending on which stimulus gives a better predic-
tion of the US [see Fig. 1(c.4)]. Finally, in the inhibitory
protocol [see Fig. 1(c.5)], Rescorla [35] considered the
extreme of relative frequencies in which the US occurs
only in the absence of the CS and found that it then
takes longer than normal to acquire the CR to that CS
during subsequent training. An inhibitory association is
formed despite the absence of pairing between CS and US.
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In summary, association in time is neither necessary nor
sufficient for learning, which appears to be guided instead
by the information, which is most predictive of the US.
Learning occurs when the organism is “surprised” by the
failure of its predictions [33]. The idea of prediction error
will ramify through the discussions that follow.

Further sophistication arises in timing, on which the
presumed association between CS and US is based. It was
generally supposed that, if the time from CS onset to US
onset was short enough, then the CS was anticipating the
US, and learning would take place. However, how short
is short? If trials are conducted following Fig. 1(c.1) with
the US-US interval, IU , and the CS duration, IC , being
varied, then data from many studies show that the number
of trials to the acquisition of a CR, which is a measure of
the slowness of learning, varies approximately inversely
with the ratio IU/IC on a log–log scale [36, Fig. 9]. In
particular, there is no “short enough” CS-US interval for
learning to occur: the interval can be long, provided that
the interval between USs is increased in proportion.

This property of timescale invariance [36] is in marked
contrast to the association between neurons in Hebbian
learning. The latter exhibits an absolute threshold in tim-
ing: for spike timing-dependent plasticity, the firing of the
presynaptic and postsynaptic neurons must occur within
a window of some tens of milliseconds, depending on
the neuronal context [30]. The relationship between the
cognitive and neuroscientific accounts of learning based
on the association between stimuli and between neu-
rons, respectively, becomes much less clear in the light
of timescale invariance [37]. Synaptic plasticity remains
the conventional mechanism for explaining learning and
memory in neuroscience [31], but its adequacy for the
computational requirements of mental processing has been
vigorously questioned [37], [38].

There is also more to timing than timescale invariance.
It was observed early on, in both classical and instrumental
paradigms, that the organism learns not just to do some-
thing but also when to do it [36]. This temporal aspect of
learning is rarely emphasized, in contrast to the forming
of associations [39], but many studies have confirmed the
details. For example, during eyeblink conditioning in the
rabbit, a puff of air to the eye (US) induces a blink (UR)
with a tone or light as the CS. The rabbit does not just learn
to blink (CR) but does so when the air puff would have
been delivered [40]. Similar results have been found for
fear conditioning in the rat [41]. These results show that
the organism is learning the time interval IC in Fig. 1(c.1),
and it exhibits CRs in response to CSs at the time when it
is expecting the US to be delivered.

These findings demonstrate that conditioning is more
sophisticated than the mere formation of associations.
Organisms appear to be extracting information about time
series from the flow of events, assessing which series
are predictive of others and when these predicted events
will occur. They are undertaking computations to form
an internal model, or “temporal map,” of the experienced

stimuli, which is being continually updated as new events
are encountered [27]. The physiological nature of these
internal models remains unclear, but abstract mathemati-
cal models have been put forward to account for the exper-
imental findings. (Note the two senses in which “model”
is being used here: one meaning a physiologically imple-
mented internal representation of the external world, and
the other meaning a mathematical construct developed by
us. Regrettably, the semantic overloading of “model” will
become even worse in Section II-C.) The mathematical
model developed by Rescorla and Wagner [42] in the wake
of their experimental findings was an influential starting
point, but the later introduction of reinforcement learning
theory by Sutton and Barto [43] marked a key turning
point, which brought together mathematical psychology,
optimization theory, and artificial intelligence.

B. Theories of Learning

We briefly describe the main ideas, largely following the
treatment in [44], which provides more background. Con-
sider a finite set of conditioned stimuli, Si, presented to an
agent, who tries to learn the value, or predictive strength,
V (Si), of Si, with respect to the single US. Rescorla and
Wagner [42] introduced two central ideas. First, V is
updated on each trial in proportion to the error between its
current value and the ultimate, asymptotic value, λ, corre-
sponding to the US. Second, the value of a compound stim-
ulus is the sum of the component values. This leads to the
following update rule applied synchronously to all stimuli:

Vnew (Si) = Vold (Si) + η

�
λ −

�
j

Vold (Sj)

�
. (1)

Here, 0 ≤ η ≤ 1 is the learning rate, which may depend
on Si, and the sum on the right-hand side is taken
over those stimuli presented in the compound on that
trial. Equation (1) explains many of the cue competition
experiments described above [42], although not the
timescale invariance, to which we return below.

Sutton and Barto [43], [45] and Niv [44] expanded on
Rescorla and Wagner’s ideas in several ways, within the
setting of Markov decision processes. For a more detailed
comparison with Rescorla–Wagner, see [46]. First, Sutton
and Barto formalized the statistical relationships between
stimuli as arising from a discrete-time Markov chain, X,
specified by a conditional probability distribution over the
stimuli, Pr(Xn+1 = Si |Xn = Sj). Second, they assumed
that the agent is stochastically presented with a reward, r,
in each state, through a conditional probability distribu-
tion, Pr(r |X), and that the value, V ∗(Si), which the agent
attempts to learn, is the total expected reward discounted
at a rate 0 < γ < 1

V ∗ (Si) = E
�
r (X0)+γr (X1)+γ2r (X2) + · · · |X0 = Si

�
(2)
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where r(Xn) is the reward received after n steps of the
Markov chain and the expectation is taken over both chain
and reward distributions. The reward takes the place of the
US and its accompanying UR and makes it easier to build
a connection between Pavlovian and instrumental con-
ditioning. Discounting ensures that V ∗(Si) is finite. Ani-
mals, including humans, do assume that rewards diminish
the later that they are received although, interestingly,
they discount more nearly hyperbolically than exponen-
tially [47]. Crucially, (2) places this approach in the setting
of optimal control and dynamic programming [48]. Third,
Sutton and Barto introduced the temporal difference pre-
diction error

δn (V ) = r (Xn) + γV (S (Xn)) − V (S (Xn−1)) (3)

where S(Xn) is the stimulus received after n steps of
the Markov chain and V is the current value function for
stimuli. Note that δn(V ) in (3) depends only on what is
presented to the agent and requires no knowledge of the
probability distributions for stimuli or rewards, which the
agent is not expected to know. The update rule for the
value function then follows the same form as (1)

Vnew (S (Xn)) = Vold (S (Xn)) + ηδn (Vold) . (4)

One can appeal to results from dynamic programming to
show that, under appropriate conditions, (4) converges to
the true value function V ∗ defined by (2). Hence, temporal
difference learning leads to the expected total reward,
despite the stochastic dynamics of stimuli and rewards
being unknown.

A further step may be taken by introducing actions
that the agent can undertake in any state, which may
change the probability distributions of stimuli and rewards
[43], [44]. The temporal difference prediction error in (3)
can be used to incrementally learn both the value function
and a policy, which specifies the probability with which
action should be taken in a given state. This formula-
tion not only accommodates instrumental conditioning but
makes more explicit the connections between learning
and control, to which we will return in Section III-B.
The agent seeks an optimal reward by iteratively learning
how to control, through its own actions, the environment
that stimulates it. The key problem, as expressed in (3),
lies in balancing short-term exploitation of reward, or
immediate control, with long-term exploration, or system
identification.

The difference between the Rescorla–Wagner model
and the reinforcement learning model is more profound
than one of mathematical elaboration. Rescorla and Wag-
ner proposed a phenomenological model to account for
empirical data; Sutton and Barto proposed a normative
model, based on rational principles, which claims that
learning is a form of reward optimization. (A norma-
tive description of Rescorla–Wagner may be given under

suitable assumptions [46].) At first, the success of rein-
forcement learning lay in solving challenging sequential
decision problems, such as backgammon [49], but then its
significance for biological learning was revealed in spec-
tacular fashion [50]. Studies of learning had progressed
from the kinds of behavioral experiments described in Fig.
1 to recordings from electrodes implanted in particular
brain areas of awake animals during learning tasks [51].
In experiments with monkeys, phasic bursts of activity
by dopamine-releasing neurons in the midbrain ventral
tegmental area were found to follow the temporal differ-
ence prediction error (3) for that task [50], [52]. The error
signal shifts in a characteristic way over time from the
first receipt of a reward to the stimulus that increasingly
predicts the reward, only to return with the opposite sign
if the reward does not appear as predicted [44, Fig. 2].
This pattern of activity is exactly what was observed in
dopaminergic neurons [50, Fig. 1]. Similar results have
been found for more complex, higher order learning tasks
in other animals, including humans [53]. It is hard to
imagine a more striking example of a mathematical theory
explaining complex biological data and, thereby, prompt-
ing a paradigm shift in biological thinking. The reward
prediction error hypothesis for dopamine signaling has
become a centerpiece of modern neuroscience [54]–[56].

Reinforcement learning has also had another spectac-
ular success, in making the leap from learning backgam-
mon to teaching humans how to play Go [57], a game
long thought to require uniquely human capabilities at
its highest levels. This may suggest that it has swept all
before it. However, the Markov decision process setting
described above uses discrete time, in terms of which
order and sequence can be specified but not time inter-
vals. While it accounts well for many complex aspects
of conditioning, it is not manifestly timescale invariant.
Gallistel and colleagues have developed an alternative,
largely normative account of Pavlovian and instrumental
conditioning, based on rates of occurrence and information
theory [27], [58], [59]. They consider stimuli as stochastic
processes impinging on an agent and ascribe the predictive
strength, or degree of contingency, of two processes, to the
mutual information between them, suitably normalized.
If the agent is to estimate such quantities, the problem
of temporal discretization still has to be confronted and
is addressed empirically using Weber’s principle that the
minimal discernible difference in a measure, including a
measure of a time interval, is proportional to its value [59].
The resulting theory is intuitively attractive and readily
seen to be timescale invariant. It also accounts for many
complex aspects of conditioning. It lacks, as yet, the neuro-
physiological basis of temporal difference error prediction,
but the focus on mutual information will be important to
us later (see Section VI).

The subtleties of disentangling association from tem-
poral contingency, the impact of the Rescorla–Wagner
model, and the continuing misunderstandings around it
are carefully explored in Gallistel’s tribute to his erstwhile

594 PROCEEDINGS OF THE IEEE | Vol. 110, No. 5, May 2022



Gunawardena: Learning Outside Brain: Integrating Cognitive Science and Systems Biology

colleague, Robert Rescorla, in a special issue devoted to the
latter’s memory [60].

The information-theoretic approach draws attention to
the probability distributions of occurrence times of stimuli
but focuses on quantitative measures of these distributions,
such as their entropy. The Bayesian revolution in cognitive
science [61]–[63] has taken the radical step of presuming
that an agent learns the actual probability distributions
of values, or suitable approximations to them, as repre-
sentations of the agent’s beliefs—the agent tracks its own
uncertainty—and these distributions are updated by Bayes
rule upon receipt of new stimuli [64]. Further discussion
of the Bayesian brain hypothesis would take us too far
afield, but Gershman [46] has proposed a unification
of the Bayesian and reinforcement learning approaches,
and we will encounter the Bayesian viewpoint again in
Section III-E.

C. Reflexive Versus Reflective Models

The approaches described above share the common
feature that, whatever internal model of the environment
is adopted by an agent, whether based on predictive val-
ues, entropies, or distributions, it is used to immediately
determine the agent’s actions. An additional possibility,
first articulated by Edward Chase Tolman (1886–1959)
[65], [66], is that an internal model is used to explore,
or simulate, the world in advance of action and, thereby,
plan better actions for the future. Tolman [65] noted that
rats left to explore a maze without reinforcement from
food undertake latent learning, which can be revealed by
significantly faster explicit learning under reinforcement,
compared to rats encountering the maze for the first time.
In Tolman’s view, the free-ranging rats were latently con-
structing a cognitive map of the maze and using this inter-
nal model to make better predictions of what routes to take
when there was food waiting for them. At choice points in
the maze, rats are seen to hesitate and look back and forth
as if mentally working through their options, a behavior
interpreted as vicarious learning [66]. Tolman’s prescient
suggestion of a cognitive map underlying spatial learning
was later given a neurophysiological basis through the
remarkable discoveries of place cells and grid cells in the
hippocampal region of the brain [67], [68]. Such cells
do, indeed, appear to transiently map out the potential
forward paths when rats pause at a choice point [69].

The idea that agents use two types of models appears
repeatedly in cognitive science from different perspec-
tives with different terminologies and interpretations [66]:
retrospective versus prospective, reflexive versus reflec-
tive, habitual versus goal-directed, and model-free ver-
sus model-based. (This last usage, which comes from
reinforcement learning, uses model in yet another sense
to mean the model of the environment given by the
probability distributions for stimuli and rewards of the
Markov decision process. Temporal difference learning
based on (3) is called model-free because it does not use

this environmental model. For us, the continually updated
stimulus values still provide a model of the environment.
As noted above, the word “model” has become dangerously
overloaded. We will do our best to specify the intended
meaning when the context does not make it clear.) An
informal illustration of the dichotomy comes from Daniel
Kahneman [70], who speaks of fast versus slow thinking.
A bat and a ball together cost $1.10; the bat costs $1.00
more than the ball; and how much does the ball cost? The
faster answer—given by most people, including me—says
one thing; the slower answer based on actually solving the
linear equations says another.

The different terminologies introduced above illustrate
different aspects of the implied tradeoffs: one type of
model relies on faster, ingrained habits for immediate
purposes, requires fewer computational resources but can
make more errors; the other type of model is slower,
consumes more computational resources to reflect about
potential future scenarios, plans accordingly, and may be
more accurate. The latter model implies greater agency
on the part of the organism, which simulates the world
in advance of dealing with it, rather than relying on pre-
existing, perhaps even genetically acquired, habits. Note
that retrospective, habitual, or reflexive models may still be
predictive—after learning, the CS in Pavlovian condition-
ing is predicting the US—but there is no prospective plan-
ning involved. Animals appear to use a balance of models,
rather than a dichotomy. It is a commonplace observation
that repeated training gradually shifts the balance from
reflective to reflexive behavior; it would be hard to learn
to play the piano or tennis otherwise. Nevertheless, the
distinction will be helpful to keep in mind, and we will
adopt the reflexive-reflective terminology as being the least
misleading for our purposes.

In computational terms, both types of models can be
formulated from a reinforcement learning perspective. In
place of the temporal difference error in (3) being used to
guide the immediate choice of action in a reflexive manner,
the agent learns some approximation to the decision tree
of actions and rewards and uses that to prospectively plan
what action to take in a reflective manner. Multistage
Markov decision processes can distinguish between the
two kinds of models and experiments with human subjects,
and fMRI data show both models being used and grounded
in different brain areas [66], [71].

D. Summary

This limited introduction can hardly do justice to the
topic of learning, but the citations should offer some
further orientation. It has shown, I hope, that learning
is not just the formation of associations; it is a form
of information processing that agents, both living and
artificial, can implement; it involves, to varying degrees,
the construction of representations, or internal models, of
an agent’s environment; such models may be reflective or
reflexive, depending on whether or not they are used to
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simulate the future; a rich experimental repertoire exists
to analyze different forms of learning; this repertoire is
accompanied by sophisticated theoretical frameworks that
draw on mathematics, engineering, and computer science;
and in respect of learning by brains or neuronal networks,
learning is studied in a strongly interdisciplinary manner
across ethology, psychology, cognitive science, and neuro-
science. Let us turn now to learning outside the immedi-
ate context of the brain, in physiology (see Section III),
development (see Section IV), and individual cells (see
Section V). Having done that, we will offer a definition of
learning that seems more appropriate for systems biology
(see Section VI).

III. P H Y S I O L O G Y, V I S C E R A L
L E A R N I N G , A N D A L L O S TA S I S
A. From Psychology to Physiology

The separation of the study of the body and the study
of the mind was perhaps inevitable in the baleful light
of Cartesian dualism, but they came together for Ivan
Pavlov, whose pioneering work in digestive physiology led
to his Nobel Prize and prompted the studies of conditioned
reflexes for which he is so much better known [72].
Subsequent attempts to bring the two disciplines closer
have had mixed success, but the argument for doing so,
and the potential biological impact, has much to do with
learning.

Physiology takes us inward, from the central nervous
system (CNS) and the focus on stimuli external to the
organism to the peripheral nervous system and internal
stimuli. The body’s tissues are immersed in a fluid medium,
the internal milieu, which rather resembles the sea water
in which the first cells lived. It was Claude Bernard
(1813–1878) who first articulated the idea that the con-
stancy of the internal milieu is one of the conditions
of animal life [73]. He pointed out that this constancy
arose not because the organism was impervious to change,
but, on the contrary, because it sensed departures from
constancy and actively compensated for them. Walter
Cannon (1871–1945) clarified what we now call nega-
tive feedback as the key feature in Bernard’s dynamical
vision of stability and coined the word homeostasis to
describe the latter [74], [75]. He thereby codified the
central concept of physiology and the first systems con-
cept in biology. Norbert Wiener (1894–1964) and Arturo
Rosenblueth (1900–1970), inspired partly by Cannon and
partly by World War II demands for automated artillery,
drew the analogy between feedback control in animals
and machines. These ideas became one of the founding
themes of cybernetics [76]. The inspiring ambitions for
this new discipline, ranging across the physical and social
sciences [77], proved too grand to sustain but bioengi-
neering, in the guise of control theory, domesticated the
main ideas, and provided post-WWII physiology with a
solid quantitative foundation [78].

Homeostasis covers the maintenance of the fluid internal
milieu—pH, salt balance, O2, CO2, glucose, and so on—
and also other quantities relevant to the functioning of
the visceral organs, such as heart rate, breathing, blood
pressure, and temperature. These are usually regulated
below the level of consciousness by the autonomic part
of the peripheral nervous system (the other part being
the voluntary nervous system that controls the skeletal
muscles) together with the system of endocrine hormones
released from glands. The electrical and chemical systems
of communication are closely linked: the hypothalamus
regulates the pituitary gland at the base of the brain,
which, in turn, chemically regulates multiple hormonal
axes, such as the hypothalamus-pituitary-adrenal (HPA)
stress axis, while the autonomic nervous system (ANS)
innervates all glands.

B. Internal Models

The connection between control and learning was men-
tioned in Section II-B. At one level, it seems natural: to
control a system, one must know something about it, and
that knowledge must be represented within the controller.
We can see this in the simplest biological control systems.
Many of these exhibit zero steady-state error in response
to a step perturbation [79]–[81], the hallmark of integral
control under linear assumptions. The control variable, y,
follows the equation:

dy(t)

dt
= k(x(t) − xset)

which ensures that, at steady state, the controlled vari-
able, x, must be at its set point, xset. Hence, y is keeping
track of—acquiring information about and remembering—
an aggregated measure of the system’s deviation from its
set point

y (t) = k

� u=t

u=0

(x (u) − xset) du. (5)

The internal representation of the controlled system’s his-
tory provided by y may be limited, but it is all that is
needed.

Integral control is an instance of the internal models
principle [82], [83], or, with some latitude in interpreta-
tion, of the much vaguer principle of requisite variety from
cybernetics [84], [85]: the controller contains a model
of the perturbations to which the system is exposed. In
this case, the perturbations are step changes, the Laplace
transform of a step is 1/s, and so the controller contains
the same element, which is also an integrator. This internal
model of the perturbations is not the same as that provided
by the controlled variable, y, of the system’s history, as
above, but they seem evidently related to each other.

Internal models and control theory have been central
to understanding movement systems [86]–[88]. Humans
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and many other animals exhibit remarkably complex, fast,
and accurate motor activities—playing the piano or hitting
a backhand in tennis—and their control cannot be based
solely on visual feedback because it is too slow. Instead,
internal models are used to plan the complex multidimen-
sional trajectory of limb movements and issue the motor
commands to achieve the desired trajectory. In the lan-
guage of Section II-C, this is highly reflective, not merely
reflexive like the integral controller. There is also a subtle
difference between the kinds of internal models being
discussed here, in terms of what they represent. Models
arising from the internal models’ principle represent the
perturbations to which the system is exposed; the models
found in movement control systems usually represent the
systems themselves [89]. Biology may exploit both types of
the internal model, depending on the predictability of the
perturbations [90].

Particularly striking use of reflective internal models is
found in the involuntary vestibular–ocular reflex (VOR).
When you run over broken ground, the background is
bouncing around in a capricious way, yet you perceive a
stable image, unlike a video camera following the same
course. The accelerometers in the vestibular apparatus of
the inner ear send signals to the brainstem and cerebellum,
which compute the effect of head movements on the visual
field and issue motor commands to the muscles around the
eye, which compensates for the changes [79], [91]. The
sophistication of the VOR is startling, but evolution has had
a long time to improve it, from at least as far back as our
fish ancestors [92]. Indeed, the necessity to disentangle
sensory effects caused by one’s own movements from
those caused externally must have been an evolutionary
priority for any organism that actively moves. This will be
something to keep in mind when we discuss learning in
single cells (see Section V-E).

This discussion of internal models has strayed in two
respects from the avowed topic of this section. We have
been discussing movement, not homeostasis, and internal
models themselves, rather than learning. The purpose was
to show that internal models do exist, and indeed, that
control theory tells us that they must exist as a con-
sequence of homeostasis. Internal models of movement
must, in any case, be learned—think again of playing the
piano or tennis—and also continuously adjusted in the face
of novel demands, fatigue, injury, and aging [93]. Even
involuntary internal models are learned. Classic experi-
ments by Erismann and Kohler [94] showed that human
subjects equipped with prism glasses, which reverse the
optical field, are highly visually disabled to begin with but
recover their visual abilities and their VOR recalibrates to
the reversed flow of the optical background over a period
of weeks [95]. How such learning takes place remains
unclear, but adaptive control theory may suggest potential
theoretical models [96].

Two kinds of internal models have appeared in our
discussion: those coming from control theory and those
coming from learning theory. It seems implausible that

these are different, but there is no rigorous justification
for why they are the same. The relationship between them
remains to be clarified.

C. Visceral Learning

Let us turn now from movement back to the internal
milieu. In doing so, we move from what is observable and
controllable, where the CNS plays the dominant role, to
what is inaccessible and elusive, and the province of the
ANS. The CNS is evidently capable of complex learning.
Following Pavlov’s work on salivation, it seemed plausi-
ble that the ANS was capable of classical conditioning
(there was substantial Russian work in this direction that
was poorly understood in the West [97, Chapter 5]), but
instrumental conditioning, which is both voluntary and
broader in scope, was generally considered beyond the
capabilities of the ANS. This consensus remained unshaken
despite the discovery of instrumental conditioning in inver-
tebrates [98].

Aside from this general prejudice against the ANS, it
is not straightforward to design experiments on visceral
learning. Homeostatic control is hierarchical and distrib-
uted across multiple tissues and organ systems, and it is
challenging to control for the many potential confounding
factors. Difficulties of reproducibility and interpretation
have been conspicuous. The renowned psychologist Neil
Miller (1909–2002) received much attention when he
reported experiments showing instrumental conditioning
of heart rate, intestinal contractions, and blood pressure in
rats [99], but his own Ph.D. student, Barry Dworkin, was
later unable to replicate these findings [100]. This crisis
had two effects. Miller [101] continued more successfully
with studies of instrumental learning in humans, becoming
one of the founders of the field of biofeedback. As he liked
to point out, the sphincters that control waste release are
under autonomic control, and there seems no difficulty
in young humans learning to control them through rein-
forcement. Whether toilet training was seen as compelling
evidence by fellow scientists is not so clear.

As for Dworkin, he devoted himself to unambiguously
demonstrating visceral learning, developing paralyzed ani-
mal preparations, which could be reliably studied over
weeks and focusing on the baroreflex that homeostatically
regulates blood pressure. He showed classical conditioning
to both exteroceptive (auditory tone) and interoceptive
(nerve stimulation) cues [102]. He found that activation
of the baroreceptors reduced pain sensitivity, which could
potentially lead to instrumental learning of high-blood
pressure in human subjects [103], [104]. The implica-
tions of learning for clinical conditions, especially drug
addiction, have become an important theme [105], [106].
Repeated administration of a drug often results in habitu-
ation [see Fig. 1(a)] or tolerance. However, this does not
arise because the drug is increasingly ignored by the organ-
ism but, rather, because compensatory physiological mech-
anisms are triggered, which increasingly reduce the drug’s
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effects. Such compensatory responses can elicit Pavlovian
conditioning from cues that accompany drug administra-
tion, such as the place or manner of administration. These
effects can be revealed by administration of a placebo
under the same conditions: instead of the usual response
to the drug, an opposite compensatory effect occurs [97,
Chapter 6]. Such withdrawal symptoms are often asso-
ciated with learned cues [105]. The responses can be
very subtle, as found with the conditioning of glucose
levels in response to insulin administration, where both
hypoglycemic and hyperglycemic responses are observed,
depending on the details of the context [107].

Dworkin [97, Chapter 4] also developed the first formal
model that integrated Rescorla–Wagner theory with feed-
back control. In his phenomenological and ad hoc formula-
tion, feedback control was interpreted recursively to allow
integration with (1), and the effect of conditioning was
to modulate the gain of the feedback loop. Accordingly,
conditioning was seen as a means of improving feedback
regulation, rather than as a means of doing away with
it (see Section III-E and Fig. 2). The internal models
(see Section III-B) are not part of the story and remain
unidentified.

D. From Homeostasis to Allostasis

The role of behavior in homeostasis was clear to Bernard
and especially to Cannon. It is particularly evident in the
homeostasis of energy and water, which requires interac-
tion with the environment. Hunger and thirst compel an
organism to seek food and drink. Indeed, organisms often
eat or drink before they become hungry or thirsty, indicat-
ing anticipatory behavior [108]. Pavlov himself identified
the cephalic phase of insulin secretion, which anticipates
before food is consumed the subsequent rise of glucose
levels. If these behavioral aspects have long been evident,
they have not always been remembered in explaining
homeostasis. Set points, negative feedbacks, and control
theory provide a compelling abstraction, whose very suc-
cess may have prompted complacency.

Concerns about the adequacy of the mathematical
formulations came from several directions. Curt Richter
(1894–1988) introduced the behavioral dimensions in his
pioneering studies of appetite regulation [109]. The con-
cept of a set point was already troubling because it is a
model parameter whose biological implementation is often
obscure. Where does the set point come from? Observa-
tions suggest that it is an emergent property subject to
modulation by context, rather than one determined by
genetics. Some set points, such as that for weight, were
argued not to be set at all but were, instead, “settling”
points arising from dynamical balances, which could vary
with context [110, Sec. 2.1.2]. A dynamic rather than static
picture of internal quantities was revealed by real-time
measurements: in place of regulation around a set point, a
temporal trajectory was being regulated within limits [111,
Fig. 2]. There was stability through change [112]. (Ironi-
cally, this was exactly how Cannon thought [74, Fig. 1];

set points came only with cybernetics.) The significance of
anticipatory responses in advance of feedback errors, and
the learning that accompanies them, became more widely
acknowledged [111], [113], along with the need to situate
homeostasis in the broader context of life history and
evolutionary fitness [112]. When pushed too far, organ-
isms were found to exhibit stress responses that could
reorganize visceral control systems, suggesting how patho-
logical conditions could emerge from sustained overload
[112], [114]. Bruce McEwen (1938–2020) made the
important discovery of receptors in the hippocampus for
stress-related, steroid hormones from the HPA axis, show-
ing that the endocrine system was signaling not only to the
visceral tissues but also to the brain [115]. The hypothala-
mus was talking to the hippocampus! The subtext here
was the growing realization that cerebral functions are
not just localized in specific brain regions but also require
networks of interactions between the regions [110, Sec. 5].
In this case, the network connections go via the body. Brain
regions involved in learning and memory were, thereby,
seen to be implicated in homeostasis.

Of the many attempts to reformulate homeostasis
to accommodate such developments, the one that has
acquired the most traction centers on the concept of
allostasis, a term coined by Sterling and Eyer [111] but
brought to prominence, especially by McEwen [112],
[114]. To quote from [111], “ ‘homeostasis’ is flawed:
the goal of regulation is not to preserve constancy of
the internal milieu . . . ‘allostasis’ proposes that efficient
regulation requires anticipating needs and preparing to
satisfy them before they arise.” There has been much
debate about what this means [116], whether it is really
useful [117] and whether allostasis is genuinely differ-
ent from homeostasis [78]. For us, the most signifi-
cant aspect of this debate is the focus on anticipation
[111], [118]. In the language of Section II-C, this is
suggestive of reflective, rather than merely reflexive, inter-
nal models. Control theory has no difficulty with reflec-
tive models, as we saw with movement control (see
Section III-B), but you would be hard-pressed to find
them in studies of homeostasis. However, the propo-
nents of allostasis have not yet identified or character-
ized the models for which such strong claims are being
made. The perspective that learning theory brings may
offer a way to clarify the concepts and move the debate
forward.

E. Return of the Body?

The attention of cognitive scientists, who have long been
preoccupied with the CNS, has recently begun to turn
inward to interoception and homeostasis [120]. This may
be related to a growing interest in emotion and its role
in cognitive processes [121]. Keramati and Gutkin [119]
have put forward a model of homeostatic reinforcement
learning (HRL) (see Fig. 2), which is quite different to the
merger attempted by Dworkin (see Section III-C). In their
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Fig. 2. Homeostatic reinforcement learning based on [119, Fig. 1].

Graph of the drive function in (6) for a 1-D internal milieu, showing

the set point at the minimum value. The reinforcement learning

system on the right issues actions as displacements in the milieu (7)

for which reductions in drive provide rewards (8).

formulation, the internal milieu is represented by a state
vector, H = (h1, . . . , hN ), whose individual components
are the typical regulated quantities, such as temperature
or glucose level. A set point, H set, is assumed, and the
discrepancy, D(H), between the current value of H and
the set point is measured in some appropriate norm, such
as the Euclidean distance

D (H) =

���	 n�
i=1

(hi − hset
i )2. (6)

An arbitrary reinforcement learning system can be associ-
ated with this minimalist internal milieu, with the actions
of the Markov decision process, K = (k1, . . . , kN ), yielding
additive changes to the state

Hnew = Hold + K. (7)

What closes the loop between the two systems is that the
homeostatic discrepancy is interpreted as a motivational
drive whose reduction defines the reward, r(H,K)

r (Hold, K) = D (Hold) − D (Hnew) . (8)

The notion of drive has a long history in psychology [110,
Sec. 2.2]. It has been thought of as an intervening variable
between stimuli and responses. The idea that drive reduc-
tion is coupled to survival goes back to Clark Hull, and
this behavioristic interpretation is offered as justification
for the drive in the HRL model [122].

It is not difficult to see that, in this formulation, as
long as rewards are discounted, reward maximization
corresponds to minimizing the distance to the set point.
The HRL model has several other attractive features and
accounts for experimental data on drug-induced tolerance
(see Section III-C) and on differential learning of oral and
gastric ingestion of water. It has also offered insights into
observed features of cocaine addiction [123].

The HRL model is notable for its minimalist treatment
of the internal milieu. The complexity of distributed tissues

and autonomic and endocrine feedback is replaced by the
norm computed in (6). The set point is imposed rather
than emergent. It is perhaps not surprising that what is
accounted for by the HRL model has more to do with
learning than with homeostasis. An initial physiological
question would be to ask whether a reinforcement learning
explanation can be found for the emergence of integral
control (see Section III-B). The physiologist would be
disappointed by the lack of attention to such issues.

Homeostasis has also been swept up into Karl Friston’s
theory of active inference, also known as the “free-energy”
principle. Active inference brings the idea of mind as model
(see Section I) to a Bayesian culmination. This theory
has its roots in the concept of predictive coding in the
brain [124]–[126] but approaches it from a variational
Bayesian perspective. Gershman [127] has provided a
succinct analysis of the relationship between active infer-
ence and the Bayesian brain hypotheses. Briefly, predictive
coding stipulates a feedback loop between higher (more
abstract) and lower (more concrete) brain areas, in which
a higher area sends down feedforward predictions about
lower area activities based on an encoded internal model
of the latter, while the lower area sends up feedback errors
between the predictions and its actual activities. The inter-
nal model encodes assumptions about the hidden causes
underlying lower area activities. Inference of activities
from models flows downward, while learning of models
from activities flows upward. In the Bayesian view, predic-
tions are probability distributions over model states so that
uncertainties are tracked and used to guide choices, and
prediction errors are used to update the model according
to Bayes’ rule. Computing the resulting posterior distrib-
ution remains one of the main challenges with Bayesian
approaches. The variational method seeks the Bayesian
posterior within some specified family of probability dis-
tributions as the minimum distribution under Kullback–
Leibler divergence. By choosing the family appropriately,
a computationally tractable approximation to the true pos-
terior may sometimes be found. As a variational Bayesian
method, active inference is characterized by minimizing
not the Kullback–Leibler divergence itself but a related
functional called the “free energy” [128], from which the
alternative name arises.

Friston [88] has argued that this free-energy principle
encompasses, with appropriate assumptions, not only exte-
roceptive perception of the world but also motor actions in
the world (hence, “active inference”), as well as interocep-
tive perception and homeostatic regulation of the visceral
body [129]. In this grand unified theory of the brain,
the feedback loops are arranged in a hierarchy between
exteroceptive and interoceptive sensorimotor processes in
the periphery and cognitive abstractions in higher cortical
areas [130].

The integrative scope of the free-energy principle is
appealing, but the technical details must be treated with
caution. Some of the mathematical claims made for
the theory do not hold up to rigorous scrutiny [131].
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Friston [132] also claims that “free energy” can be
grounded in nonequilibrium physics and can thereby
explain how life emerges from matter. This is the greatest
of all unsolved problems in physics, so it is not hard to
see why Wired magazine referred to Friston as “The Man
who Explained Everything” [133]. However, free energy in
physics is a concept of equilibrium thermodynamics, and
it is known that there is no function of state, whether
energy or entropy, which can account in general for sys-
tems away from thermodynamic equilibrium [134]. The
physical interpretation of Fristonian free energy is also
not rigorously grounded [131]. Where firm ground gives
way to speculation remains contentious; Raviv [133] issues
the following trigger warning, “The free-energy principle
is maddeningly difficult to understand. So difficult, in fact,
that entire rooms of very, very smart people have tried and
failed to grasp it.” Here, we regard the free-energy principle
as an attractive Bayesian hypothesis about the integrated
functioning of organisms, whose details need to be clarified
in any given context.

In contrast to the HRL model discussed previously,
no data are presented in support of active inference in
homeostasis [129]. Indeed, the interoceptive aspect of
the theory focuses on the ANS to the exclusion of the
endocrine system [129, Fig. 2]. The hormonally related
implications of active inference would be that, for exam-
ple, the beta cells in the pancreatic Islets of Langerhans,
which regulate glucose levels through insulin secretion, are
conveying prediction error signals up the active inference
hierarchy. Nothing like this is known or has even been
looked for; there has been nothing like the experimental
observation of reinforcement error signals in dopaminergic
neurons (see Section II-B). Moreover, it is not clear how
to reconcile the active inference interpretation with the
multiple tissues—pancreas, liver, and muscle—which are
implicated in overall glucose regulation. The interplay
between insulin sensitivity in muscle and beta-cell func-
tion in the pancreas has been a central concern among
those studying glucose dysregulation in diabetes [135],
and it is implausible that these factors are irrelevant to
the internal models. Once again, the physiologist would
be disappointed by the lack of attention to physiology.

The inclusion of interoceptive homeostasis in active
inference solves a different problem for theories based
on the minimization of prediction errors. There is a very
easy solution to the minimization problem: the organism
stays in a dark room and does nothing [136]. Happily,
with interoception now included, the organism’s glucose
levels will steadily drift from their set points, increasing
the prediction errors and forcing the organism to go to the
supermarket [129]. Interoception saves active inference
from philosophical embarrassment.

Despite its speculative character, there is something
immensely appealing about the unity and scope of the
theory of active inference. It offers a universal normative
account of how sensation and action are integrated: the
organism maximizes the evidence for its models of the

internal and external worlds. It is the kind of foundational
theory that one would hope to be correct, and it frames
some of the questions that we should be asking about
how organisms function. We will come back to it when
considering single cells (see Section V-E).

F. Summary

The engagement of cognitive science with the body is a
welcome development, but the chasm between physiology
and psychology remains clearly visible. For physiologists,
learning has offered a means to explore visceral regu-
lation (see Section III-C), and the distinction between
reflexive and reflective models may yet help to resolve
the confusions surrounding allostasis (see Section III-D).
For cognitive scientists, despite aspirations toward uni-
versal theories, such as active inference, physiology has
been useful largely in service to other concerns (see
Section III-E). While both parties rely on internal models
(see Section III-B), the locus of these models remains
unclear. Cognitive scientists locate them where they have
always been, entirely in the brain, but the physiological
evidence suggests the involvement of other tissues and
the endocrine system, whose collective role in the internal
models has not been clarified.

There has been a striking lack of attention to such
physiological issues in recent cognitive approaches. The
great successes of cognitive science may have encouraged
an imperialistic mindset toward colonial domination of
other fields, with the regrettable consequences for the
indigenous participants of exclusion, if not extinction. This
presents a particular difficulty for physiology, which has
suffered a crisis of confidence following the molecular
revolution [137]. Concurrently, the kinds of invasive ani-
mal experiments undertaken by Dworkin and others (see
Section III-C) would now be hard to justify under modern
ethical standards. It is not clear who would be willing and
able to undertake the kinds of experiments required to
inspire liberation physiology. Perhaps, bioengineering and
synthetic biology offer a new route to analyzing learning
in the internal milieu and resisting colonialization [138].

IV. D E V E L O P E M E N TA L O R I G I N S
O F L E A R N I N G
A. Internal Models in Development

The discussion in Section III was focused on the adult
organism, as is often the case in physiological studies.
While convenient, this ignores the facts of ontogeny: the
animal organism develops from a single fertilized egg
through one of the most complex and fascinating processes
in all of biology. It has also been one of the most hidden
and inaccessible since, in the case of placental mammals,
it takes place largely within the body of adult females.
Humans are unusual in their neoteny, compared to their
primate cousins, and undergo an extensive period of
infancy, childhood, and adolescence during which devel-
opmental processes continue [139]. Development is where
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our familiar machine metaphors break down entirely; we
have no machines that construct themselves. Neverthe-
less, the principal metaphor for understanding develop-
ment, programming, is borrowed from computation: the
organism’s genome contains a developmental program that
orchestrates ontogeny. It has always been evident that this
genomic program must be sensitive to external information
and the conditions under which the fetus, embryo, infant,
or child is growing. However, the extent and significance of
that sensitivity have been the subject of much controversy
[140], and the program metaphor of development has
largely focused, instead, on how genomic information is
processed [141]. In this section, we will survey the evi-
dence that conditions during development determine adult
physiology in a predictive manner that is suggestive of an
internal model.

B. DOHaD and PARs

It is not surprising that certain adult diseases, such as
chronic bronchitis, are correlated with infant mortality
across geographical areas because both arise from poor
social conditions, which affect infants in the post-neonatal
period. The rates of both outcomes have declined over the
last century, at least in countries such as the U.K. The case
of coronary heart disease, however, is more complex. Its
rate has increased over the last century. The conventional
explanation for this has been the generally unhealthy
nature of western lifestyles. It was paradoxical, therefore,
when the epidemiologist David Barker uncovered a striking
correlation between the incidence of neonatal mortality
during the early 20th century (1910–1925) in England
and Wales, and the incidence of coronary heart disease
in the same geographical areas in the period 1968–1978
[142, Table 1 and Fig. 1]. Neonatal mortality in the period
in question was largely associated with adverse growth of
the embryo, rather than with postbirth conditions. Barker’s
findings led him to propose the hypothesis, which is often
named after him, that the uterine environment determines
the adult phenotype, and adverse prenatal conditions, such
as poor nutrition, could increase the risk of ill health in
adult life.

For those brought up in the physical and engineering
sciences, statistical studies of this nature can seem elu-
sive. It is important to be cautious in interpreting them
because issues of confounding, nonreproducibility, and
p-value hacking can be extremely serious [143], [144].
In this case, the data were good, the samples were large,
and Barker’s work stimulated several subsequent studies
that confirmed the general findings [145]. The existence
of well-documented cohorts in certain countries, such
as those who experienced the Dutch Hunger Winter of
1944, deliberately caused by the Nazi occupying forces,
has provided the opportunity for long-term studies that
have deepened Barker’s initial insights [146]. For exam-
ple, the timing of embryonic or early childhood events
can be important, with particular outcomes predominantly

occurring when events take place during sensitive peri-
ods, or critical windows, during development. The dis-
cipline that coalesced around these studies has become
known as the Developmental Origins of Health and Disease
(DOHaD) [147].

The basis for understanding Barker’s hypothesis has
been the phenomenon of developmental plasticity: the
genome can give rise to different phenotypic outcomes
depending on context [148]. Such plasticity begins to sub-
vert the program metaphor of development, but it is well
established across animals [149]. Insect metamorphosis is
an extreme example. Among vertebrates, the sex of certain
reptiles is not chromosomally hardwired but determined
instead by the temperature at which the egg develops,
thereby relying on the gradient within the nest to allocate
offspring between the sexes. Some lizards appear to use
both chromosomal and temperature-dependent systems,
depending on context [150]. Among mammals, West-
Eberhard [151] describes the case of Slijper’s goat, which
was born with congenital paralysis of its forelegs but,
nevertheless, learned (the word seems particularly appro-
priate here) to walk and run on two legs. The many
reports of two-legged quadrupeds on the Internet have
made it harder to relegate this example to anecdotal status.
Meadow voles present a less unusual but still instructive
example. The body size, reproductive status, and fur depth
of vole pups depend on the amount of daylight experienced
by their mothers prior to conception, which correlates
well with the seasonal environments, which the pups will
subsequently encounter [152]. Among humans, develop-
mental plasticity is manifest in language acquisition, which
depends on the linguistic community in which we grow up.

In the setting of developmental plasticity, Barker’s
hypothesis led Bateson [153] and Gluckman and
Hanson [154] to offer a further refinement, now called
the predictive adaptive response (PAR) hypothesis [155].
This suggests that mothers provide a forecast of the envi-
ronmental conditions that their offspring are likely to
encounter in later life, and the offspring use this informa-
tion predictively to regulate their development to match
the expected subsequent environment. If those environ-
mental conditions are not met, the mismatch can increase
the risk of adult ill-health. Meadow voles provide an
example of such predictive anticipation [152]. In humans,
offspring born to mothers experiencing a lower nutritional
environment are well adapted to those same conditions but
poorly adapted to a richer nutritional environment, which
can place them at risk for obesity, metabolic syndrome, and
cardiovascular diseases [154].

Much of the debate around the PAR hypothesis has
focused on its adaptive and evolutionary rationale. This is
an important question, but it leads into minefields [156]
that will delay us here. What is more relevant for us is the
suggestion of learning and prediction during development.
Developmental biologists typically view plasticity as arising
from alternative paths triggered in response to environ-
mental cues by switch or rheostat-like mechanisms [157].
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Can that be seen as learning? We will return to this
question in Section VI-C but, first, introduce here some
important molecular mechanisms that are implicated in the
processes we are discussing.

C. Epigenetic Mechanisms of Development
and Learning

One of the primary obstacles to initial acceptance of
Barker’s hypothesis was the lack of a mechanism through
which environmental effects on an embryo could manifest
themselves as ill-health in the adult [147]. Epigenetics
provided the solution [158]. (I use the word epigenetics
here in the weak sense to mean only certain biochemical
mechanisms associated with DNA without the stronger
implication of creating states that are heritable through
cell division [159].) Eukaryotic DNA is wrapped around
nucleosomal protein cores to form chromatin [160], and
both DNA and the attendant histone proteins can be chem-
ically marked by cytosine methylation on DNA [161] and
a veritable zoo of protein post-translational modifications
(PTMs) on multiple sites on the histones [162]. Such PTMs
are enzymatically regulated, reversible covalent additions
of chemical moieties to amino acid residues [163]; exam-
ples include phosphorylation, methylation, and ubiquitina-
tion. Along with these chemical marks, noncoding RNA
entities have emerged, which are intimately involved in
epigenetic chromatin regulation [164]. Epigenetic mecha-
nisms participate in regulating gene expression and imple-
menting heritable cell memory during lineage develop-
ment. They also provide the means whereby environmen-
tal information becomes encoded in the internal states
of the organism. For example, in a well-controlled, cross-
fostering study, Michael Meaney’s group analyzed vari-
ation in licking, grooming, and arched-back nursing by
rat mothers [165]. Those mothers who scored highly for
these nurturing instincts raised offspring who had lower
stress levels and were less fearful in open-field exploration.
The female offspring also scored highly when raising their
own pups, showing that the maternal behaviors were
transmitted trans-generationally. (This is not Lamarckian
inheritance but Lamarck’s ghost hovers nearby [166].)
Subsequent analysis found correlated epigenetic changes
at the stress-regulating glucocorticoid receptor gene in the
hippocampus, which emerged during nursing, persisted
into adulthood and were necessary for the behavioral
responses [167]. Similar forms of epigenetic embryonic
programming have now been found in other contexts
[168], [169].

The findings of Meaney and colleagues can be inter-
preted as a PAR, in which the mother’s fearlessness and
lack of stress, which results in strong nurturing behavior,
provides information to the offspring, which predicts that
their future environment may also be relatively stress-
free. It seems plausible that the accompanying epige-
netic changes encode in some way the information that
is transferred between the offspring and the mother. In

these studies, the brain emerges as the potential source of
the internal models underlying the learning, but related
studies have shown similar environmentally dependent
epigenetic effects in tissues like the primate liver [170].
This suggests that the internal models underlying develop-
mental learning may be broadly distributed in the body, as
also noted in discussing physiology (see Section III-F).

Epigenetic changes in non-neuronal tissues may seem
far removed from the internal models of cognitive sci-
ence, for which neurons provide potential computational
resources. However, a striking connection between these
different contexts arises at the molecular level in consider-
ing the memories that accompany learning. A central prob-
lem in neuroscience has been the identity of the “engram”
or the physical implementation of a memory [171], [172].
How can memories be biochemically encoded over a life-
time? The developmental context provides another mem-
ory, which can also extend over a lifetime, in the identity
of terminally differentiated cells. A cell of a particular
type typically remembers what it is until it is lost to dam-
age, aging, or death (exceptions being malignant trans-
formation or transdifferentiation during wound healing).
Epigenetic mechanisms participate in establishing and
maintaining cellular identity during lineage specification in
development [173], as they do in encoding environmental
memories. In the brain, memories are related to changes
in synapses and synaptic strengths during learning, even
if the exact nature of the relationship remains contentious
(see Section II-A). An important neuroscientific finding in
recent years has been that accompanying these changes at
synapses are changes of gene expression within brain cells,
along with essentially the same kinds of epigenetic changes
that are observed during development [174]–[176]. In
other words, the two kinds of memories, the one cognitive
and the other developmental and environmental, are not
so different in terms of their molecular implementation.
Perhaps they are also not so different in terms of their role
in learning.

D. Summary

The process by which a multicellular organism con-
structs itself remains astonishing to contemplate, and we
struggle to understand it with limited metaphors, such
as programming. The evidence from human epidemi-
ological and animal experimental studies is that what
is being programmed includes capabilities to anticipate
the world that the adult organism will subsequently
occupy, based on generously provided maternal infor-
mation, and to reprogram the developmental process
accordingly. Epigenetic mechanisms are implicated both
in such developmental programming and also in cogni-
tive learning, a molecular convergence that may reflect
functional similarities. Since these mechanisms operate
within single cells, we must now turn to those fundamental
agents that undertake the construction of the multicellular
organism.
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V. L E A R N I N G I N S I N G L E C E L L S
A. The Cell as the Unit of Life

It is easy to forget, in our reductionist enthusiasm, that
the cell is the unit of life. Physiological, developmental,
and cognitive phenomena depend ultimately on the cells
that make up the relevant parts of the organism. The
foundation for understanding how learning works in the
contexts that we have considered above lies, ultimately,
in the capabilities of individual cells. Neuroscience has
traditionally focused on networks of cells as the source
of cognitive functions, but modern studies are finding sur-
prising capabilities in individual neurons (see Section V-C).
Moreover, multicellular organisms evolved from unicellu-
lar organisms and the continuities in that transition may
be as important as understanding the novelties. From
what ancestral features did multicellular learning evolve?
Finally, cells are an experimentally tractable system whose
capabilities can be studied now in contrast to the chal-
lenges involved in the other contexts that we have dis-
cussed (see Section V-E).

The great increase in our understanding of the mole-
cular circuitry within cells has prompted analogies with
cognition and learning, which reflects the search for a
more functional perspective [177], [178]. However, these
studies have not yet exploited the advances in cognitive
science described above (see Section II). We will use
those advances to suggest a fresh perspective on how
cells function (see Section V-E). Learning, and especially
habituation, in single-cell organisms has been reviewed in
[179] and [180].

B. Single-Cell Organisms

Single-cell organisms face the same challenges as all
organisms, of navigating through their environment if
they are motile, seeking food, avoiding predators, find-
ing mates, and competing and cooperating with other
organisms. Debates about their capabilities date back to
at least the late 19th century [181], [182]. One school
of thought, represented by Jacques Loeb (1859–1924),
asserted that cellular behavior could be reduced to chains
of overt responses toward external cues. The other school,
represented by Herbert Spencer Jennings (see Section I),
asserted that cells were capable of agency, decision-
making, and learning. Experimental studies were chal-
lenging and dogged by questions of reproducibility and
interpretation [183]. With the advent of behaviorism, the
consensus shifted decisively to Loeb’s corner. Single cells
were acknowledged to be capable of habituation and sen-
sitization but not of exhibiting more complex behaviors,
such as associative learning [183], [184]. Despite the
modern resurgence of interest in cognitive capabilities [2],
[9], [12], including those of single cells [179], [180], the
consensus against complex learning in single-cell organ-
isms has hardly shifted.

Jennings’ own experiments on avoidance behavior in
Stentor roeseli [18] were judged not to be reproducible.

As explained in Section I, the disavowal of Jennings’ work
had an ideological flavor, and it took until very recently to
show that he was right all along [23].

The situation with regard to classical conditioning is
more complex. Several attempts have been made to con-
dition various protist species with such mixed results that
one participant gave up in exasperation [183]. I will single
out three positive studies that seem particularly notewor-
thy. In the 1950s, Gelber [185] reported conditioning
in Paramecium aurelia using a needle as the CS with a
coating of bacterial food as the US; after repeated training,
the Paramecia were drawn to the needle even when the
food was absent. Her findings were contested on various
grounds, which carry less weight from a modern stand-
point [24], and her work was marginalized to the point
of being forgotten. In the 1970s, Hennessey et al. [186]
reported conditioning in Paramecium caudatum using an
AC electrical shock as the US and vibration as the
CS. They observed individual organisms and adopted
Rescorla’s truly random protocol [see Fig. 1(c.2)] in a well-
controlled series of experiments. Recently, De La Fuente
and colleagues [187], [188] reported conditioning in three
species of amoeboid protists, Amoeba proteus, Metamoeba
leningradensis, and Amoeba borokensis, using a chemical
attractant as the US and galvanotaxis in response to an
electric field as the CS. Like Gelber, their experiments were
undertaken on populations, but, unlike Hennessey et al,
they were not accompanied by controls based on the
learning theory described in Section II-A [see Fig. 1(c)].

All three studies give the distinct impression that some
form of learning is taking place. That of Hennessey et al
remains especially compelling. However, none of the stud-
ies has been replicated. Such lack of attention testifies
to the prevailing consensus against complex learning in
single-cell organisms, despite the evidence just described
to the contrary.

C. Single Cells in Multicellular Organisms

In contrast to single-cell organisms, single cells in mul-
ticellular organisms have relinquished their autonomy as
independent agents for the benefit of the collective. Learn-
ing on their part would seem unnecessary, in keeping with
the prevailing metaphor of development as the unfolding
of a genomic program. The striking similarity of identical
twins testifies to the efficiency of their identical genomes
in guiding very similar development (it is as well to note
here that identical twins start from the same cell, not just
the same DNA). However, a different kind of twin offers
a counterpoint to the programming narrative. Abby and
Brittany Hensel are conjoined twins born in 1990. They
have one body, two legs, two arms, and two heads. By
all accounts (the Web is the only source of information),
they have active, successful lives as teachers. During their
development, their cells had to repeatedly confront situ-
ations that were decidedly not in the program. Instead of
giving up or producing nonsense, they did an astonishingly
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good job of making a viable organism. The success speaks
to profound capabilities for agency at the cellular level.

Even if we consider normal development, whatever that
might be, any given cell will find itself in contexts about
which it can have little knowledge as to what neighboring
cells it will encounter, what state they are in along their
developmental trajectories, how fast they are changing,
what signals will be encountered, and what accidents
may have occurred, either to itself or to its neighbors,
from stochasticity or defects. The situation may be more
constrained than the world of a single-cell organism, but it
makes up for it in the relentless complexity of possibilities.
If we were designing a cell to cope with such an environ-
ment, we would be well advised to program it to learn
from that environment and work out what is best to do,
whatever context it encounters. The genome may specify
what species to make, but it is the myriad decisions made
by individual cells during ontogeny that determines what
individual emerges. Learning may be just as necessary
for non-autonomous single cells if only to construct their
individual organism in the first place.

In the 1990s, Daniel Koshland (1920–2007) undertook
a series of experiments in rat PC12 cells on the habituation
of noradrenaline secretion to a variety of repetitive stim-
uli [189], [190]. What is interesting about these studies
is that Koshland interpreted them as analyzing learning
and memory and explicitly placed them in the context
of contemporary neuroscience. (The best insight into this
aspect of Koshland’s thinking comes from his survey on
bacterial chemotaxis and neuroscience [8].) For example,
he carefully tested [191] for the characteristics of habitu-
ation put forward in the learning literature by Thompson
and Spencer [192]. What is also interesting, for a different
reason, is the paucity of attention paid to Koshland’s habit-
uation work subsequently. According to PubMed, the initial
paper [189] has 12 citations, none at all in the decade
1996–2006, while the final paper [190] has none. Despite
extensive study of the molecular machinery underlying
secretion, there has been no attempt to interpret it from a
learning perspective, and when learning has resurfaced in
the cell biology literature, it has lost touch with Koshland’s
work [177], [178].

PC12 cells are derived from a tumor of the chromaffin
cells of the adrenal gland and are of ANS lineage, so
Koshland did not stray far from neurons. It is from them,
however, that the most compelling evidence has emerged
to date about cellular capabilities. The dendritic arbors of
pyramidal neurons are capable of computations, such as
XOR, which were previously thought to require neuronal
networks [193]. Studies of eyeblink conditioning in the
cerebellum of ferrets found that individual Purkinje cells
can be conditioned to learn a timed pattern of sequential
responses [194]. Olfactory sensory neurons exhibit unique
patterns of gene expression that appear to encode their
individual olfactory perceptions [195]. It seems that neu-
rons, at least, are more sophisticated than previously imag-
ined. They are, indeed, highly specialized, but, as Koshland

pointed out when comparing bacteria to neurons [8], their
molecular machinery is shared by all cells. If other kinds
of cells are not thought to exhibit such behavior, this may
be due to a failure of imagination on our part, rather than
incompetence on the part of the cells.

D. Multisite PTMs as Potential Mechanisms

The epigenetic mechanisms discussed above (see
Section IV-C) are an obvious candidate for implementing
cellular learning, but they typically operate on a longer
timescale than is observed, for instance, in ciliate avoid-
ance [23] or eyeblink conditioning [194]. A faster alterna-
tive may be protein PTM, which occurs much more broadly
than in epigenetics. An instructive example is that of E.
coli chemotaxis, which exhibits zero steady-state error and
has been modeled as an integral control mechanism [196].
We noted previously that there is a close, but still unclari-
fied, relationship between control and learning, with both
giving rise to internal models (see Section III-B). In the
chemotaxis example, the integral controller variable that
is a memory of the system’s history (5) is implemented
by the total level of methylation arising from four sites
on the appropriate receptor [196]. Four methylation sites
on the same bacterial protein appear unusual. Although
empirical data are not definitive [197], it seems that, in
marked contrast to eukaryotes, bacterial PTMs take place
on at most a couple of sites on a given protein. The four
methylation sites in E. coli cannot be reduced without
degrading the chemotactic response [198].

Another example of PTMs encoding information comes
from a remarkable interval timer found in Drosophila neu-
rons involved in regulating the duration of mating [199].
This timer appears to be implemented by autophosphoryla-
tion of CaMKII, a dodecameric, calcium-sensitive protein,
each component of which has two phosphorylation sites,
giving 24 sites in all on each oligomer. Eukaryotic cells
have profound capabilities for such multisite PTMs: the
hub protein p53 has over 100 sites of modification [200],
giving each molecule of p53 the capacity to exhibit some
1030 “modforms,” or global patterns of modification [201].
Only a tiny fraction of these modforms can be present at
any one time, but the potential for information encoding is
vast. If learning gives rise to internal models that represent
information acquired from the environment, the repertoire
of protein modforms may be a good place to look for
them.

E. Active Inference for Single Cells

We discussed Friston’s active inference hypothesis in
the context of homeostasis where it suggests how pre-
dictive internal models can integrate both the organism’s
response to the external world and the need to maintain
its internal state (see Section III-E). Because active infer-
ence is formulated abstractly, it can as well be applied to
individual cells [202]–[204]. Single cells have a variety
of sensory modalities, including receptors for chemical,
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mechanical, and electrical stimuli. We typically do not
list their senses, in the way we do our own, but per-
haps we should to see things from the cell’s perspective.
Cells have an internal state, given by their patterns of
gene expression, nutrient and energy levels, time on their
circadian clock, cell cycle period, and so on. Cells have
capabilities for action, such as secretion, phagocytosis,
and movement. The active inference hypothesis suggests
that cells have an internal model of the world, which
is continually updated by the discrepancy between the
cell’s expectations based on the model and the information
received from its external and internal senses. From this
perspective, the goal-directed behavior of cells, whether
to survive and reproduce in the world, for cells that are
organisms, or to also construct the organism and main-
tain it homeostatically, for cells that are parts of larger
wholes, is an emergent property of minimizing prediction
errors.

Circumstantial evidence suggests that cells have internal
models. The example of the VOR (see Section III-B) reveals
a fundamental problem that must be universal for all
organisms: how do they disentangle the effects of their
actions on their own senses from the effects of the environ-
ment? If you cannot tell the difference between bumping
into a rock and a predator bumping into you, your chances
of survival are likely to be slim. The evolutionary pressure
to do better must have been fierce. We know that learning
based on a reflective internal model has been the solution
to this problem for the camera eye of humans, so it is not
unreasonable to suspect that something similar, if not as
sophisticated, may have evolved ancestrally in eukaryotic
cells.

The implications of active inference for single-cell organ-
isms are similar to those for any organism, but this hypoth-
esis also offers a fresh perspective on development. Here,
the internal model of a cell would encode its current
assumptions about the individual being constructed by
the cells that communicate with it, whether chemically,
mechanically, or electrically. Lineage development may
reflect successive updates of this internal model and atten-
dant changes of internal state, which are inherited by
successor cells that adopt transient identities. For exam-
ple, during hematopoiesis, a pluripotent stem cell can
successively become a precursor hematopoietic cell, a
myeloid progenitor, a myeloblast, and a monocyte, until,
finally, a terminally differentiated macrophage emerges.
The necessity for the internal model to be inherited implies
that is encoded epigenetically in the strong sense (see
Section IV-C). Along the way, a cell may find itself in
contexts where something has gone wrong and its pre-
diction error has diverged, but it still “knows” what to
do, which is whatever optimally reduces the prediction
error. The individuality of the organism (see Section V-C)
emerges from the unique trajectories taken by clones of
cells, each cell autonomously attempting to minimize its
own prediction errors in the collective context of all the
other cells that are doing the same. What is programmed is

not the answer, in the eventual individual that is formed—
no program could achieve that—but the flexibility to figure
out who that individual should be. Moreover, no cell needs
to have a global view of the whole organism—a cell may
not know that it is part of a conjoined twin—to do its local
job as best it can in the circumstances in which it finds
itself.

Levin and colleagues [203] outline a simulation of
how active inference at the level of individual cells could
accomplish the morphogenesis of a schematic multicellular
organism from a single cell; more details are provided
in [204] with accompanying commentaries in the same
issue.

Learning is an explicit part of active inference, so, if the
latter is to be tested, it becomes important to determine
the learning capabilities of single cells. This has now
become more feasible than in studying the physiology
or development of a multicellular organism. Technologies
such as microfluidics allow live cells to be exposed to com-
plex environments [205], potentially including other cells,
whose information content can be varied systematically.
Overt responses, such as changes in shape, movement,
or secretion, could be tracked by video microscopy and
potentially categorized by automated methods [206]. It
remains challenging to monitor the cell’s internal state, for
which only a few measurements of protein state can be
obtained concurrently from live cells. The extensive under-
standing of molecular circuitry may suggest appropriate
candidate proteins. An alternative approach to acquiring
the necessary data would be to use fixed (dead) cells
and exploit spatially resolved measurements of RNA in
single cells [207]. Such methods may potentially offer
enough signals to detect an increase in mutual information
between an individual cell and its environment. As we sug-
gest in the following, such an increase may be considered a
necessary condition for learning (9). As to identifying what
is learned, and detecting prediction errors within an active-
inference hierarchy, that will require substantial effort and
ingenuity.

F. Summary

The question of whether single-cell organisms can learn
is tantalizingly poised. Evidence for it exists; interest in
the question has resurfaced, but definitive experiments
have not yet been undertaken. In part, this may stem
from the lack of a consensus framework for assessing
whether learning has taken place, a problem that we
address in the following (see Section VI). Friston’s theory
of active inference offers a normative suggestion for how
learning would enable individual cells to integrate sens-
ing and action and flexibly achieve their goals, whether
in the world or within the organism. In the latter con-
text, development may come to be seen not as the pro-
grammed construction of the organism but as the process
of collectively learning which individual organism to
construct.
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VI. D E F I N I N G L E A R N I N G F O R
S Y S T E M S B I O L O G Y
A. Learning as the Acquisition of Useful
Information

Sections III–V have revealed biological contexts in which
forms of learning appear to be taking place, which do not
all readily fit into the classical paradigms of Fig. 1. These
paradigms were formulated for organisms with brains and
overt behavioral responses, which reflects their historical
origins in behaviorist psychology. If we strip that baggage
away and keep the information processing, what is left are
two interconnected features

1) increase of mutual information between
environmental states and system states

2) in which the internal representation of external
information can influence subsequent behavior.

(9)

Recall that the mutual information, 0 ≤ I(X,Y ) ≤ 1,
between two random variables, X and Y , having the joint
space of discrete values X × Y, is the Kullback–Leibler
divergence between the joint probability distribution,
Pr(X,Y ), and the product of the two marginal distributions,
PrX , PrY

I (X, Y ) =
�
x∈X

�
y∈Y

Pr(X,Y ) (x, y) log



Pr(X,Y ) (x, y)

PrX (x) PrY (y)

�
.

(10)

I suggest that (9) constitutes a definition of learning that is
more appropriate for studying contexts outside the brain,
while accommodating what was discussed in Section II.
The focus on mutual information is hardly new and bor-
rows, in particular, from the approach of Gallistel and
colleagues (see Section II-B).

Equation (9) is broadly consistent with the “umbrella”
definition put forward in [1] but focuses on what is hap-
pening inside the system rather than on the overt responses
or actions that the system exhibits to its environment. In
that sense, it is anti-behaviorist. It accordingly requires
knowledge of the system’s internal states, but this has
become more readily available at the cellular and molec-
ular levels.

Equation (9.2) is needed in addition to (9.1) to distin-
guish learning from other forms of information transfer.
A system that is driven by its environment could conceiv-
ably show an increase in mutual information, as required
by (9.1), but this may not correspond to what we think
of as learning. For example, when you change time zones,
you are exposing yourself to driving by a perturbation to
your day–night cycle, and you can literally feel the increase
in mutual information as you adjust to jetlag. The recovery
from jetlag reprograms your circadian clock in a way that is
subsequently used to guide behavior. That recovery process
leads to (9.2) and confirms that your body is not just being
driven but has actually learned from the experience.

The two requirements of (9) have rather different char-
acters. Equation (9.1) is the fundamental necessary condi-
tion for learning to be taking place; (9.2) draws attention
to the representation of external information in the inter-
nal model, whose existence is then sufficient to confirm
learning. Equation (9.1) reflects an observer’s extrinsic per-
spective, which encompasses both the system and its envi-
ronment; (9.2) reflects the system’s intrinsic perspective.
The mutual information whose increase is detected by an
observer may not itself be represented within the system,
whose intrinsic representation may encode only what is
computationally relevant. Equation (9.1) could conceiv-
ably be assessed by methods for estimating (10), which
have been developed, for example, for cellular responses
to chemical signals [208]–[211]. In contrast, (9.2) may be
significantly harder to establish than (9.1) This difficulty
is the downside of focusing inward. As previously noted,
the physical nature of the cognitive engram remains one
of the central problems of neuroscience (see Section IV-
C). Although the nature of the representations outside
the brain is equally perplexing, these two problems may
also be more closely related to each other than previously
appreciated (see Section IV-C). It may well be necessary to
understand how information is represented by individual
neurons in order to understand how cognitive memories
are represented by brains. The question of how learned
information is represented, encoded, and used is the cen-
tral challenge to be confronted in adopting a learning-
centric perspective, and (9.2) makes that challenge explicit
and unavoidable.

B. Examples of Learning That Satisfy (9)

We have noted the close relationship between control
and learning (see Section III-B) and discussed bacterial
chemotaxis, which has been interpreted as an integral
control mechanism (see Section V-D). Learning is not
usually mentioned in respect of chemotaxis, but it seems
plausible that learning may be necessary to efficiently
navigate toward an attractant or away from a repellent.
The integral control interpretation makes this more precise
through (5), in which the controller variable maintains a
memory of the system’s history. During chemotaxis, infor-
mation in the environment, in the form of concentration
gradients of attractants or repellents, becomes coupled to
the motions of the bacterium and hence to changes in the
controller variable. We would, therefore, expect (9.1) to
be satisfied, although an interesting problem is to formally
derive the increase in mutual information. Equation (9.2)
is more straightforward since the controller variable man-
ifestly influences subsequent behavior. Hence, in the light
of (9), learning is implicit in bacterial chemotaxis. We may
wonder if the same can be said of chemotaxis in other
organisms.

Bacteria also offer a more surprising context in which
the two requirements of (9) are clearly satisfied. CRISPR
(clustered regularly interspaced short palindromic repeats)
is widely known, in the guise of CRISPR-Cas, as a method
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of genome engineering [212], but that is a human hijack-
ing of a remarkable adaptive immune system found in
many bacteria and most archaea [213]. Microbes with
a CRISPR system excise segments of DNA or RNA from
invading viruses and integrate these segments between
interspaced palindromic repeats in a noncoding CRISPR
memory locus within their genomes [213, Fig. 2]. On
subsequent reinfection, this DNA locus is transcribed to
provide RNA guide segments, which can recognize by base
pairing the viral DNA from which they originated, allowing
that viral DNA to be destroyed by the microbe. This is
immunological learning within an individual cell. We can
literally see the increase in mutual information (9.1) in
the growth of the CRISPR array, while the nature of the
representation and the way it guides behavior (9.2) are
evident and based on the classical encoding of information
by DNA. Substantially more information is learned here
than in chemotaxis. We see that, despite the arguments
over whether or not single cells can be conditioned (see
Section V-B), single cells—and microbial single cells, to
boot—are certainly capable of sophisticated learning, as
defined by (9). Moreover, unlike the immune system in
mammals [214], learning by CRISPR takes place within
individual cells rather than populations of cells.

CRISPR is believed to be specific to microbes, but there is
something puzzling about this. Evolution is always repur-
posing mechanisms for new contexts and it seems odd
that it would completely give up on such a clever learning
strategy in eukaryotes. One cannot help but wonder if
there are more surprises lying in store for us in what is
commonly referred to as “junk” DNA.

C. But Why Does It Matter?

CRISPR may exemplify (9), but it also awakens the
Devil’s Advocate. What is the benefit of the learning per-
spective advocated here beyond being a trendy metaphor?
After all, CRISPR was not found by studying learning in
microbes but by conventional microbiology and molecular
biology. Looking forward, what could learning bring to
understanding CRISPR or allostasis or PARs? Facing up
to such questions helps us understand what is at stake in
taking (9) seriously.

At least four benefits accrue from (9): breadth of appli-
cation; quantification; a focus on how memory is rep-
resented and encoded; and a richer metaphor for living
systems.

In view of its abstract formulation, (9) is broadly
applicable to many contexts that fall outside the scope
of Fig. 1. Chemotaxis and CRISPR are good exam-
ples. Another is provided by contexts in which observed
responses may be long delayed or even absent, as in
PARs that manifest as an increased risk of ill health in
adult life. Vaccination has a similar character. Like CRISPR,
vaccination tangibly meets the two requirements of (9):
information about a foreign pathogen is transferred from
the world to the system and is represented to guide subse-
quent behavior. However, this learning may not manifest as

an overt immune response if the corresponding pathogen
is not subsequently encountered.

The breadth of application of (9) encourages us to char-
acterize learning within the ecological and evolutionary
context in which it is found. If learning arises through
one of the classical paradigms of Fig. 1, as in Koshland’s
studies of habituation in mammalian cells, the additional
controls and experiments developed in the psychology
literature [26] offer a starting point for characterization. If
learning does not fall into these classical settings but arises
directly from (9), as with chemotaxis or CRISPR, it will
have its own characteristics that need to be delineated. For
example, viral pathogens are subject to mutation, raising
the question of how much variation CRISPR can tolerate
before it updates its memory. Do continued viral challenges
simply accumulate indefinitely in the CRISPR memory,
which implies a substantial burden on a microbial genome,
or does CRISPR actively forget? The learning perspective
suggests new kinds of questions to ask. We may then start
to see that there are many kinds of learning in biology, each
with the properties appropriate to its natural context.

Equation (9.1) is rigorously quantitative (10), which,
unsurprisingly, brings many advantages. First, it offers a
way to measure what is learned by specifying the relevant
environmental and system states, and estimating their
mutual information [208]–[211]. For example, judging
from the careful study of meadow voles (see Section IV-B),
it seems plausible that experiments could be designed,
at least with nonhuman animals, in which the increase
in mutual information could be estimated and a rigorous
assessment made as to the extent of learning during a PAR.
Human studies would be more challenging but not incon-
ceivable [155]. In chemotaxis, quantifying the amount of
information that is encoded by receptor methylation may
help to explain the efficiency of chemotaxis. In CRISPR,
quantifying the information learned may allow a rigorous
cost-benefit analysis, which may, in turn, explain why only
50% of bacteria use this form of immunity. More generally,
the amount by which mutual information is increased
during learning may offer hints about the underlying rep-
resentation: the internal model may be linked to those
system states on which the increase in mutual information
is concentrated, and this may help in establishing (9.2). In
this way, quantifying the information that is learned can
lead to insights into how the information is being used.

Second, quantification introduces a learning spectrum
along which many biological processes can be accommo-
dated. We have discussed the example of chemotaxis (see
Section VI-B), and in a similar vein, homeostatic processes
involved in adapting to environmental changes may also
have their own components of learning. Another exam-
ple brings us back to the question raised at the end of
Section IV-B. The development of a multicellular organism
is typically viewed as arising from a series of develop-
mental switches within cells, in which choices are made
by genetic regulatory networks in response to cues from
neighboring cells [141]. Once again, this is not usually

Vol. 110, No. 5, May 2022 | PROCEEDINGS OF THE IEEE 607



Gunawardena: Learning Outside Brain: Integrating Cognitive Science and Systems Biology

interpreted as learning but some information is certainly
transferred from the environment of a cell to its internal
states. It is often suggested that the amount of information
is limited to whether or not a cue is above the threshold
and, therefore, amounts to only a few bits, depending on
the patterns of cues that are involved. However, some cues
exhibit multiple thresholds [215] and the allegedly low
levels of information may reflect a broader bias arising
from experimental designs that deliberately mitigate the
complexity found in vivo. Irrespective of the actual amount,
the information is represented within a cell in the states
of the molecular circuit that implements the developmen-
tal switch, and these states subsequently guide the cell’s
behavior. We see that development also involves learning
in the sense of (9). Such developmental mechanisms may
then further underlie the learning of individuality sug-
gested in Section V-C.

More broadly, there has been a long-standing dichotomy
encountered at many scales in biology between so-called
“instructive” and “selective” (“exploratory” and “permis-
sive”) processes [140], [216]. For example, in contrast to
a developmental switch, in which the pattern of exter-
nal cues provides instruction as to the choice, certain
multipotent stem cells may wander around in dynamical
state-space attractors, and an external cue merely selects
those cells in a particular region of the attractor land-
scape where they are primed to be responsive to this
cue [217]. Both kinds of processes require engagement
with the environment, but the selective process is seen
as already containing the future possibilities, which the
environment only selects. From the perspective of (9), the
question is, rather, by how much is the mutual information
increased? In selective processes, it may be only one bit,
depending on the cue involved; in instructive processes, it
may be substantially more. As Bateson [140] suggests, the
sharp dichotomy between instruction and selection may be
better seen as part of a learning spectrum, for which (9.1)
provides the quantification.

We tend to use names other than “learning” to describe
biological processes in which only a small number of bits
are transferred between environment and system. One of
the benefits of (9) is to alert us to the learning that may
be concealed within such processes and encourage us to
actually measure it.

As noted above with respect to the neuronal engram
(see Section IV-C), the problem of how learned information
is represented and encoded remains one of the major
problems of contemporary science. Equation (9) draws
attention to the centrality and broad scope of this problem
beyond neuroscience.

Finally, to amplify one of the points made in Section I,
perhaps, the most significant benefit of (9) is not in the
specific scientific insights or problems that it throws up but
in the different metaphors that it offers with which to think
about living systems. They may be machines, but they
are not classical machines that merely transduce energy
and matter; they are autonomous agents that acquire

information from their environment from which they con-
struct models to act in the world. If such a change of think-
ing takes root, it could have profound consequences for
how we conceive of living systems in the light of science.

VII. C O N C L U S I O N

We have covered a lot of ground but I am acutely
conscious of what we have not discussed. Immunology
is the feature of organisms which is most obviously a
form of learning (see Section VI-B) and does not directly
involve the brain (although that demarcation may be less
clear than we like to think [218]). There has been a
rich interplay between immunology and computer science
[219], and computational immunology is thriving [220],
but immunologists have not felt the urge, so far, to draw
on the resources of cognitive science [221]. Immunological
learning in mammals occurs in cell populations through
processes of positive and negative selection akin to evo-
lution [214]. Similar forms of evolutionary learning and
predictive anticipation have been found in studies of bac-
terial populations [222], [223]. The spectre of evolution
has lurked behind many of our discussions, and I should
at least point to the interesting relationships that have
emerged between evolution and learning [224], [225].
Several theoretical studies, such as [226]–[231], have sug-
gested that single cells have the computational capabilities
for complex learning.

I mentioned in Section I that ciliate behavior was, in
part, responsible for my interest in learning. The other
part was evolution, although from a different angle to
that above. I was struggling to understand the evolution
of biological complexity. The standard account in the text-
books struck me as entirely inadequate, a view reinforced
by the work of Kirschner and Gerhart [216], [232] on
the concept of “weak linkage.” Their book The Plausibility
of Life is, in my opinion, one of the most significant
contributions to the contentious subject of evo–devo [233],
despite the problems that they identify being glossed over
in the conventional account [234]. Learning within the
organism offers a resolution of these problems, as hinted
at in Section V-E, but crossing the treacherous minefields
of evo–devo must be left to another time.

Systems biology emerged as a discipline to capitalize
on the successes of biochemistry, molecular biology, and
the genome projects. It has provided rich perspectives of
the cell as an ensemble of elaborate machines that trans-
duce matter and energy—polymerases, ribosomes, signal-
ing pathways, gene regulatory and metabolic networks, the
cytoskeleton, the cell cycle oscillator, the circadian clock,
and so on—and design principles on which these machines
are based [235]. I cannot be the only one to find this
inspiring but also lacking some fundamental ingredient
of living systems. Although biologists study life, they are
often reluctant to grapple with its meaning [236]. It can
have an ineffable, if not downright mystical, quality that
repels scientific analysis. Learning offers an alternative
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perspective, which is perfectly scientific, as we have seen
(see Section II), but gives back to living systems some
of the autonomy and agency that they have lacked as
mere, unlearning machines. The rich understanding of
learning within cognitive science (see Section II) provides
invaluable resources for rebooting the machine metaphor.
I have drawn on these resources to suggest an information-
theoretic definition of learning that may be more appropri-
ate for systems biology (9). In this view, living systems, at
all scales of the biological hierarchy, not only the cognitive,
are machines that acquire information from their environ-
ments to build internal models of the world that guide their
behavior.

The disciplines of physiology (see Section III) and devel-
opment (see Section IV) offer considerable evidence for
the existence of internal models and the significance of
learning, but it is at the cellular level (see Section V)
that we may most readily hope to test these hypotheses.
The example of CRISPR (see Section VI-B) confirms that
individual microbial cells undertake substantial learning
according to the definition in (9), but the learning capabil-
ities of individual eukaryotic cells and their corresponding
molecular mechanisms remain to be unraveled. Doing
so may clarify, in turn, the mechanisms underlying the

long-standing conundrum of the cognitive engram (see
Section IV-C).

Learning through an internal model offers a scientific
way, shorn of mysticism, to articulate a concept of mind,
bringing to fruition the ideas of Kant and Helmholtz of
mind as model (see Section I). When I was a novice
systems biologist, I once struggled to explain the frustra-
tions of doing experiments on living cells, and a wise and
experienced biologist smiled and said “You mean the cells
are in charge of the experiment?” Indeed! They have minds
of their own.
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