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ABSTRACT | Metabolic network analysis is an accessible and

versatile modeling approach for biology that has taken much

inspiration from electric circuit analysis. After introducing its

main concepts, we focus on numerical tools, such as optimiza-

tion and sampling, to predict cellular features and behaviors at

a large scale. Optimization approaches exploit that metabolic

networks are shaped by evolution and are, thus, assumed to

embed a fitness condition reflecting the environment that they

evolved in. In the past ten years, there is a trend to generalize

metabolic network analysis to consortia of interacting species.

This raises technical questions on, for example, optimality in

consortia but also more general ones on metabolic coevo-

lution, information exchange, and adaptation. This suggests

and allows us to explore interesting analogies to technological

systems, specifically to smart grids.

KEYWORDS | Computational systems biology; mathemati-

cal programming; molecular communication (telecommunica-

tion); Monte Carlo methods; smart grids.

I. I N T R O D U C T I O N
Metabolism refers to the set of (bio)chemical reactions
operating on chemical compounds (metabolites) that sus-
tain life in biological cells and organisms. It converts
food to energy and chemical building blocks, which are
used to compose cellular building blocks, such as proteins,
and ultimately enable self-replication and the generation
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of new biomass. Metabolism and its conceptualizations,
therefore, have a central role in the life sciences [1]–[3].

Metabolism is commonly conceptualized via metabolic
networks, that is, complex collections of thousands of
connected chemical reactions acting as devices. Like other
scientific abstractions, such as coordinate systems or elec-
tric circuit diagrams, we hypothesize that the concept
of metabolic networks significantly influences how sci-
entists and engineers think about their objects of study.
Metabolic networks are not merely used for the visualiza-
tion and qualitative analysis of metabolism, but the study
of metabolism has benefited from an ecosystem of formal
and quantitative analysis methods for a long time.

More than being common scientific abstractions,
metabolic networks and electric circuit diagrams, which
conceptualize flows (of matter and current, respectively)
on graphs, share some important attributes, In particu-
lar, domain-specific versions of Kirchhoff’s first and sec-
ond laws are important in both abstractions [4], [5];
in this review, we will use the laws as starting points
for conveying the concepts of metabolic network analy-
sis to readers beyond its core enthusiasts. Yet, analogies
between metabolic networks and electric circuits continue
beyond modeling the metabolism of a single organism.
Conceptually, smart grids are circuits of circuits, and net-
work representations of communities of biological organ-
isms that interact via their metabolisms are networks of
networks. In both cases, the generalization from one to
many introduces intriguing new challenges in terms of
the decision-making of distributed agents and internal or
environmental influences on collective behaviors.

In this article, we review the field of metabolic network
analysis and its recent developments in characterizing
communities of organisms. Distinct from the many exist-
ing reviews [3], [6]–[8], we focus on the mathematical
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methodology employed in metabolic network analysis and
its parallels with, as well as differences to methodologies
in electrical and information engineering. Thereby, we aim
to make the text accessible to readers outside the life
sciences who, through their theoretical and computational
expertise, may make valuable contributions to the field.
For example, we detail optimization and Monte Carlo
sampling problems frequently generated by applications,
as well as decision-making problems that arise in going
from metabolic networks of single organisms to commu-
nities of metabolically interacting organisms. In the other
direction, we argue that important distinctions between
living and engineered systems exist. This has led to prob-
lem definitions, theoretical concepts, and computational
approaches that could be interesting for “traditional” engi-
neering disciplines.

More specifically, we focus on quantitative methods for
predicting and determining the so-called metabolic fluxes,
the rates of (bio)chemical reactions, in a metabolic net-
work. Flux prediction is a ubiquitous problem in appli-
cations. For example, in metabolic engineering, which
aims to design organisms for efficient biotechnological
processes, fluxes are the central entity ultimately determin-
ing the value-generating yields [9], [10]. Fluxes are also
targets for interventions in medical research, such as the
development of antibiotics [2] and cancer research [1].

To limit the scope, we assume that metabolic network
models, mostly constructed from genome sequences, are
given. Briefly, in the reconstruction process, sections of the
genome are compared to a list of sequences of enzymes
that catalyze known chemical reactions. If a match is
found, the chemical reaction is added to the network.
To ensure high quality, the resulting draft reconstruction
undergoes a sequence of curation steps [11]. For details
on metabolic network reconstruction, we refer to recent
reviews [3], [8], [12], [13].

Even with an established model, as detailed in the
following, the metabolic flux analysis poses challenging
problems because of the peculiarities of biological sys-
tems. For example, observability is often limited: fluxes
occurring inside a cell (intracellular fluxes) are, in general,
not measurable directly such that modeling is required if
their magnitude is to be estimated or predicted. Another
important, complicating factor is uncertainty in biological
systems [14]. Ultimately, specific metabolic fluxes emerge
as a consequence of the extracellular environment and the
abundance of metabolites and active enzymes. The process
of how a cell controls the fluxes to keep functioning despite
changes in the environment is called metabolic regulation.
However, in contrast to engineered systems, the structure
and parameters of the corresponding control circuits are
often unknown. This spurred the development of a large
variety of methods to determine metabolic fluxes without
direct references to control.

Section II introduces key elements of metabolic net-
works, such as metabolic fluxes, kinetics, and thermo-
dynamics more formally. The computational methods

Fig. 1. Overview of mass flows in hypothetical cell cultures.

(a) Culture of cells of a single biological species (pink ellipses) with

mass exchanges (arrows). VE is a vector of metabolite influxes and

effluxes of the culture, q(X) is the biomass efflux (“washout”), νT is

a vector of transport fluxes crossing the cell boundary, CE and CI are

vectors of concentrations of metabolites outside and inside the

cells, respectively, μ is the rate at which cells (biomass) produce

biomass, and X is the concentration of biomass. Large arrow heads

indicate the primary reaction directions. (b) Generalization to a

coculture of two species (pink and yellow ellipses), where the

symbols νT, CI, and X become species-specific (numerical

superscripts). The coculture opens the possibility of cross-feeding of

compounds via the culture medium and transport reactions.

described in Section III for predicting metabolic fluxes
were mainly developed for single biological species.
Section IV proposes conceptual extensions to interacting
species, which suggests interesting parallels to smart grids
and multilevel control problems more generally. Overall,
we focus on concepts and theory; to complement our high-
lighted applications, we refer to recent reviews [8], [15].

II. M E TA B O L I C N E T W O R K S
Metabolic networks describe metabolism, which is a
process taking place in cells residing in cell culture.
Thus, to introduce metabolic networks and their associated
methods, we start by describing a generic cell culture
hosting a metabolic process.

A. Cells in Culture

Fig. 1(a) shows a schematic culture of one type of cells,
e.g., of a single species of microbes. Metabolites enter and
exit the culture via NM,E exchange reactions; their fluxes
are given by the vector VE ∈ RNM,E in concentration units
(e.g., mol/l) per time. Exchanges influence the concentra-
tions of metabolites in the culture medium, CE ∈ RNM,E

+ .
Cells may take up metabolites from the medium via Nν,T

transport reactions with fluxes νT ∈ RNν,T in concentra-
tion units per time and biomass concentration. Observe
that VE and νT have different units because the amount
of transport depends on the concentration of biomass,
X ∈ R+. The transport matrix T ∈ RNM,E×Nν,T maps
the compounds transported by νT to their corresponding
extracellular compounds CE. The biomass concentration is
enriched by self-replication at the rate μ ∈ R but also
changes over time by processes such as cell death and cells
being washed out of the culture, given by the function
q(X) ∈ R. Assuming that mass is conserved, we get a sys-
tem of ordinary differential equations (ODEs) describing
the time development of the extracellular metabolite and
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Fig. 2. Example metabolic network with atom-mappings and EFMs. (a) Stoichiometry describing how 15 reactions (diamonds) convert

11 metabolites (rectangles) in a graph structure. Yellow diamonds represent reactions that conserve the number of carbon atoms

(intracellular reactions), and red diamonds represent reactions that exchange carbon atoms across the system boundary (exchange

reactions). All intracellular reactions are a priori bidirectional; they may proceed backward (against the indicated arrows). The exchange

reactions are unidirectional. The two zooms on the right show how individual carbon atoms are passed between specific positions of the

carbon backbone of the molecules in the reactions. (b)–(d) Examples of EFMs (minimal subnetworks that may carry a nonzero flux) of the

network. The graphic was created using Omix [16].

biomass concentrations

dCE

dt
= −VE − X · TνT (1)

dX

dt
= Xμ − q(X). (2)

The minus signs in (1) are due to the primary directions
chosen for the reactions [see Fig. 1(a)].

B. Fluxes in Metabolic Networks

Similar mass balances are also upheld in the interior
of the cell. How the reactions in the cell interrelate is

what is described by a metabolic network. Formally, the
metabolic network is a hypergraph, which shows how
metabolites (nodes) can be converted into each other by
reactions (hyperedges).

Fig. 2 shows a simplified metabolic network inspired by
central metabolic pathways (Entner–Doudoroff, Embden–
Meyerhof–Parnas, and pentose phosphate pathways) in the
bacterium Escherichia coli [17]. In the figure, the hyper-
edges have been enhanced with diamond symbols that
clarify which arrows belong together. The four red dia-
monds represent reactions that exchange material with the
outside of the cell and correspond to νT fluxes. The Input
reaction is an uptake of nutrients that the cell catabolizes
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to gain energy and building blocks for synthesizing new
compounds. The CO2 reaction is an example of a biproduct
secretion and the Product reaction indicates that the cell
can produce a compound that, for example, could be
of biotechnological interest. In the example, the product
reaction emanates from the metabolite PYR (pyruvate).
Rather than just producing pyruvate, we chose the product
reaction to represent a large range of compounds that
are derived from pyruvate. Fundamentally, cells are self-
replicating entities. The Biomass reaction, corresponding
to μ in Fig. 1, takes the precursors of the molecules
corresponding to one unit of biomass to represent the cell
growth process. How much of each precursor metabolite
is needed is based on measurements of the molecular
composition of the cell [18].

We now present the mass balance equation for the NM,I

intracellular metabolites with concentrations CI ∈ RNM,I
+ .

For this, we need the vector of metabolic fluxes ν ∈ RNν

(with units concentration per time and biomass concen-
tration), which includes the transport fluxes νT and the
biomass flux μ (despite its deviating unit). The so-called
stoichiometric matrix, S ∈ RNM,I×Nν , governs how the
material is transported through the network. An entry sh,l

of S determines how much of metabolite h reaction l

produces (sh,l > 0) or consumes (sh,l < 0) per unit of flux.
Regular reactions consume or produce whole molecules,
implying that entries in S corresponding to regular reac-
tions are integer-valued. The biomass production reaction
is not a regular reaction because it lumps together several
regular reactions and produces a composite (biomass)
rather than defined molecules; it has noninteger entries in
S. By combining the elements to form mass balances and
assuming constant density (due to time-scale separation),
the time development of the intracellular metabolite con-
centrations is described by the system

dCI

dt
· 1

X
= Sν. (3)

Equation (3) describes how NM,I potentially measurable
time courses of metabolite concentrations relate to Nν time
courses of nonmeasurable fluxes. Apart from time-varying
fluxes, a particular challenge for metabolic network analy-
sis is that Nν � NM,I. For the stationary analysis, this
implies dealing with underdetermined systems (see the
following).

C. Steady States and Constraints

To reduce the complexity of this dynamic system (with
respect to fluxes), (3) is combined with further assump-
tions. Based on arguments of time-scale separations, one
common fundamental assumption is the metabolically sta-
tionary state (or steady state), meaning that fluxes ν

and intracellular metabolite concentrations CI are time
constant. Investigating the steady state is interesting
because it presumably describes the long-term (cell and

time) average behavior of cell culture. Under the steady
state assumption, (3) reduces to the linear homogeneous,
underdetermined system that is referred to as the stoichio-
metric constraints

0 = Sν. (4)

This is analogous to Kirchhoff’s first circuit law: The sum
of currents (fluxes) entering a node equals the sum of
currents (fluxes) exiting that node.

For metabolic networks, the solution space of (4) is
called the feasible flux space; geometrically, it is a polytope
(referred to as flux polytope). Network couplings induced
by stoichiometry directly constrain this space because they
reduce the number of degrees of freedom of fluxes by the
rank of the stoichiometric matrix. In our example in Fig. 2,
rank(S) = 11, implying that (4) reduces the dimensionality
of the feasible flux space from 15 to 4.

Apart from the stoichiometry and regardless of whether
metabolism is assumed to be in steady state or not, the
feasible ranges of fluxes are restricted by NC so-called
capacity constraints. For a matrix B ∈ RNC×Nν and vector
b ∈ RNC , we impose

Bν ≤ b. (5)

On the one hand, to ease computations by restraining
the fluxes from attaining infinite values, upper and lower
bounds for all fluxes are often introduced. They are inten-
tionally chosen to be orders of magnitude wider than any
physiologically realistic flux. On the other hand, capacity
constraints can ensure that fluxes or combinations of fluxes
remain in physiologically relevant ranges. The difficulty
here is that we do not know what an accurate physi-
ological range for most intracellular fluxes is. However,
some extracellular fluxes and the biomass flux are directly
measurable and may be provided with (condition-specific)
bounds reflecting the uncertainty in these measurements.
In addition, thermodynamics knowledge of a reaction
may be used to constrain the direction of a reaction
(see Section II-D).

Apart from these single flux capacity constraints, mecha-
nistic hypotheses restraining weighted sums of fluxes have
been proposed and tested [19]. To increase the value of
flux, an increase in the concentration of a corresponding
enzyme with a specific size, efficiency, and cost in terms of
synthesis from precursors is needed. Since the cell has a
finite (and roughly known) volume and a known density,
there is a limit on how crowded the cell can be in terms
of the total number of enzymes, weighted by size. Via the
efficiencies of the enzymes, this limits the total sum of
fluxes [20]. Instead of focusing on cell density, we can
consider that cells are self-replicating entities, and the
metabolic machinery facilitating the self-replication must
be synthesized too. Thus, large fluxes through reactions
catalyzed by expensive enzymes operating at low efficiency
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will lead to a large metabolic burden for the cell. This
motivates the idea that the sum of fluxes may be restricted
in terms of the total metabolic cost of synthesizing the
enzymes that facilitate these fluxes [21], [22].

D. Thermodynamics

To derive capacity constraints from first principles,
we can exploit that, as all processes, the metabolic machin-
ery is driven by thermodynamic potential energy. Each
reaction νl is associated with a change in Gibbs free
energy, ΔrG�

l . Although many reactions proceed both in
the forward and backward directions at the same time
(bidirectional flux), the net flux always proceeds in the
direction that yields a lower potential energy (ΔrG�

l is
negative). ΔrG�

l depends on temperature, the relative con-
centration of the reactants, and (condition-dependent)
molecular properties of the reactants. The part relating to
molecular properties is referred to as the standard Gibbs
reaction energy, ΔrG�◦

l . In most cases, values for ΔrG�◦
l are

available either in databases [23] or via estimation [24].
We restrict attention to reactions operating fully in the
interior of the cell with their corresponding stoichiometric
matrix SI ∈ RNM,I×Nν,I , which is a submatrix of S. Denoting
the gas constant by R, temperature by T , and the transpose
of the stoichiometric matrix by ST

I , the vector of reaction
energies ΔrG� depends on the vector ΔrG�◦ via

ΔrG� = ΔrG�◦ + R · T · ST
I · ln(CI). (6)

Since ΔrG� depends on the logarithm of the metabo-
lite concentrations, ln(CI), and these concentrations are
condition-dependent, it is a priori unknown in which direc-
tion a reaction proceeds. Also, applying the deceptively
simple equation to biochemistry is not straightforward
because correct concentration units and potentially chemi-
cal activities need to be considered [25]. However, in cases
where a standard reaction energy ΔrG�◦

l is so far from equi-
librium (far from zero) that, from (6), it can be concluded
that the sign of ΔrG� will be constant for all physiologically
relevant metabolite concentrations, we can assume that
the reaction always proceeds in one direction. Such reac-
tions are referred to as unidirectional reactions, as opposed
to bidirectional reactions, and are often equipped with
directionality constraints (≥ 0) in computations.

With the introduction of thermodynamics comes Kirch-
hoff’s second circuit law (the loop law), which states
that the sum of voltages around any closed loop is zero.
Analogously, the reaction energies ΔrG� around any closed
loop in a metabolic network have zero sum. A corollary
to the loop law is that the fluxes in a metabolic network
can, in general, not proceed in cycles [5]. This corollary
can be applied, even if quantitative thermodynamics is
not considered explicitly. Fig. 2(b) highlights a loop in
the example network. From the stoichiometric constraints
alone [see (4)], flux around the indicated cycle is feasible.

To enforce the loop law explicitly, additional integer con-
straints are necessary (detailed in Section III-B) [26].

E. Kinetics

Reaction kinetics functionally relate fluxes (ν) to
states (C). For the analysis of engineered systems, such
relations are known, which is in stark contrast to bio-
logical systems where, often, even the functional form is
unknown. Even with the increasing availability of experi-
mental data for inference, kinetic modeling of metabolism
remains challenging. We refer to recent reviews, such
as [27], for details and focus on kinetics of extracellular
transport because they are critical for metabolic exchanges
in communities of cells.

For single-species cultivations, one can estimate trans-
port fluxes from changes in extracellular metabolite con-
centrations and constrain transport fluxes νT in (5). For
transport fluxes not constrained this way, one needs to
specify fluxes as a function of the extracellular concentra-
tions CE because active (via dedicated transport proteins)
and passive (via diffusion) transports are generally con-
sidered to depend on them. For active transport, assuming
that the index l refers to the same compound for νT and
CE, most commonly irreversible Michaelis–Menten kinetics
are assumed [28]

νT,l =
νmax,l · CE,l

Kl + CE,l
(7)

with uptake rate of compound l, νl, concentration CE,l,
and two parameters for maximal uptake rate, νmax,l, and
transporter affinity, Kl. Apart from being a vital link that
limits intracellular metabolism to the reality of the nutrient
supply, (7) is also a source of challenges and uncertainty
for computational methods because the values of the two
parameters are often unknown (and flux specific). A com-
putationally favorable feature of (7) is that it is monotone
in CE,l. However, that does not always have to be the
case. For example, approximately 20% of enzymes possess
nonmonotone substrate inhibition kinetics, where fluxes
increase for low substrate concentrations, but decline
again for high concentrations [29]. A key aim for metabolic
network analysis is, therefore, to predict metabolic behav-
iors without having to specify (all) reaction kinetics.

III. C O M P U TAT I O N A L M E T H O D S
In biology, model-based computer experiments are a lot
cheaper and faster to perform than exhaustive testing
on living organisms in laboratory experiments. Therefore,
having once reconstructed a metabolic network of an
organism from its genome, it is often conducive to retrieve
as much relevant information as possible using computa-
tional methods.

Here, we distinguish between: 1) structural methods to
characterize all feasible fluxes in a network (leading to
convex analysis problems); 2) optimization methods for
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Table 1 Seminal and Summarizing Papers of Computational Techniques

predicting fluxes in a specific condition (leading to com-
plex optimization problems); 3) probabilistic methods with
the same aim (leading to sampling problems); and 4) flux
inference methods to estimate nonmeasurable intracellular
fluxes from condition-specific measurements and models
(leading to identification problems). To facilitate navigat-
ing the literature for the computational methods discussed,
we compiled Table 1.

A. Structural Methods

The structural analysis facilitates the exploration of all
capabilities of a metabolic network (at metabolically sta-
tionary state). Its use ranges from investigating fundamen-
tal scientific questions in biology [43] to biotechnological
applications, for example, to increase product yields [44].

The associated methods directly interrogate the net-
work structure as represented by the stoichiometric
matrix S [45], [46]. However, metabolic networks are
hypergraphs (e.g., because a reaction may use more than
one reactant, see examples in Fig. 2), which hinders
the analysis using regular graph theory [47]. It is pos-
sible to increase the resolution of a metabolic network
and trace single atoms (see zoom in Fig. 2) or con-
served chemical moieties rather than whole molecules.
This turns the network into a regular graph (with some
exceptions) but significantly increases network size [48]
and requires additional constraints on fluxes, for exam-
ple, to avoid unwanted molecule cleavage. In general,
engineered analogs to metabolic networks are electronic
circuits with active components, requiring approaches
beyond regular graph theory.

A typical problem is to decompose the network into sub-
units, for example, to answer the long-standing question
if biology is modular akin to engineered systems [49].
There, metabolic networks provide an additional chal-
lenge: S is usually sparse but not (block-)diagonalizable
because common chemical energy, and other “currencies”
introduce dense rows to S [48]. In terms of general
analysis methods, for example, transferring hypergraph
partitioning approaches in integrated circuit chip design,
especially for very large scale integration (VLSI) [50],
to metabolism seems promising.

To decompose the network into minimal (overlapping)
functional subunits, the structural analysis of metabolic
networks uses application-specific methods. Chronolog-
ically, the first important structural approach involved
so-called elementary flux modes (EFMs) [30], [31]. By sep-
arating all bidirectional fluxes into forward and back-
ward fluxes, all flux variables are made nonnegative. This
irreversible space, in combination with homogeneous sto-
ichiometry and capacity constraints [see (4) and (5) with
b = 0], is a pointed convex polyhedral cone (the flux cone).
Its extreme rays (see Fig. 3(a) illustrating the geometry)
are feasible flux distributions with minimal support, in the
sense that setting any nonzero flux to zero forces an all-
zero solution. Fig. 2(b)–(d) shows examples of EFMs.
The EFM in Fig. 2(d) is of hypothetical biotechnological
interest—it uses all input for product generation. In con-
trast, the EFM in Fig. 2(c) produces both biomass and
the byproduct CO2. In the long run, some production of
biomass is necessary to keep a cell culture healthy. Hence,
a goal for metabolic engineering could be to balance the
two EFMs for a healthy culture that generates a product at
a high yield.

Importantly, EFMs are dual to (minimal) cut sets,
here defined as (minimal) reaction sets that need to
be jointly blocked to deactivate a target metabolic func-
tion [32]. Such “failure modes” are familiar to engi-
neers in reliability analysis, and cut sets specifically have
gained renewed interest in the analysis of decentralized
power grids [51], indicating potential synergies of the
domains.

However, the original formulation of EFMs does not
admit inhomogeneous constraints. The recent gener-
alization of EFMs to elementary flux vectors (EFVs)
addresses this limitation [46]. Furthermore, although
high-performance algorithms for enumerating EFMs
exist [52], capable of enumerating billions of EFMs,
a fundamental challenge of EFMs is that their number
increases combinatorially with the network size [53].
Therefore, recent efforts in structural analysis focused on
developing pathway concepts that reduce the number of
modes. For example, when investigating which chemicals
a network can produce from which substrates, instead
of enumerating the EFMs or EFVs, it suffices to enumer-
ate the elementary conversion modes (ECMs). ECMs are
a minimal set of metabolite conversions that span the
space of possible metabolite conversions using positive
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Fig. 3. Geometry of flux spaces. (a) Hypothetical flux cone in

three dimensions. The red arrows are the extreme rays of the cone.

The dashed line indicates that the cone may be limited from above

(bounded cone). (b) and (c) Given a uniform probability distribution

on a simplex in three dimensions (b), the emerging marginal

distribution in νx declines quadratically with increasing flux values.

coefficients [54], [55]. The number of ECMs is much
smaller than the set of EFMs since, in general, one metabo-
lite conversion can be mediated by many intracellular
pathways. In another concept, minimal pathways (MPs),
the network is first divided into (user-defined) enumer-
ated fluxes and nonenumerated fluxes. Under constraints
such as requiring a certain growth rate, MPs are support
minimal combinations of the enumerated fluxes that allow
for feasible solutions in the complete network (including
nonenumerated fluxes) [56]. Analogously to ECMs, by not
elaborating which path the flux takes over the nonenu-
merated fluxes, pathway numbers may be reduced greatly.
Contrary to ECMs, MPs are not designed to span a specific
space, and they allow to incorporate capacity constraints,
resulting in a bounded cone [see Fig. 3(a)].

Given the link between minimality and cut sets, EFMs
and other pathway definitions are interesting for engi-
neering applications. For example, a typical problem of
bioprocess design is the tradeoff between biomass and
product yield. Minimal cuts sets can be used to achieve
strict coupling of the two. A recent study achieved a
commercially viable strain design for the production of the
pigment indigoidine by 14 simultaneous gene knockouts
predicted through MCSs [57].

B. Optimization Methods

Predicting fluxes for specific, given conditions faces the
challenge of underdetermined systems. Given a network
with capacity constraints [see (5)] and, if the metabolic
stationary state is assumed, stoichiometric constraints
[see (4)], there are, in general, more degrees of freedom
in the fluxes than there are constraints. Additional assump-
tions have to be made to lock the remaining degrees
of freedom. The prominent approach in the field relies
on optimization methods, assuming that the fluxes ful-
fill biologically motivated optimality criteria. Similar to
structural methods, optimization-based methods are useful
for metabolic engineering with applications in industrial
biotechnology [58], [59]. However, they also have numer-
ous applications in medicine, such as predicting the effects
of drug treatments [60] or predicting metabolic changes in
SARS-CoV2 infected [61] or cancer cells [1].

When predicting condition-specific fluxes using
metabolic networks, the workhorse method, easily
showcasing the majority of applications, is called flux
balance analysis (FBA) [34]. It is founded upon the idea
of evolutionary optimality. Since natural cells are products
of evolution, their phenotype (and, in particular, their
metabolism) should, in some sense, be “optimal” in their
natural environment. For single-celled organisms, such
as bacteria, one commonly assumes that the cells grow
at maximal rate. However, many alternative objective
functions, including multiobjective functions, which are
appropriate in different scenarios, have been proposed
and tested [62], [63]. In the metabolically stationary
state, given an objective function f(ν), the FBA problem is
denoted as

max f(ν)

Sν = 0

Bν ≤ b. (8)

In particular, if f(ν) is a linear function, (8) defines a
linear program, which is easy to solve for thousands of flux
variables.

To highlight one application of FBA, it was recently
used to engineer bacterial strains that are highly efficient
in using methanol as a (sole) carbon source. This sub-
strate can be produced sustainably from carbon dioxide or
methane [64].

However, solutions to the imposed optimization prob-
lems are often not unique (in particular, for the linear
objectives), leaving fluxes nondetermined. To characterize
the space of alternative optima, the so-called flux vari-
ability analysis (FVA) has become common practice [37],
[38]. In FVA, after solving the initial optimization problem
[see (8)], an additional linear constraint is introduced,
which restricts the flux space to optimal solutions. Then,
the smallest and largest feasible values of each flux under
the new constraint are computed by minimizing and max-
imizing each flux using linear programming.

In addition, (8) does not necessarily respect the loop
law; it may generate thermodynamically infeasible solu-
tions. To enforce the loop law in FBA without including
quantitative reaction energies, one can add a vector of
hypothetical reaction energies G ∈ RNν,I , a binary vector
a of the same length, and a large number Ω to the FBA
problem [see (8)]. The extra constraints of loop less FBA
are [26]

−Ω(1 − a) ≤ νI ≤ Ωa

−Ωa + 1(1 − a) ≤ G ≤ −a + Ω(1 − a)

SI · G = 0. (9)

In particular, the second line enforces all G elements to be
nonzero, thereby avoiding the solution G = 0, which does
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allow for loops. Similarly, FVA has been extended to respect
the thermodynamic loop law [65].

If the metabolic stationary state is not assumed,
so-called dynamic FBA (dFBA) may be applied. Conceptu-
ally, dFBA introduces additional complexity since it allows
for both instantaneous (optimized for all time points) and
terminal (time-integrated) objective functions. In a general
formulation, given initial conditions for CE, CI, and X,
dFBA solves for the optimal fluxes with respect to instan-
taneous or terminal objective functions, subject to mass
balance and capacity constraints [see (1)–(3) and (5)].
One can also include further constraints, for example,
to limit the rate of change in fluxes. By discretizing
(and/or parameterizing) metabolite concentrations and
fluxes, the resulting system can be solved as one nonlinear
optimization problem [35]. With only instantaneous (and
linear) objectives, by discretizing the time domain, the
optimal (constant) fluxes in each time interval can be cal-
culated via a sequence of (linear) optimization problems.
Metabolite and biomass concentrations are then updated
via their differential equations in each time interval using
the computed fluxes. A further, often applied, simplifica-
tion is that intracellular fluxes are stationary, implying that
the stoichiometric constraint [see (4)] is fulfilled at each
time point [66]. Recalling that νT and μ are elements of ν,
this gives an optimization problem for the time dependent
fluxes ν(t)

max
ν(t)

f(ν(t))

s.t.
dCE(t)

dt
= −VE(t) − X(t) · TνT(t)

dX(t)

dt
= X(t) · μ(t) − q(X(t))

Sν(t) = 0

Bν(t) ≤ b(CE(t)) (10)

where CE(t), X(t), and ν(t) are unknown functions to be
solved for. The second line of (10), enforcing mass bal-
ance of the extracellular metabolites, couples the metabo-
lite and biomass concentrations with the optimization
problem. The maximal magnitude of the transport fluxes
νT often depends on the extracellular concentrations CE,
as in (7), implying a dependence of b on CE in the
last line. Although (10) may be addressed directly by
discretization in the time domain (the inner optimiza-
tion problem is solved in every step), this formulation
may become computationally prohibitive, particularly for
nonlinear objective functions. As an alternative, one can
convert the optimization problem to an algebraic system
using the Karush–Kuhn–Tucker (KKT) theorem and solve
the emerging differential algebraic equation (DAE) system
with dedicated DAE solvers [67].

In comparison, metabolically stationary FBA and dFBA
handle transport reactions differently. FBA can circumvent
the often unfulfilled need for a detailed and accurate
description of the transport capacity constraints [7] by

assuming optimal behavior. Any cellular objective that
minimizes the flux required to sustain a certain growth
rate, such as yield optimization or efficient enzyme
usage [68], will impose effective bounds on transport reac-
tions. In contrast, dFBA models the extracellular metabo-
lite concentrations explicitly. It requires some kind of
kinetics, for example, to capture how a declining nutrient
abundance leads to declining nutrient uptake. This dis-
tinction will become important for community models in
Section IV.

C. Probabilistic Methods

Optimization-based methods overcome the indetermi-
nacy of the high-dimensional flux spaces by imposing
biologically motivated objectives. Unfortunately, which
objective function to choose is subject to debate [63]; in
some scenarios, there is no obvious objective (e.g., for
multicellular organisms). Probabilistic methods for flux
predictions endow fluxes with probability distributions
and, thereby, do not rely on (biological) objectives. In addi-
tion to (derived) point estimates, they produce useful
uncertainty estimates [40].

Probabilistic methods are commonly applied to the
metabolically stationary state, under the stoichiometry
and capacity constraints [see (4)–(5)]. In the (common)
absence of a function that grades the probability of fluxes,
it is often assumed that all fluxes within the feasible space
are equally likely, thus imposing a uniform probability
distribution on the fluxes. If we denote the metabolically
stationary flux polytope P as P = {ν : Sν = 0, Bν ≤ b},
then the probability density of fluxes is

p(ν) =

���
��

1�
ν∈P

dν
, if ν ∈ P

0, otherwise.

(11)

From this joint flux distribution, marginal distributions
and statistics, such as moments, may be computed. Denote
by ν �l all fluxes except νl and by P|νl the flux polytope with
flux νl fixed to a specific value. The marginal distribution
of νl is then

p(νl) =

�
ν �l ∈P |νl

dν �l . (12)

Notably, despite the uniform joint distribution, due to the
nontrivial shape of the flux polytope, these marginal flux
distributions are often nonuniform. This is visualized in
Fig. 3(b) and (c); the marginal densities of a 3-D sim-
plex decline quadratically. Computationally, marginal flux
distributions are mostly obtained via Markov chain Monte
Carlo (MCMC) sampling [69], but an analytic approxima-
tion approach has also been developed [70].

Such computed marginal flux distributions can be
predictive in their own right [71], but they tend to
underestimate the (often measured) growth rate μ. When
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some measurements, such as moments of extracellular
fluxes or the growth rate, are available, it is desirable
to modulate the joint density. Instead of being a pri-
ori uniform, it should be as uninformative as possible
while still matching the measured moments. According
to information science, the least informative distribution
is the distribution that maximizes entropy, E[p(ν)] [72].
The maximum entropy distribution constrained to match
first moments is the exponential distribution. Imposing an
exponential distribution on the growth rate and adapting
the distribution’s parameter until the expected value of
the growth rate matched measurements were shown to
improve the agreement between measured (inferred) and
predicted fluxes substantially compared to when assum-
ing a uniform distribution [71]. Despite this encouraging
result, the maximum entropy approach has been little
explored.

Nonuniform flux densities that may be challenging to
sample arise also in other contexts. For example, con-
sideration of quantitative thermodynamics creates a joint
space of fluxes and reaction energies (ν, ΔrG�). In this joint
distribution, the fluxes ν are a priori uniform, but the
reaction directions are constrained by the values of the
reaction energies ΔrG�. Hence, any outcome of sampling
ΔrG� forces the fluxes to take values in some specific
(hyper)quadrant. Having approximate ΔrG�◦ values [24]
and accounting for the uncertainty in intracellular metabo-
lite concentrations, it is natural that the reaction energies
ΔrG� are distributed according to some distribution that
concentrates around the measured values (for example,
a normal distribution). The marginal distribution of the
fluxes, p(ν), after integrating out the reaction energies of
the joint distribution, p(ν,ΔrG�), is then constant in each
(hyper)quadrant of the flux space. However, it will have
different densities in different quadrants. Computationally,
assessing the joint distribution p(ν,ΔrG�) by MCMC is
a much more difficult task than assessing p(ν) in (11)
because the definition space of the fluxes is no longer
convex. This problem of sampling the nonconvex space has
currently only partial solutions [73], [74].

D. Flux Inference

Flux inference aims to identify metabolic fluxes from
large sets of experimental measurements for a given
condition using metabolic networks [10], [42]. For this
identification, measurements of growth rate and extra-
cellular fluxes, which predictive methods employ as well,
are augmented by measurements of so-called isotope label
enrichment [42]. The concept of flux inference has been
explored for nonmetabolically stationary states, where the
fluxes are functions [75], [76]. Here, however, we will
focus on the bulk of the literature and assume a metaboli-
cally stationary state.

Using (tandem) mass and nuclear magnetic resonance
spectroscopy, we can differentiate between compounds
with different masses. These highly precise technologies

Fig. 4. Isotopologues of a six atom (glucose-like) molecule

ordered in columns by number of labeled atoms (weight). The filled

circles represent positions with isotopic label, such as 13C atoms.

can also differentiate between different isotopologues: ver-
sions of the same molecule composed of different isotopes
of the same atoms. For example, carbon has two stable
isotopes, 12C and 13C. A typical nutrient such as glucose
with six carbon atoms may, therefore, appear in 26 dif-
ferent isotopic configurations referred to as isotopologues
(see Fig. 4). When measuring isotopologue concentrations,
isotopologues with different numbers of labeled atoms
may be differentiated in that they have different masses.
However, to some extent, also isotopologues with identical
mass may be differentiated [77]. For standard reactions,
we not only know how the molecules map to each other
but we also know how individual atoms map, which is visu-
alized for two reactions in Fig. 2(a). Thus, if we know the
fluxes, the concentrations of labeled intracellular metabo-
lites, and the label distribution of the nutrient supply,
we can calculate the time-resolved label distribution for all
molecules in the network, where the (absolute) abundance
of each label of each metabolite at each time point is a
potential measurement. The label distribution is sensitive
to the flux values. In Fig. 2(a), the reaction of G6P to Ru5P
and CO2, the carbon atom going to CO2, leaves the system.
If only this atom in G6P is 13C labeled and the reaction G6P
to Ru5P and CO2 dominates the other reactions from G6P,
most labeling will exit the network with CO2 and, thus,
not enrich in downstream metabolites. The lower zoom in
Fig. 2(a) also gives rise to flux-dependent patterns in the
measured labeling.

For brevity, we refer to the dedicated literature for
the full formalism of 13C metabolic flux analysis [78].
Importantly, by performing an experiment in which the
labeling of the substrate is known, hundreds or thousands
of labeling measurements are possible [79], [80], and from
these, an inference problem can be posed. Denoting the
measurements by η ∈ RNη (including flux and growth
rate measurements) with associated covariance matrix
Σ ∈ RNη×Nη , the simulation function w(ν) ∈ RNη , and
some distance function dΣ ∈ R+ that depends on the
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measurement covariance, we can denote the flux inference
problem as

ν̂ = arg min
ν

dΣ(η, w(ν))

Sν = 0

Bν = b. (13)

Depending on the measurements at hand, the simulation
function w(ν) comes in two flavors. If a time course of suc-
cessive label enrichment is available, simulation amounts
to solving a system of ODEs by numerical integration [79],
[81]. If only the asymptotically stable labeling pattern is
measured, a system of algebraic equations is solved [78],
potentially by deriving an explicit formula for w(ν) [82].

With rare exceptions [83], measurement errors are
assumed to be additive and Gaussian. Then, solving the
inference problem (13) with the Mahalanobis distance as
distance function dΣ yields a maximum likelihood (point)
estimate; to be informative, it should be equipped with
uncertainty estimates [84]–[86]. Alternatively, one can
directly approximate the (Bayesian) distribution emerging
from the assumptions of the measurement errors using
MCMC to obtain (Bayesian) point and uncertainty estima-
tors of the fluxes from the sampled distribution [87]. Again
(see Section III-C), the emerging MCMC problems are
constrained to nonsymmetric polytopes, imposed by the
stoichiometry and capacity constraints [see (4) and (5)].
They also imply nonuniform flux densities, here stemming
from how well the fluxes fit the measurements. These
problems evade straightforward application of modern
high performance MCMC algorithms [88], [89]; they are
solved using basic rejection-based strategies [83], [87].
Potentially, great computational speed-ups could be real-
ized with more sophisticated methods.

Considering labeling data also introduces a number of
nuisance parameters that need fitting. Most importantly,
for a chemical reaction between two metabolites A and B,
not only the net flux but also the bidirectional flux impacts
the labeling [84]. Bidirectional fluxes relate to the ther-
modynamics of metabolic reactions (see Section II-D). The
closer a reaction operates to thermodynamic equilibrium,
the smaller the net flux is relative to the bidirectional
flux and will thus strongly influence the measured label-
ing [90], [91]. Despite the apparent bridge between flux
inference and quantitative thermodynamics, the two con-
cepts have been combined explicitly only recently [92].
Instead, most applications incorporate thermodynamics
implicitly, by inferring bidirectional flux parameters solely
for reactions assumed to be close to equilibrium. The
dependence on bidirectionality complicates the inference
problem: it may increase the uncertainty in (net) flux esti-
mates and introduce biases. Note that the maximal number
of degrees of freedom in bidirectional fluxes is higher
than the number of net fluxes (the target of inference),
which are constrained by stoichiometry [see (4)]. Again,
this leads to challenging inference problems, for example,

to jointly infer the values of bidirectional fluxes and
whether reactions should be modeled as bidirectional [93].
Such advanced concepts could help exploit that labeling
experiments carry information about reaction reversibility
in vivo, information that cannot be measured directly [84].

IV. M I C R O B I A L C O N S O R T I A
Cellular consortia, and especially microbial communi-
ties (microbiomes), perform indispensable functions rang-
ing from (bio)geochemical cycles to human health via
the gut microbiome. Corresponding to increased exper-
imental capabilities for characterizing communities, the
past decade has brought multiple advances in develop-
ing and analyzing metabolic network community models
(MNCMs) [7].

Applications of MNCMs fall into three major categories.
The first set of studies investigates the function of spe-
cific consortia. Examples include the analysis of inter-
actions between photosynthetic and nonphotosynthetic
microbes [36] or of microbial communities relevant for
ecological restoration [94] and the human gut [95], [96].
A second category focuses on deriving general properties
of cellular consortia, for example, to correlate environ-
ment richness with cooperation levels in consortia [97]
or to explore mechanisms leading to community cooper-
ation [98], [99]. The final set primarily develops meth-
ods for MNCM simulations, targeting hurdles such as
tradeoffs between community and individual fitness in
FBA [100]–[102], efficient dFBA solutions [103], engi-
neering of biotechnologically relevant consortia [104], and
spatial or single-cell resolution [105]. As one specific appli-
cation example, NMCM simulations were instrumental in
establishing a functioning community of a strain that uses
photosynthesis to provide sugars to sustain the life of
another strain that could serve as a producer of valuable
biocompounds [106].

Importantly, most of these studies use FBA, which was
originally developed for single species. This, as well as
extensions of structural and probabilistic methods, pose
substantial conceptual challenges. We argue here that
analogies between microbial consortia and smart grids
could help addressing them.

A. Analogies to Smart Grids

A smart grid in electricity supply is a system of commu-
nicating agents that strive to control supply and demand
with the objective of reliably performing tasks while min-
imizing the cost of electricity production. A central chal-
lenge is to account for the fluctuations in supply and
demand, which are strongly influenced by external factors,
such as weather. Because of the connectivity in a grid,
such fluctuations imply challenges even when one has
good characterizations of individual power consumers and
generators. Behaviors of a smart grid have to be predicted
with models that include the smart grid itself [107].

A cellular consortium is also a system of communicating
agents (cells). Each cell consumes (externally supplied)
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nutrients, but it may also produce nutrients that are
consumed by other cells (so-called cross-feeding). Cross-
feeding is an example of division of labor, where, by per-
forming chemical reactions for each other, the number of
reactions individual cells have to perform is reduced. Com-
pared to modeling single organisms, a central challenge
for systems analysis of consortia is that, due to unknown
production of nutrients from other community members,
the available nutrient supply of individual cells is generally
unknown; it has to be predicted using models that include
the whole consortium.

In a smart grid, power consumers and generators may
belong to many different beneficiaries. Therefore, whose
cost to minimize is not given. One route to resolve this con-
flict of interest is by employing game theory [108]–[110].
Similarly, even if the division of labor is proven to improve
some fitness of a cellular consortium, certain community
members may choose not to engage in division of labor
if it does not benefit them specifically. Thus, for division
of labor to be a realistic scenario, the incentives of the
consortium members must align. As for smart grids, game
theory can provide a suitable analysis framework [111].

A fundamental difference is that smart grids are engi-
neered and human-controlled systems, whereas natural
microbial communities have evolved. This implies that
we can tune and interpret components of a smart grid
much better than species in microbial communities. The
same holds for interactions in both types of networks.
This also affects our ability to impose top-down rules,
such as pricing systems, which may be possible for smart
grids [109]; for microbial consortia, reverse-engineering
such rules remains an open problem. Though not com-
pletely evolved, from a modeling perspective, engineered
microbial communities retain most challenges of their
natural counterparts, such as largely unknown metabolic
regulation and interactions.

B. Consortia in Chemostats

As for single species [see Fig. 1(a)], we first need to
consider culture conditions when formalizing interactions
in cell consortia; see Fig. 1(b) for a schematic cell culture
with two species. The leap from one to more than one
species has three important implications for modeling.
First, in a single species culture, one can measure the
(time and cell average) transport fluxes νT by monitor-
ing the extracellular concentrations CE and the species
concentration X. For cocultures, which divide νT into
species-specific transport fluxes, such measurements are
no longer possible. Second, a single species in a controlled
environment can only take up compounds added to the
medium (or in rare cases produced by itself). For a cocul-
ture, a wide and partly unknown range of compounds
may be crossfed between species. Finally, a metabolically
stationary state implies constant fluxes ν. In a NS species
coculture with species fluxes ν(i), i ∈ 1, . . . , NS, recalling
that the fluxes are in units per biomass X(i), a minimal

requirement for metabolic stationarity is that the relative
species concentrations

X(i)�
j X(j) , i ∈ 1, . . . , NS (14)

are constant over time. Unless an external mechanisms
equilibrates the relative species concentrations by adding
and removing cells, (14) requires that μ(i) = μ(j), ∀i, j ∈
1, . . . , NS, referred to as balanced growth [112]. Realisti-
cally, (14) will never be upheld exactly in actual cultures.
Instead, it represents a time average of a pseudostationary
state that is subject to some fluctuations.

For a so-called chemostat culturing environment with
time-constant (nutrient) influxes and effluxes of rate
D (volume per time), potential metabolically station-
ary states maintain constant absolute species concen-
trations X(i), i ∈ 1, . . . , NS and growth rates μ(i) =

D, i ∈ 1, . . . , NS. Such stationary states emerge from a
self-stabilizing (negative feedback) process: Growth rates
above D increase biomass concentration and concomi-
tantly nutrient consumption. This leads to lower exter-
nal nutrient concentrations, which (often) decreases the
growth rate [113]. Natural stable ecosystems are inher-
ently chemostat-like, in which they maintain a long-term
species balance that is enforced by (cyclic) nutrient limi-
tations. Therefore, the study of the chemostat and other
long-term stable systems that maintain a species equilib-
rium by nutrient limitation even under cyclic fluctuations is
of high interest. It also raises interesting control problems,
for example, to maintain relative species concentrations in
chemostats [114].

Modeling self-equilibrating stationary states requires an
explicit representation of the extracellular metabolite con-
centrations CE. They are not present in the stationary
state FBA formulation [see (8)]. However, dFBA (with or
without the assumption of pseudostationary metabolism)
explicitly represents all relevant concentrations and fluxes
(see Fig. 1). Thus, dFBA is directly applicable for MNCM
simulations, theoretically under any cultivation condition.
Despite posing significant computational challenges, dFBA
simulations with large consortia are possible [99], [103],
[105]. The main challenge for reliable dFBA community
simulations is that the kinetics relating extracellular con-
centrations to (maximal) substrate uptake rates are largely
unknown (see Section III-B). Current solutions to address
this limitation include combining assumed values with
database approximations [103] and sensitivity analysis of
transport capacities by random sampling [115].

Because dFBA represents the extracellular environment
explicitly, it also provides a viable route for studying
(possibly chemostat-like) long-term emerging community
structures. However, there is no guarantee that such struc-
tures exist or that they are unique. Contrarily, in repeated
batch experiments with natural consortia, seemingly iden-
tical experimental sequences lead to functionally similar
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stable microbial communities but with different species’
compositions [116]. In view of MNCM models, deviating
compositions may arise deterministically, as a result of
varying initial conditions, or stochastically, for example,
as a result of low cell numbers or environmental het-
erogeneity. At present, stochastic dynamic simulations of
MNCM models are unexplored, and they are probably
computationally prohibitive. Thus, deterministic MNCM
simulation can help to explore the emergence of deviating
cellular communities under similar conditions. The num-
ber of long-term community structures arising will depend
on specific assumptions made, in particular, regarding
uptake kinetics [see (7)]. In addition, nonmonotone rela-
tionships between metabolite concentrations and growth
are likely in the presence of growth-inhibiting (toxic)
compounds [117]; they may influence the number of
long-term solutions. To investigate alternative long-term
solutions of MNCMs, instead of performing repeated dFBA
simulations, we have recently proposed a direct analysis
of the stationary states [118]. In contrast to normal FBA,
the extracellular environment is modeled explicitly; we
argue that there exist ample opportunities for method
development in similar directions.

C. Community Decision-Making

Naturally evolved multispecies communities often show
complex interactions and many examples of mutualistic
interactions have been established. In this context, a fas-
cinating hypothesis is that mitochondria, today organelles
in cells of higher organisms (eukaryotes) that provide
most of the chemical energy, were once bacteria living
symbiotically with ancestors of today’s eukaryotic cells.
Through evolution, this cellular consortium merged into a
single organism [119]. Other, less dedicated, examples are
mutualistic relationships between a host organism and its
gut microbiome [120], and between the organisms within
the microbiome [121].

For the formal analysis, the prevalence of mutualistic
communities adds a new level of complexity to FBA-type
simulations. On the one hand, cells evolved to optimize
their own fitness; on the other hand, through the evolu-
tion of communities, cells evolved to optimize community
fitness. What community fitness means is context-specific.
For example, in the gut, successful communities have
high resistance to invasion by pathogenic species [122].
Such objectives are not necessarily correlated with classic
single-species objectives such as fast growth, thus opening
up potential conflicts of interest between the (fitness of)
the cell and the community.

Probably due to the lower mathematical and computa-
tional complexity, most of the advanced decision-making
models in metabolic network analysis were developed
for stationary state cellular communities. Many dFBA
applications have no representation of a community
decision-maker [94], [99], [103]. An early decision-
making mechanism, applicable for predicting metabolic

behaviors of cellular communities at metabolically station-
ary state, is the so-called OptCom algorithm [100]. In Opt-
Com, the community is modeled as a bilevel optimization
problem with a community objective f(ν, X), constrained
by the individual objectives of the participating species
g(i)(ν(i)�). Denoting species-specific symbols with super-
script (i) as before (ν = [ν(1), . . . , ν(NS )]) and community
symbols without superscript, the OptCom formulation is

max
ν,X,VE

f(ν, X)

VE +
�

i

X(i)T(i)ν(i)
T = 0

s.t. VE,min ≤ VE ≤ VE,max	



�

ν(i) = arg maxν(i)′ g(i)(ν(i)�)
S(i)ν(i)� = 0

B(i)ν(i)� ≤ b(i)

ν(i)�
T = ν(i)

T

�



� ∀i. (15)

The two first lines of (15) constitute the outer problem
pertaining to the whole community with the second line
enforcing steady state in the extracellular compartment
and the third line keeping the system fluxes within a
range defined by lower and upper bound vectors VE,min

and VE,max. The equations in brackets constitute the inner
problems (one per organism i, where B(i) and b(i) are the
strain’s capacity matrix and capacity bounds, respectively).
Note that the definition space of the outer problem only
includes (ν,X) for which the inner problems have a feasi-
ble solution. This formulation differs slightly from the orig-
inal one in [100]; we introduced species concentrations
X explicitly to use consistent units throughout. Note also
that, in its original metabolically stationary formulation,
OptCom does not enforce balanced growth [see (14)],
but it has been extended to a dFBA formulation [123].
With the last line, ν(i)�

T = ν(i)
T , the outer problem in (15)

dictates the transport fluxes of the inner problem. Thus,
one can argue that OptCom gives the community objective
precedence over the individual objective. Alternative for-
mulations that assign more importance to the individual
cellular objectives include considering the space of the
Pareto optimal solutions of the individual objectives [101]
and the Nash equilibrium solutions by using game the-
ory explicitly [102]. Again, we see abundant space for
future conceptual developments, in particular those mak-
ing explicit use of the game theory [111].

D. Coculture Flux Inference

We introduced how the fluxes of a single species can
be inferred from measured enrichment of isotopes (typ-
ically 13C; see Section III-D). In microbial communities,
this approach faces additional challenges. In cultivations
where the species are not spatially separated and without
additional separation steps [124], standard measurement
techniques cannot differentiate in which species a label
enrichment of a standard compound occurs; only the

552 PROCEEDINGS OF THE IEEE | Vol. 110, No. 5, May 2022



Theorell and Stelling: Metabolic Networks, Microbial Consortia, and Analogies to Smart Grids

average label enrichment across all species will be mea-
surable. However, because of nonlinear mappings between
fluxes and label enrichment, one can, sometimes, infer
species-specific fluxes from community average measure-
ments [125]. Another route to coculture flux inference is to
measure (nonstandard) species-specific metabolites, such
as peptides, short chains of amino acids [126].

A generally important topic when modeling cocultures
is to identify crossfed compounds. In theory, this can be
addressed with flux inference. However, the crossfed com-
pounds are often not known a priori. Then, all reasonable
cross-feeding reactions should be added to the coculture
model prior to inference. This greatly increases the number
of degrees of freedom and, thus, decreases the statistical
power of the inference.

Despite these limitations, combining optimization-based
results [127] with evidence from coculture flux infer-
ence [128] shows promising results, For example, in cer-
tain environments, E. coli cells can bifurcate into two
distinct subpopulations with different metabolic behaviors.
This exemplifies phenotypic heterogeneity, a widely stud-
ied phenomenon in biology [129]. For the bifurcated cul-
ture, modeling required two coupled metabolic networks,
one for each subpopulation, to achieve an acceptable fit to
the labeling data [128]. Methodologically, this study high-
lights that, when inferring fluxes of a coculture (or a single-
species culture), each species may need to be modeled
by multiple metabolic networks to fit the measurements.
However, such subpopulations are generally problematic
for flux inference because they inflate (multiply) the num-
ber of inferred parameters. In addition, commonly, the
number of subpopulations is unknown; estimating this
number from data imposes additional model selection
problems. For the general case, a continuum of highly
variable phenotypes, no approaches to flux inference have
been proposed yet.

E. Challenges and Open Problems

Given that cellular communities constitute a system of
distributed decision-makers, it is natural that game theory
enters into the picture [111], sometimes explicitly [98],
[102]. OptCom [see (15)] and related formulations [112]
do not refer to game theory explicitly, but they impose a
structure of objectives to mimic the behavior of distrib-
uted agents performing a task, which is a game-like sce-
nario. The proposed decision-making formalisms assume
different levels of cooperativity. Thus, when modeling a
specific community, the choice of formalism should take
into account how much cooperation is expected. This is
often uncertain; it depends on whether organisms have
coevolved in the modeled environment and on properties
of the environment itself [97]. However, such choices may
fundamentally change the predicted community behav-
ior [102]. Considering this and the general complexity of
simulating cellular communities, performing quantitatively
accurate simulations with MNCMs appears very challeng-
ing. Instead, simulations with multiple sets of assumptions

(that is, model structures or objectives) may provide a
route to explore the space of phenotypic possibilities of a
community. Then, outcomes that are not predicted under
any assumptions can be rejected conclusively.

Characterizing the space of long-term (asymptotic) solu-
tions of community dFBA simulations is another open
problem (see Section IV-B). For small, purely ODE-based
models, the analysis of asymptotic community behavior
has a long tradition in the chemostat literature [130]. For
an asymptotic solution to be of interest, it should also
be (locally) stable, meaning that the system will return
to a stable state after a small perturbation. For MNCMs
in dFBA, we have systems of ODEs with optimality and
algebraic constraints, which complicates stability analysis.
As mentioned in Section III-B, the optimality constraints
can be converted to algebraic constraints [67]. However,
even then, the stability analysis of differential algebraic
systems is challenging [131] and not nearly as explored
as regular stability analysis. In general, we expect cellu-
lar decision-making, represented by optimization in FBA,
to have the capacity to stabilize steady states. This would
be analogous to a Segway standing up upheld by a con-
troller although standing up is an unstable solution of the
inverse pendulum equation. The alternative to an objective
function–incorporating corresponding cellular control cir-
cuits explicitly into metabolic network analysis–represents
a major challenge, even if these circuits were known.

For cellular community modeling, extending
single-species FBA to multispecies FBA is a straightforward
formal task. However, as we discussed, this extension has
strong conceptual implications with regard to (assumed)
cell culture and decision-making. In general, this makes
the results of community simulations less reliable
(quantitatively). However, for some scientific inquiries,
such as when investigating the capacity of organisms to
crossfeed metabolites, quantitative simulations may not
be necessary. Instead, the complementarity of organisms
can be assessed qualitatively by comparing their metabolic
pathways [132]. Novel extensions of structural methods
to communities could further develop such analyses.

If you have a hammer, everything is a nail—the compu-
tational ease of FBA-type analyses for MNCMs has prob-
ably influenced the scientific questions addressed. Since
metabolic capabilities are encoded in the metabolic net-
work, most MNCM studies investigate cellular interactions
in terms of cross-feeding. Resource competition, on the
other hand, a very common and fundamental interac-
tion type, has not been systematically investigated with
MNCNs. In the biological scenario where two organisms
compete for a single resource, the best adapted organism
will outgrow the other. Best adaptation may mean a better
capacity to turn the resource into biomass, which includes
not wasting resources on maintaining unnecessary capa-
bilities in this particular condition. Such metabolic and
regulatory overhead is not considered in standard FBA.
However, corresponding extensions that also account for
organism-induced changes in the environment may offer a
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good starting point for modeling competition between
specific organisms and cross-feeding.

V. C O N C L U S I O N
The quantitative analysis of metabolic networks is a
mature field with a wide array of techniques and appli-
cations. It has been covered in many reviews focusing on
different subfields [3], [6]–[8], [12], [31], [34], [52].
Here, we gave an introduction and overview to the com-
putational methods of the field, aimed at readers with
advanced knowledge of engineering and computational
sciences. We raised a number of current research questions
that are important in our view. They often relate to the
developing field of metabolic network simulations of cel-
lular communities. Specific topics include the emergence

of differing stable cellular consortia under similar condi-
tions, decision-making of cellular communities, stability
of solutions to ODE systems in the presence of decision-
makers, and mechanisms for community interactions in
cooperation and competition. By relating the entities and
challenges in metabolic networks to the study of electric
circuits and grids with their strong similarities, we demon-
strate interesting biology-inspired challenges for engineers
and computer scientists, in the hope that it will invite cross-
disciplinary contributions.
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